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The non-axisymmetric structure of an unstable Stewartson shear layer generated
via a differential rotation between flush disks and a cylindrical enclosure is
investigated numerically using both three-dimensional direct numerical simulation and
a quasi-two-dimensional model. Previous literature has only considered the depth-
independent quasi-two-dimensional model due to its low computational cost. The
three-dimensional model implemented here highlights the supercritical instability
responsible for the polygonal deformation of the shear layer in the linear and
nonlinear growth regimes and reveals that linear stability analysis is capable of
accurately determining the preferred azimuthal wavenumber for flow conditions near
the onset of instability. This agreement is lost for sufficiently forced flows where
nonlinear effects encourage the coalescence of vortices towards lower-wavenumber
structures. Time-dependent flows are found for large Reynolds numbers defined based
on the Stewartson layer thickness and azimuthal velocity differential. However, this
temporal behaviour is not solely characterized by Reynolds number but is rather
a function of both the Rossby and Ekman numbers. At high Ekman and Rossby
numbers, unsteady flow emerges through a small-scale azimuthal destabilization of
the axial jets within the Stewartson layers; at low Ekman numbers, unsteady flow
emerges through a modulation in the strength of one of the axial vortices rolled up
by non-axisymmetric instability of the Stewartson layer.
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1. Introduction
Instabilities in shear-dominated flows have been observed in many industrial,

geophysical and astrophysical flows. The instabilities in geophysical flows are
of interest due to the wide array of remarkable patterns that form on Earth and
extraterrestrial planets. The polygonal configurations observed in polar vortices, for
instance, have been hypothesized to originate from barotropically unstable shear layers
and jets (Aguiar 2008; Aguiar et al. 2010; Montabone et al. 2010). Polar vortices
engender much interest since the origin, longevity, and the preferred state of their
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striking and unique polygonal structures are still not well understood, despite having
been observed for decades (e.g. Taylor et al. 1979; Godfrey 1988; Charlton et al.
2005; Piccioni et al. 2007; Fletcher et al. 2008).

The pursuit of understanding these planetary-scale polygonal structures has been
supported by theoretical, numerical and experimental studies of an unstable Stewartson
layer. Stewartson layers can exist at the interface between concentric bodies of
fluid rotating at different speeds. The layers are a nested structure composed of a
thick and thin layer, both serving different functions (Stewartson 1957; Smith 1984).
Experimental techniques in particular have been popular in investigating these rotating
flows due to the relatively simple reproduction of the instabilities in the laboratory.
The range of apparatus used to investigate these layers include cylindrical containers
with both flat (Hide & Titman 1967; Rabaud & Couder 1983; Chomaz et al. 1988;
Früh & Read 1999; Bergeron et al. 2000) and varying bottom topographies (van
de Konijnenberg et al. 1999; Aguiar 2008; Aguiar et al. 2010), and spherical shells
(Hollerbach 2003; Hollerbach et al. 2004; Schaeffer & Cardin 2005). All of these
set-ups involve mechanically induced differential rotation, which generates Stewartson
layers that are susceptible to instability. Despite the differences in configuration, these
studies have illustrated polygonal structures via an unstable Stewartson layer which
are similar in appearance to planetary polar vortices. However, there are subtleties
inherent in the type of configuration which can influence the flow dynamics. For
example, Hollerbach (2003) concluded that the anomalous states between positive-Ro
and negative-Ro flows observed by Hide & Titman (1967) was due to the abrupt
change in depth across the Stewartson layer caused by the geometry of the system.

Experimental results have largely revealed the trends in the preferred azimuthal
states of these flows as functions of non-dimensional parameters. However, limitations
of these experiments include difficulty visualizing the vertical structure of the
non-axisymmetric flow, measuring certain flow parameters, and identifying underlying
structures. As such, numerical studies have been complementary in the fundamental
understanding of the flow structure (e.g. Bergeron et al. 2000; Früh & Nielsen 2003;
Schaeffer & Cardin 2005). Until recently, numerical efforts have been restricted
to quasi-two-dimensional modelling since full three-dimensional simulations are
computationally intensive. Hence, numerical studies are yet to elucidate the vertical
structure of the flow. In addition, comparisons between experimental observations
and numerical results have exhibited discrepancies. The unresolved depth-dependent
structures such as the thin inner Stewartson layer, which is responsible for completing
the meridional circulation induced by the Ekman layers, are often referenced as being
the reason for the differences (Früh & Read 1999; van de Konijnenberg et al. 1999).
Despite these limitations, vortical structures that resemble those of natural axial
vortices have been successfully recreated (Aguiar et al. 2010; Montabone et al.
2010).

This paper considers a cylindrical container with differential rotation forced by
coaxial disks to generate Stewartson layers. That is, two different angular velocities
are forced about the same axis of rotation. It should be noted that other planetary
phenomena have been investigated using configurations with multiple angular
velocities with a time dependence and rotation about multiple axes. Such flows are
known as librating (e.g. Noir et al. 2010; Lopez & Marques 2011; Koch et al. 2013)
and precessing (e.g. Kobine 1995; Kong, Liao & Zhang 2014; Kong et al. 2015)
flows. These characteristics mimic several planets within our solar system possessing
longitudinal libration and an interior dynamo. Furthermore, a precession-driven flow
would naturally occur in laboratory experiments since the rotation axis of the system
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does not often align with the rotation axis of the Earth. Thus, understanding the effect
of the precession may have significant implications for investigating rotating flows
(see Boisson et al. 2012; Triana, Zimmerman & Lathrop 2012, and references therein).
Despite the existence of Stewartson and Ekman layers in these flows, these shear
and boundary layers are often not the primary flow driver. Hence, inertial waves are
typically of interest in these unstable librating and precessing flows (e.g. Manasseh
1992; Meunier et al. 2008; Calkins et al. 2010; Sauret et al. 2012). In contrast, this
paper examines the non-axisymmetric structure of the unstable Stewartson shear layer
responsible for the polygonal deformations in both the linear and nonlinear growth
regimes.

Vo, Montabone & Sheard (2014) were the first to characterize the vertical structure
of the axisymmetric base flow and identify azimuthal linear instability modes that
can cause polygonal deformations to the Stewartson layer. These shear layers were
produced by the differential rotation of disks in a rotating cylindrical tank. The
azimuthal linear instabilities of primary importance were named mode I and mode II.
The primary difference between the two modes is that mode I disturbance structures
extend through the interior in the vicinity of the Stewartson layer leading to its
distortion and formation of polygonal shapes, while mode II structures are localized
near the base and lid in the vicinity of the disk–tank interface. Thus, the mode I
instability was the mode of interest due to the similar traits it displayed with respect
to barotropic instability. Additionally, the mode I instability was observed to favour
low-wavenumber structures, which are in line with the range of patterns observed in
nature such as Saturn’s north pole and Venus’s south pole. A third instability mode,
mode III, was also identified at flows characterized by larger Reynolds numbers.
It was proposed that the mode I instability was associated with the unstable Ek1/4

Stewartson layer while the mode II instability was associated with the symmetry
breaking of the flow about the mid-depth (i.e. the Ek1/3 layer). This hypothesis
was supported by Vo, Montabone & Sheard (2015), who recently studied the
linear stability of the same flow in various aspect ratios using axisymmetric and
quasi-two-dimensional models. The numerical analysis from both of those studies
considered axisymmetric flow and linear non-axisymmetric disturbances, whereas
nonlinear aspects of the instability mode evolution and the consistency between
saturated non-axisymmetric flows and quasi-two-dimensional model predictions have
yet to be explored.

This paper examines the non-axisymmetric structures produced in an unstable
differentially rotating flow using full three-dimensional direct numerical simulation and
a quasi-two-dimensional model. Comparisons between the two methodologies are
performed and the validity of the quasi-two-dimensional model is discussed. The
significance of the most unstable azimuthal linear instabilities predicted by linear
stability analysis (Vo et al. 2014) is explored by resolving the three-dimensional flow
in regimes both near and well beyond the onset of instability. This investigation
stems from the unexplained discrepancies observed in the azimuthal wavenumbers
obtained experimentally by Früh & Read (1999) to those predicted by linear stability
analysis (Vo et al. 2014). The results will elucidate the effects of nonlinearity and
temporal behaviour in these flows. This paper further investigates the sensitivity of the
three-dimensional flow to initial conditions which may, in part, explain the longevity
of various polar vortical structures.

This paper is organized as follows. The numerical methodology is outlined in
§ 2, which includes a description of the system, the governing parameters, and
the two numerical models. Results of the non-axisymmetric flows are described
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FIGURE 1. A schematic diagram of the differential rotating disk set-up under investigation.
The key dimensions are the disk radius Rd, tank radius Rt, and tank height H. The disks
and tank rotate about the central axis (thin dashed line) at a rate of Ω + ω and Ω ,
respectively. Boundary and shear layers are also shown, where vertical lines represent the
Stewartson layers (and their thickness scalings with Ekman number as Ek1/4 and Ek1/3)
and horizontal lines represent the Ekman layers (Ek1/2 thickness scaling).

in § 3, including three-dimensional modelling of flows in the vicinity of instability
onset (§ 3.1), flows well beyond the instability onset (§ 3.2), and the flow sensitivity
and its transition characteristics (§ 3.3). Section 3.4 examines the corresponding
non-axisymmetric flows using a quasi-two-dimensional model. Finally, the key
conclusions are drawn in § 4.

2. Methodology
2.1. System description and governing parameters

The system studied in this paper consists of a cylindrical tank rotating at angular speed
Ω with differential rotation imparted by disks located at the lid and base of the tank.
This configuration has been studied previously by numerous authors (e.g. Früh & Read
1999; Aguiar 2008; Vo et al. 2014, 2015) and a schematic of the system is shown in
figure 1. The key dimensions adopted here match the physical proportions used by
Früh & Read (1999) such that the ratio of the disk and tank radii is Rd/Rt = 1/2 and
the aspect ratio (ratio of the tank height to disk radius) is A=H/Rd = 2/3.

In the inertial frame of reference, the time-dependent incompressible Navier–
Stokes equations governing the flow of a Newtonian fluid are

∂u
∂t
+ (u · ∇)u=− 1

ρ
∇p+ ν∇2u, (2.1a)

∇ · u= 0, (2.1b)

where u is the velocity field, p is the pressure, ρ is the fluid density, ν =µ/ρ is the
fluid kinematic viscosity and µ is the dynamic viscosity.

A number of dimensionless parameters characterize the flow, including the Rossby
number Ro, the Ekman number Ek, and the internal Reynolds number Rei. These
parameters characterize the importance of inertial forces, viscous forces, and Coriolis
forces relative to one another, and are respectively defined as

Ro= Rdω

2ΩH
, (2.2)
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Ek= ν

ΩH2
, (2.3)

Rei =
√

2Ro
Ek3/4

, (2.4)

where Ω = Ω + ω/2 is the appropriate mean rotation rate following Früh & Read
(1999) and Aguiar (2008). The internal Reynolds number is based on a Stewartson
layer scaling with thickness L= (Ek/4)1/4H, and has been shown to be important in
describing the onset of instability in this type of system (Niino & Misawa 1984; Früh
& Read 1999; Vo et al. 2014, 2015).

2.2. Numerical treatment
The length, velocity, time, and pressure dimensions in (2.1) are scaled by Rd, RdΩ ,
Ω−1 and ρ(RdΩ)

2, respectively, to derive the non-dimensional governing equations

∂u
∂t
+ (u · ∇)u=−∇p+ Ek A2

1− ARo
∇2u, (2.5a)

∇ · u= 0. (2.5b)

A nodal spectral-element method is employed to spatially discretize the non-
dimensional governing equations. High-order Gauss–Lobatto–Legendre polynomials
are used as interpolants within each macro-element, which can be varied to control
the spatial resolution. A third-order accurate operator splitting scheme based on
backwards differentiation is performed to integrate the governing equations through
time. These techniques have been described in detail by Karniadakis, Israeli & Orszag
(1991) and Karniadakis & Sherwin (2005), and the present code has been successfully
implemented in both cylindrical (Sheard & Ryan 2007; Vo et al. 2014, 2015) and
Cartesian (Neild et al. 2010; Sheard & King 2011) formulations.

Two different models have been employed to compute the non-axisymmetric flow
structures in this paper. The first considers the full three-dimensional equations
simulated via computationally expensive direct numerical simulation, and the
second considers a simplified quasi-two-dimensional model described by two-
dimensional equations with an added external forcing term. These two models are
described separately in the following sections.

2.2.1. Spectral-element–Fourier technique
The geometry considered in this paper possesses an azimuthal homogeneity,

and therefore an efficient approach to compute the non-axisymmetric flow in the
geometry is to use a spectral-element–Fourier method (Blackburn & Sherwin 2004).
A spectral-element method is used to discretize the flow in the two-dimensional r–z
semi-plane (see figure 2a). Boundary conditions are imposed such that the grey
regions represent the disks which rotate at a rate of Ω + ω, while the black
regions represent the tank walls and rotate at a rate of Ω . On the symmetry axis,
appropriate zero Dirichlet and Neumann conditions are imposed on the pressure
and velocity component Fourier modes as detailed in Blackburn & Sherwin (2004).
Axisymmetric steady-state base flows are prescribed as the initial condition for the
three-dimensional simulations, unless stated otherwise.

The third dimension is constructed through a Fourier expansion of the velocity and
pressure fields. In cylindrical coordinates, the two-dimensional r–z plane is expanded
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(a) (b)

FIGURE 2. (Colour online) (a) The spatially discretized semi-meridional r–z plane used
to simulate axisymmetric flows with macro elements shown. The disks (grey) and tank
(black) boundaries rotate about the central axis (dashed line) at a rate of Ω + ω and
Ω , respectively. (b) An oblique view of the three-dimensional domain achieved via the
azimuthal expansion (spectral-element–Fourier technique) of the semi-meridional mesh
shown in (a). Several r–z planes at different azimuthal angles are illustrated with contours
of axial vorticity to demonstrate the non-axisymmetric nature of the flow.

in the azimuthal θ direction. Thus, the velocity and pressure fields decomposed with
a Fourier expansion in θ are given by

u(z, r, θ, t)
v(z, r, θ, t)
w(z, r, θ, t)
p(z, r, θ, t)

=
J/2−1∑

j=−J/2


uj(z, r, t)
vj(z, r, t)
wj(z, r, t)
pj(z, r, t)

 eikjθ , (2.6)

where J is the number of azimuthal Fourier planes considered in the non-axisymmetric
computation and k is the azimuthal wavenumber of the θ -periodic domain. For the
cylindrical formulation employed in this paper, the smallest possible azimuthal
wavenumber is 1, corresponding to an azimuthal wavelength of 2π (λ = 2π/k). An
illustration of the three-dimensional domain produced via azimuthal expansion is
provided in figure 2(b) with the semi-meridional mesh and several r–z planes also
shown. Note also that conjugate symmetry of the Fourier spectrum permits simulation
of only non-negative Fourier modes.

The same time integration method described earlier in § 2.2 is used in this solver.
The velocity fields are transformed to real space to evaluate the nonlinear terms,
while the remainder of the time step is evaluated in Fourier space. To stabilize the
computation, the inverse transform during the nonlinear solve is projected onto a
higher-resolution space, with the option of one additional Fourier mode or numerous
additional modes to satisfy the two-thirds antialiasing rule being facilitated. The latter
option is employed throughout this paper, such that a simulation of 48 Fourier modes
for pressure and diffusion corresponds to 71 Fourier modes used for antialiasing
of the advection terms. An advantage in employing a spectral-element–Fourier
technique is that the modal energy in each azimuthal wavenumber can be readily
extracted. In contrast, it is inconvenient to perform this energy tracking in the
quasi-two-dimensional model with the current implementation as described in the
next section. Further details of the spectral-element–Fourier technique can be found
in Karniadakis (1990), Blackburn & Sherwin (2004) and Karniadakis & Sherwin
(2005).
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FIGURE 3. The spatially discretized r–θ plane used for quasi-two-dimensional numerical
simulations with macro elements shown.

2.2.2. Quasi-two-dimensional model
An efficient alternative to the full non-axisymmetric simulations is the employment

of a two-dimensional model to compute the flow on a horizontal plane (e.g. van de
Konijnenberg et al. 1999; Bergeron et al. 2000; Früh & Nielsen 2003; Schaeffer &
Cardin 2005). The model integrates out the vertical direction, for which the frictional
effects are instead modelled by external forcing terms. Thus, the model only simulates
the flow in the r and θ dimensions. With the additional forcing term, (2.5a) becomes

∂u⊥
∂t
+ (u⊥ · ∇⊥)u⊥ =−∇⊥P⊥ + Ek A2

1− ARo
∇⊥2u⊥ + 2

√
Ek

1− ARo
(ub − u⊥), (2.7)

where ub expresses the motion of the horizontal boundaries and the subscript ⊥
represents the projection onto the quasi-two-dimensional plane. The last term on
the right-hand side of the equation is a forcing term describing the Ekman friction
from the boundary layers on the horizontal boundaries. This model is known as the
quasi-two-dimensional model.

The r–θ domain is mapped onto a two-dimensional Cartesian grid as shown
in figure 3. The discontinuous azimuthal velocity forcing across the radius at
the disk–tank interface in the traditional boundary conditions described in § 2.2.2
was found to be unsuitable with the current discretized domain. This is because
the discontinuity in the forcing exacerbates the four-fold symmetry of the mesh,
which is composed of quadrilateral elements. This results in artificial energy
being fed into the harmonics of the wavenumber 2 structure, heavily biasing
even-wavenumber structures. This bias does not exist in the three-dimensional
solutions as the three-dimensional domain retains its azimuthal homogeneity via the
spectral-element–Fourier technique used for discretization in the azimuthal direction
(§ 2.2.1). To circumvent this issue, a smoothing to the forcing is applied through
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the use of a hyperbolic tangent function over the transition zone. Hence, the forcing
condition for the quasi-two-dimensional model is given by

ub =
Ωr+ r

2

[
1− tanh

(
r− Rd

δ

)]
ω

ΩRd
, (2.8)

for all r, where δ represents the thickness of the Ek1/4 Stewartson layer (δ =
(Ek/4)1/4H). An advantage in using a hyperbolic tangent profile is that the derivative
of any order is continuous (Bergeron et al. 2000). This exact type of smoothing has
been applied previously by van de Konijnenberg et al. (1999), Bergeron et al. (2000)
and Früh & Nielsen (2003). An initial condition corresponding to a flow described
by ub is prescribed.

2.3. Stuart–Landau model
A Stuart–Landau model is used to investigate the weakly nonlinear dynamics of a
complex oscillator in the vicinity of a bifurcation point. The Stuart–Landau equation
describes the time variance of the complex amplitude Λ of an unstable mode and can
be used to establish the nature of non-axisymmetric transitions. The Stuart–Landau
equation is defined as

dΛ
dt
= (σ + iω)Λ− l(1+ ic)|Λ|2Λ+ · · · , (2.9)

where σ , ω, l, and c are all real-numbered coefficients. Here, ω is the angular
oscillation frequency during the linear growth regime, σ is the growth rate of a
particular mode, and c is a non-dimensional parameter known as the Landau constant.
The quantity l is dimensional and its sign can be used to categorize whether a
transition is supercritical or subcritical. For supercritical bifurcations, the amplitude
of the instability decreases to zero as the bifurcation parameter decreases towards the
critical value. In contrast, subcritical bifurcations exhibit hysteresis near the transition
which results in a flow condition expressing multiple stable states (e.g. bi-stability).
The Stuart–Landau model has been used extensively in the investigations of bluff-body
wake transitions and has been applied to stability analyses (Provansal, Mathis & Boyer
1987; Le Gal, Nadim & Thompson 2001; Sheard, Thompson & Hourigan 2004a,b;
Thompson & Le Gal 2004; Hussam, Thompson & Sheard 2011). However, this type
of modelling has also been used for instabilities in weakly nonlinear rotating flow
similar to those studied here (van de Konijnenberg et al. 1999; Bergeron et al. 2000).

It is proposed that the complex amplitude takes the form of

Λ(t)= γ (t)eiφ(t), (2.10)

where γ is the real and non-negative amplitude of Λ, and φ is its phase. Substituting
this expression into (2.9) and splitting the Stuart–Landau equation into the real and
imaginary parts yields

d log(γ )
dt

= σ − lγ 2 + · · · , (2.11)

and
dφ
dt
=ω− lcγ 2 + · · · . (2.12)
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These equations respectively describe the change in amplitude and phase of the
unstable mode over time. Equation (2.11) takes on a linear function of γ 2 which is
directly related to |Λ|. Therefore, it is possible to apply this Stuart–Landau model
to numerical results that measure |Λ|. In this study, |Λ| is taken to be the energy
within each mode such that the amplitude is computed from

|Λk| =
[∫

V

u2
k dV

]1/2

, (2.13)

where k denotes the azimuthal wavenumber and V is the volume of the computational
domain.

The values of σ and l are determined by the vertical axis intercept and the gradient
of a d log |Λ|/dt against |Λ|2 plot, respectively. This is valid for times where |Λ| is
sufficiently small. Therefore, l is determined close to the vertical axis. Assuming that
the amplitude of the mode is initially small and saturates at a future time, the plot
should demonstrate an initial point starting on the vertical axis with an end point on
the horizontal axis. A positive slope (negative l) at the vertical axis indicates that the
transition is subcritical, whereas a negative slope (positive l) indicates a supercritical
transition.

3. Results: non-axisymmetric flow
The threshold of instability for the A = 2/3 configuration has been previously

determined as Roc = 18.1(±0.8)Ek0.767±0.006 (Vo et al. 2014, 2015). Figure 4 is a
contour map of the most unstable wavenumber associated with the mode I instability
as a function of Ro and Ek. The overlaid symbols and corresponding numbers
represent the nonlinear unstable saturated modes obtained throughout this study.
The figure summarizes the primary results of this paper. The thick dashed line
represents the onset of symmetry-broken flow about the horizontal mid-plane, defined
by ReEk = 26.7. The parameter ReEk is the Reynolds number based on an Ekman
thickness length scale, such that ReEk = 2Ro/Ek1/2. It should be noted that there
exists a transitional regime (26.7 6 ReEk 6 56.4) that encompasses both reflectively
symmetric and symmetry-broken flows (Vo et al. 2015).

With guidance from the linear stability analysis results in figure 4, three-
dimensional direct numerical simulations have been performed at numerous flow
conditions throughout the positive-Ro parameter space to demonstrate the three-
dimensional behaviour that manifests at parameters where the axisymmetric base
flows are dominated by either the mode I or mode II instability modes. The selected
flow conditions also serve to demonstrate nonlinear mode evolution, interactions,
and the time dependence of the saturated states. It is expected that nonlinear effects
become more pronounced when flow conditions are forced well beyond the onset
of instability (Früh & Read 1999; Früh & Nielsen 2003; Lopez & Marques 2010).
This expectation stems primarily from the differences in the preferential wavenumber
between the experimental observations (Früh & Read 1999) and numerical linear
stability analysis (Vo et al. 2014, 2015), and the differences in the developed flows
(e.g. steady-state, period-doubled and highly irregular flows). Thus, the results of
the full three-dimensional simulations have been separated into three parts: § 3.1
explores a flow case near the stability threshold which serves as a reference case
throughout the paper, and § 3.2 investigates flows that are well beyond the onset of
instability. Flow conditions well beyond the instability onset are achieved by either
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FIGURE 4. (Colour online) A regime diagram of the preferred linear wavenumber in the
positive Ro–Ek parameter space. The thick solid line represents the threshold of instability
defined by Roc=18.1(±0.8)Ek0.767±0.006. The numerical labels marked around the perimeter
of the contour map represent the unstable linear wavenumber associated with the mode I
instability. The arrows indicate flow conditions (enclosed by short-dashed lines) that are
dominated by the corresponding wavenumber. The long-dashed line represents ReEk= 26.7,
below which the underlying axisymmetric solutions preserve reflective symmetry about
the mid-plane. A transitional regime exists in the range 26.7 6 ReEk 6 56.4, where both
reflectively symmetric and symmetry-broken flow are exhibited. The overlaid symbols and
corresponding numbers represent the nonlinear unstable saturated modes obtained using
three-dimensional direct numerical simulation. A label of integer X denotes a flow which
is dominated by wavenumber X, with the second dominant Fourier mode being a harmonic
of X. Labels XY denote flows which are dominated by wavenumber X, with the second
dominant mode being Y which is not a harmonic of X. Subscripts ‘c’, ‘p’ and ‘i’ denote
flows which respectively demonstrate chaotic, periodic and irregular temporal behaviour
(steady-state otherwise). Flows investigated in §§ 3.1–3.3 are represented by pentagons (D),
triangles (D) and diamonds (♦), respectively. Points marked by a circle (E) are additional
computed cases that are not described in detail in this paper. The thin solid lines (red
online) are included for guidance, segregating the saturated nonlinear states.

increasing Ro or decreasing Ek, or a variation of both while keeping Rei constant. In
§ 3.3 we present the sensitivity results of axisymmetric and non-axisymmetric initial
solutions and a bifurcation analysis. The last section (§ 3.4) corresponds to the
non-axisymmetric structures produced via quasi-two-dimensional modelling, and
comparisons are drawn with the full three-dimensional results.

3.1. In the vicinity of instability onset
A flow at a moderate Ekman number and a small Rossby number characterized by
(Ro, Ek) = (0.05, 3 × 10−4) is investigated. For this particular Ek, linear stability
analysis predicts a critical Rossby number of Roc = 0.036. Moreover, the internal
Reynolds number is given by Rei = 31 (Rei,c ≈ 22.4). Hence, this condition is near
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FIGURE 5. (Colour online) (a) The growth rates for a range of wavenumbers obtained
through linear stability analysis for a flow condition of Ro = 0.05 and Ek = 3 × 10−4.
The dashed line represents neutral stability, where points above and below symbolize
unstable and stable wavenumbers, respectively. (b) Contours of axial velocity on the
horizontal mid-plane (z/H = 0.5) for a velocity field constructed by superposing the
axisymmetric basic flow with the dominant wavenumber 5 eigenmode scaled arbitrarily for
visualization purposes. Contours of axial vorticity are plotted, with equi-spaced contour
levels in the range 2Ω ± 10ω. Dark and light flooded contours represent low and high
vorticity values, respectively. The orientation is such that a positive Ro causes the central
region to rotate anticlockwise faster than the outer region.

the onset of linear instability and will be taken as the reference flow condition used
for comparison throughout this paper.

For Ro = 0.05 and Ek = 3 × 10−4, the most unstable azimuthal wavenumber is
predicted to be k = 5 according to linear stability analysis. The linear growth rates
as a function of wavenumber and the axial vorticity contours constructed from the
dominant eigenmode from the stability analysis for k = 5 are illustrated in figure 5.
The axial vorticity contours are only a depiction of the linear instabilities which have
been arbitrarily amplified to finite amplitudes. Since k = 5 is associated with the
mode I waveband, the structure of the instability is reflectively symmetric about the
mid-depth. Thus, the structure has a pentagonal appearance that extends vertically
throughout the interior of the tank.

The same flow condition is computed using three-dimensional direct numerical
simulation, initialized from the steady-state axisymmetric base flow solution seeded
with white noise. The three-dimensional simulation employs 24 Fourier modes.
Simulations using different numbers of Fourier modes have been computed to ensure
that the azimuthal spatial resolution is sufficient to capture the correct asymptotic
azimuthal wavenumber state of the flow. Implementing additional Fourier modes
demonstrated no changes to the observed structure as larger wavenumbers were
effectively harmonics of the developing flow exhibiting lower energies. Typically,
increasing Rei requires additional Fourier modes to accurately capture the small-scale
structures in those flows. The purpose of the white noise is to seed all of the
non-zero azimuthal Fourier modes with energy at a level higher than machine error
but significantly below nonlinear amplitudes. This accelerates the development of any



360 T. Vo, L. Montabone, P. L. Read and G. J. Sheard

FIGURE 6. (Colour online) Evolution of a three-dimensional white-noise disturbance
seeded onto an axisymmetric base flow with Ro= 0.05 and Ek= 3× 10−4, which develops
into a wavenumber 5 structure. The fundamental (axisymmetric) Fourier mode has been
removed to isolate the disturbance field in these visualizations, and the flow is depicted
on a horizontal plane at mid-depth. From left to right, the snapshots of axial vorticity
are taken at t= 10, 20, 30 and 100. Equi-spaced contour levels are plotted in the range
±(|ωz,min| + |ωz,max|)/2. Dark and light flooded contours represent negative and positive
values, respectively.

instabilities in the flow in what are sometimes extremely time-consuming simulations.
In the linear regime at long times, wavenumbers that are unstable will increase in
energy over time while stable wavenumbers will lose energy. However, it is also
possible that non-modal transient effects may briefly amplify a linearly stable Fourier
mode when nonlinear effects are considered (Blackburn, Barkley & Sherwin 2008).

A time sequence of mode evolution from the initial white noise seeding is shown
in figure 6 with contours of axial vorticity plotted on the horizontal mid-plane of
the three-dimensional domain. The energies in the non-zero wavenumber structures
are very small compared to the energy contained in the base flow during the initial
developments, and would be invisible in a vorticity plot for the full flow field. Hence
the fundamental (axisymmetric, zero-wavenumber) mode has been removed from
the plotted fields, isolating the three-dimensional disturbance. As expected, the flow
exhibits a chaotic appearance at early times, since noise is distributed randomly
across all Fourier modes in the simulation. As the flow evolves, the dominant
instability emerges, developing into a sinusoidal structure concentrated at a radial
position consistent with the disk edge. The eventual instability forms a wavenumber 5
structure which is seen at t= 100. This is in agreement with the prediction from linear
stability analysis. Since the instability adopts a sinusoidal form, a pairing of positive
and negative vorticity represents a single wavelength of the disturbance. Hence, the
frame at t = 100 illustrates two disturbance rings representative of a wavenumber 5
structure.

For three-dimensional flows that involve modal interactions, measurements of
modal parameters are typically used as an indicator in demonstrating the most
dominant mode in time. Examples of modal parameters include the kinetic energy
(e.g. Henderson 1997; Lopez & Marques 2011), the amplitude (e.g. Sheard et al.
2004a; Carmo, Meneghini & Sherwin 2010) and the enstrophy (e.g. Bergeron
et al. 2000; Früh & Nielsen 2003) in each Fourier mode. Here, the kinetic energy
measure as described by (2.13) is adopted. The energy contained in each non-zero
azimuthal wavenumber over time for Ro = 0.05 and Ek = 3 × 10−4 is displayed in
figure 7(a). The zeroth wavenumber is omitted because changes in the energy of
the axisymmetric mode are small in comparison to its absolute value. Indeed, the
zeroth wavenumber contains the highest energy in the flow due to the large azimuthal
velocities arising from the base rotation. Initially there is a rapid energy decrease
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FIGURE 7. (Colour online) Energy time series of the first 23 non-zero azimuthal
wavenumbers for a flow condition of Ro = 0.05 and Ek = 3 × 10−4. (a) The bold lines
represent the energies in the dominant wavenumber and its harmonics (k= 5, 10, 15, . . . ).
The bold lines in (b) represent the energies in wavenumbers k= 3, 8, 13, . . . , while the
bold lines in (c) represent the energies in wavenumbers k= 4, 9, 14, . . . .

due to the decay of the white noise belonging to stable wavenumbers. Following
this, unstable wavenumbers are seen to gain energy at an exponential rate in the
linear regime (t . 450). As the modes grow in amplitude, nonlinear effects become
significant and inhibit the exponential growth, leading to a saturated k = 5 flow.
Unchanging energy in the dominant wavenumber indicates that the unstable flow
structure does not deform in time and drifts steadily about the axis of rotation.

Harmonics of the dominant wavenumber (k = 10, 15, 20) are also seen to plateau
after sufficient time in figure 7(a). Non-harmonic wavenumbers are seen to decay at
varying rates with each demonstrating particular oscillations in their energy profiles.
The oscillations are shared by groups of wavenumbers, such that a wavenumber
belonging to a particular group illustrates oscillations in energy over time that are
synchronized with the other wavenumbers belonging to the same group. For example,
wavenumbers 3, 8, 13, 18 and 23 all demonstrate the same energy frequencies over
time, as is seen in figure 7(b). Similarly, wavenumbers 4, 9, 14 and 19 illustrate
similar oscillations amongst each other in figure 7(c). Thus, wavenumbers k + kpeakn
share similar oscillations in their energy over time, where kpeak represents the dominant
wavenumber at a particular time, n is an integer (n> 0) and k is an integer azimuthal
wavenumber (1 6 k 6 kpeak). This relationship can be explained by the most dominant
wavenumber imposing its symmetry onto all other wavenumber structures. This trend
is also evident in the enstrophy time series provided by Früh & Nielsen (2003). The
hierarchy of these wavenumbers in terms of the energy is typically described by
the lowest wavenumber containing the highest energy which then cascades down to
higher-wavenumber structures.

The contours of axial vorticity display a pentagon-shaped interior of high vorticity
that is bordered by a ring of lower vorticity on the horizontal plane at saturation of
the instability mode. This is shown in figure 8(a,b) at two different heights, z/H= 0.1
and z/H = 0.5. From a top-down view, the structure drifts anticlockwise while the
wave oscillates about r = 1 and extends the entire depth of the tank with very little
variability. The flow maintains a reflective symmetry about the horizontal mid-plane
as demonstrated in the contours of azimuthal vorticity shown in figure 8(c), which
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(a) (b)

(d)

(c)

FIGURE 8. (Colour online) (a,b) Contours of axial vorticity at two different heights of
(a) z/H = 0.1 and (b) z/H = 0.5 for a flow condition of Ro = 0.05 and Ek = 3 × 10−4.
These snapshots are taken at t = 910 where the dominant mode has reached saturation.
The flow is reflectively symmetric about z/H= 0.5. Contour levels are as in figure 5. (c)
Contours of azimuthal vorticity displayed on the entire r–z plane with levels plotted in the
range ωθ =±0.01|ωθ,max|, where dark and light flooded contours represent low and high
values, respectively. (d) An isometric view of an iso-surface of axial vorticity ωz = 1.96
representative of the saturated flow state at t= 2060. The arrow indicates the chevron-type
patterns identified in the flow.

is consistent with the underlying axisymmetric base flow solution. This nonlinear
flow structure is very similar in appearance to that predicted by linear stability
analysis (figure 5b) and the energy time series does not demonstrate a vacillation
from the linear to nonlinear regime (figure 7a). A three-dimensional view of the
nonlinear wavenumber 5 configuration is illustrated in figure 8(d) via an iso-surface
of axial vorticity. The appearance of the distinct circular impression at the top of the
iso-surface at r= 1 is associated with the discontinuous boundary conditions imposed
across the disk–tank interface. Thus, the expectation that nonlinear effects would have
little effect in the vicinity of the stability threshold is supported.

The features exhibited at Ro = 0.05 and Ek = 3 × 10−4, which is close to
the instability threshold, were also observed in computations of other parameters
combinations just beyond the onset of linear instability (refer to figure 4). The next
section examines flow conditions further beyond the instability onset.

3.2. Flow conditions further beyond the instability onset
Flow conditions well beyond the onset of instability obtained by increasing the
internal Reynolds number are described in this section. It is anticipated, in part due
to the difference between experimental observations (Früh & Read 1999) and the
dominant wavenumbers predicted from linear stability analysis (Vo et al. 2014, 2015),
that nonlinear effects will be significant in this region of the Ro–Ek parameter space,
producing a deviation from the linear predictions. The nonlinear effects are expected
to primarily encourage the interaction and coalescence between vortices, which will in
turn result in a smaller wavenumber structure. The increase in the internal Reynolds
number is achieved by either increasing the Rossby number or decreasing the Ekman
number, both of which are described separately in the following sections. A final
section concludes our examination of flows well beyond the instability onset by
investigating a constant high-Rei value at numerous Ro and Ek combinations.



Non-axisymmetric flows in a differential-disk rotating system 363

t
0 200 400 600 800 1000

5
1
2

E
ne

rg
y

(a)

(b)

FIGURE 9. (Colour online) (a) Time series of the modal energies for a flow condition
of Ro = 0.17 and Ek = 2.5 × 10−4. Energies of the first 39 non-zero modes are shown.
Azimuthal wavenumbers 1, 2 and 5 are shown by bold lines. (b) Time evolution of axial
vorticity of the three-dimensional flow. Time increases from left to right and continues in
the bottom row. The times are given by t= 5, 30, 35, 40, 45, 50, 145 and 1175, respectively.
The three-dimensional simulation is initiated with the axisymmetric solution seeded with
white noise. Contour levels are as in figure 5.

3.2.1. Increasing the Rossby number
We now examine the case of a flow characterized by a Rossby number larger than

that of the reference case, but having similar Ekman number. This case has Ro =
0.17, Ek=2.5×10−4, and a corresponding internal Reynolds number Rei=121, which
is well beyond the critical value of Rei,c ≈ 22.4. Linear stability analysis predicts a
wavenumber 5 configuration to be the most unstable structure at this flow condition
(figure 4), which has an eigenmode structure similar to that shown in figure 5(b).

This three-dimensional flow case has been computed using 40 azimuthal Fourier
modes, as greater spatial resolution is required to capture time-dependent disturbances
in the shear layer. This case was also computed using 24 Fourier modes, which
described a very similar saturated solution to the case computed using 40 Fourier
modes. The energy time series of the non-zero wavenumbers is shown in figure 9(a).
Again, the flow is initialized with the axisymmetric base flow solution perturbed
by white noise. A wavenumber 5 structure arises during the initial stages of the
flow. However, the dominance of the k = 5 structure is short-lived as the energy in
wavenumber 2 becomes larger in comparison at approximately t = 80. Subsequently,
the energy in k = 2 and its harmonics plateaus over time while the energies of the
odd wavenumbers decay. At t' 200 the energies of the odd wavenumbers switch to
an exponential growth behaviour, extracting energy from the fundamental mode, and
eventually saturate at t ≈ 800 with comparable amplitudes to the even wavenumbers.
Eventually, the flow saturates to a state which is dominated by k = 2 distorted by
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a wavenumber 1 structure (marked as ‘2+1’ in figure 4). The comparable energies
in wavenumbers 1 and 2 causes both wavenumbers to impose their symmetries
on weaker higher-wavenumber structures and therefore the similarity in energy
oscillations typically exhibited by the group of k + kpeakn wavenumbers is no longer
valid.

The flow development represented through axial vorticity contours at mid-depth is
illustrated in figure 9(b). A flow indistinguishable from the axisymmetric base flow
solution is observed in the first frame at t= 5. A non-axisymmetric structure begins to
evolve around the disk periphery at r=1 as the energies in the dominant wavenumbers
increase in amplitude. At t = 35, four vortices are seen to form on one half of the
initially axisymmetric shear layer. As time evolves, the vortices grow larger in size and
the remaining shear layer also begins to roll up. Eventually, six vortices are observed
at t= 45 that are arranged irregularly, with the two vortices at the bottom of the frame
being clustered close together. This pair of vortices coalesces at a future time and
the structure adopts a pentagonal configuration. This initial process is reflected in the
energy time series shown in figure 9(a). That is, the k=5 structure is dominant during
the exponential growth regime. It is noted that the wavenumber 5 structure at t= 50
is an asymmetric pentagon, and that a regular pentagon was not observable at other
time steps. This is due to the time dependence of the flow as the energies in many
of the wavenumbers are still varying at comparable amplitude.

At future times, the nonlinear effects cause the vortices to coalesce, resulting in
a dipolar structure at t = 145. The two vortices exhibit low vorticity and encircle
an oval-shaped interior of higher vorticity. This eventually becomes distorted as
one of the vortices breaks and deforms into a strand as seen at t = 1175. The
transition from a symmetric dipole state to a distorted state is reflected in the energy
time series whereby increases in the wavenumber 1 structure are observed until it
becomes comparable to the energy contained in the wavenumber 2 structure. Again,
the constant energies displayed by the dominant modes indicate that the structure
is unchanging and drifts steadily about the axis of rotation. A similar asymmetric
dipole structure was obtained numerically by Früh & Nielsen (2003) in the same
system using a quasi-two-dimensional model. A similar structure was also captured
experimentally by van de Konijnenberg et al. (1999). However, they observed a
smooth vortex on one side and an unstable structure on the opposite side where
small vortices continuously formed and dissipated. The differences in flow conditions
and apparatus in that study may be reasons why the time-dependence is not seen
here.

Distinct alternating weak and strong bands of axial vorticity are observable in the
vortices and the interior region at t= 145 and t= 1175. Examination of the discretized
domain underlying the axial vorticity contours demonstrated that these waves are
significantly larger than the radial and azimuthal grid spacings. Thus, these structures
are a physical feature of the flow which we suspect to be inertial waves. Inertial
waves arise in rotating flows due to the Coriolis force acting as a restoring force and
exhibit frequencies in the range 0<ωd/Ω < 2, where ωd and Ω are angular velocities
of the drifting polygonal structure and the background flow, respectively (e.g. see
Lopez & Marques 2011, 2014, and references therein). In this system, the waves
are stationary with respect to the rotating polygonal structure and satisfy ωd/Ω < 2.
These waves appear to originate from the disk–tank interface where the Stewartson
and Ekman layers interact. This interaction may be related to the generation of these
waves – a feature common with other configurations involving Ekman and Stewartson
layers (e.g. Hart & Kittelman 1996; Sauret et al. 2012; Lopez & Marques 2014).
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Instabilities of the Ekman and Stewartson layers have been reported as the driving
mechanism in rotating spherical shells (Noir, Jault & Cardin 2001; Calkins et al.
2010) and differentially rotating configurations (Lopez & Marques 2010), respectively.
It should be noted that visually similar wave patterns have been also observed in prior
studies which have investigated spontaneous emergence of inertia–gravity waves from
the interaction of two counter rotating vortices (e.g. Viúdez & Dritschel 2006; Snyder
et al. 2007; Wang, Zhang & Snyder 2009). A thorough review of inertia–gravity
waves from atmospheric jets and fronts can be found in Plougonven & Zhang (2014).

The same flow conditions simulated at a lower azimuthal resolution of 24 Fourier
modes yielded a similar energy time series and similar vorticity and velocity contours.
Thus, these small-scale wave patterns are not a numerical artefact. It is expected that
these features would be very difficult to capture experimentally using laboratory
techniques such as laser Doppler velocimetry and particle image velocimetry, since
the azimuthal vorticity values are so much smaller than the values of axial vorticity
in the flow. However, an altimetric imaging velocimetry technique has been able to
successfully capture such structures (e.g. Afanasyev, Rhines & Lindahl 2008). Despite
the experimental limitation, the dipole captured here by direct numerical simulation is
in agreement with the wavenumber range at these parameters reported from the
experiments of Früh & Read (1999): they reported wavenumbers 2–4 in the vicinity
of Ro= 0.17 and Ek= 2.5× 10−4.

Despite the complex patterns observed in the r–θ plane, the saturated flow still
maintains reflective symmetry about the horizontal mid-plane. This symmetry is
consistent with the axisymmetric solution at the same parameters (ReEk = 21.5,
figure 4). Figure 10(a–c) illustrates contours of the axial velocity, axial vorticity
and azimuthal vorticity on the vertical semi-plane of the tank (r–z plane). All three
contours are illustrated at the same arbitrary azimuthal angle and show reflective
symmetry about the mid-depth. The axial velocity exhibits Ekman pumping at the
disk–tank interface in addition to recirculation zones on either side. The recirculation
zones are bounded by oblique waves which vary throughout the domain. This is in
contrast to the reference flow case where the structures are not significantly inclined
(see figure 8c). These inclined structures can also be seen in the axial vorticity,
and especially in the azimuthal vorticity, where low vorticity contours have been
emphasized. Visualizations of the flow over time reveal that these inclined structures
drift at the same rate as the primary polygonal structure (i.e. they are stationary
relative to the rotating structure). In addition, the wave patterns can be seen in
an iso-surface of axial vorticity as illustrated in figure 10(d). Closer inspection
of the reference case flow also reveals chevron-type patterns in the iso-surface of
axial vorticity (figure 8c), though they are not as prominent. The weaker wave
patterns observed in the reference case flow may be due to the lower Rossby number.
Increases to the Rossby number drives a stronger axial jet flow in the Stewartson
layers while decreasing the Ekman number produces thinner Stewartson layers, both
of which increases the susceptibility of instability (Vo et al. 2014, 2015) and hence
the emergence of inertial waves (Lopez & Marques 2010). This result is evident
throughout the parameter space explored in this paper.

The next section also investigates a flow condition that is well beyond the onset
of instability, though achieved by decreasing the Ekman number of the reference flow
case rather than by increasing the Rossby number.

3.2.2. Decreasing the Ekman number
The effect of decreasing the Ekman number to increase Rei is examined at flow

conditions of Ro= 0.05 and Ek= 8× 10−5. This reduction in Ekman number causes
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FIGURE 10. (Colour online) Flow condition of Ro= 0.17 and Ek= 2.5× 10−4 at t= 1629.
(a–c) Contours of (a) axial velocity, (b) axial vorticity and (c) azimuthal vorticity are
displayed on the entire r–z plane. Axial vorticity and azimuthal vorticity contour levels
are as in figure 8 while axial velocity contour levels are plotted in the range uz =
±0.1|Ro|(Ω + ω), where dark and light contour shading represent low and high values,
respectively. (d) An isometric view of an axial vorticity iso-surface of ωz= 1.88 is shown.
The arrow indicates the chevron-type patterns identified in the flow.

the investigated point to be at an internal Reynolds number of Rei= 83.6, significantly
beyond the instability threshold Rei,c ≈ 22.4. Therefore, it is expected that, as in the
previous section, the unstable wavenumber from the three-dimensional simulations will
be different to the wavenumber predicted by linear stability analysis due to nonlinear
effects. More specifically, the nonlinear state will adopt a lower azimuthal wavenumber
than its linear prediction.

As indicated in the regime diagram (figure 4), the linear preferred wavenumber
increases with decreasing Ekman number at small Rossby numbers. The predicted
wavenumber here is 8, as compared to 5 for the reference case. Since the growth
rates of the most unstable wavenumber is associated with the mode I instability, the
eigenmode exhibits a central octagon exhibiting high values of vorticity with a thin
ring of lower vorticity surrounding it.

Here the three-dimensional flow has been resolved using 128 azimuthal Fourier
modes. The energy time series of each non-zero wavenumber is shown in figure 11(a).
The three-dimensional solution has been initialized with the axisymmetric base flow
solution perturbed with white noise. It can be seen that the energies contained in
the wavenumber 6 and 8 structures are initially the highest throughout the linear
growth regime. The appearance of the wavenumber 6 structure in the linear regime
rather than the dominant k = 8 mode is explained by the small difference (less than
5 %) in their respective growth rates, and the possibility that the initial white-noise
seeding may unevenly seed the unstable azimuthal wavenumbers. The competition
between k = 6 and k = 8 structures weakens beyond t ≈ 100 as nonlinear effects
become significant. At this time, the energy in k= 8 and subsequently k= 6 begin to
decrease, and the flow becomes dominated by a stable k= 3 configuration by t≈ 160.
Unlike the k= 2+1 mode obtained earlier, the second dominant mode for this flow is
a harmonic of the dominant wavenumber. Thus, an undisrupted triangular structure is
expected to emerge in the three-dimensional flow.
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FIGURE 11. (Colour online) Flow conditions of Ro= 0.05 and Ek= 8× 10−5. Time series
of (a) the energies contained in the first 127 azimuthal wavenumbers and (b) the averaged
wavenumber weighted by energy. The dominant wavenumber transitions from k= 8 to 6
to 3 over time represented by bold lines. The dashed lines enclosing 2.5 6 k∗ < 3.5 and
7.5 6 k∗ < 8.5 represent integer wavenumbers 3 and 8, respectively.

An alternative interpretation of the energy time series is achieved by considering
the average wavenumber weighted by energy over time, as illustrated in figure 11(b)
and calculated as

k∗ =

N∑
k=1

Ekk

N∑
k=1

Ek

, (3.1)

where k is an integer azimuthal wavenumber, N is the number of Fourier modes used
in the simulation and Ek is the energy contained in the kth wavenumber. The energy
associated with the base flow (k= 0) is omitted in calculating k∗. The purpose of this
quantity is to identify the dominant wavenumber that would be observed in the flow
at a specific time, provided the amplitudes are not so small as to be swamped by the
base flow. This parameter also helps to illustrate the wavenumber vacillation process
when there are multiple wavenumbers competing with very large energies. The plot
demonstrates a brief saturation of a wavenumber 8 structure (7.5 6 k∗ < 8.5) in the
time interval 35 . t . 100. As the nonlinear effects become significant, the apparent
wavenumber decreases towards k∗ = 3 (2.5 6 k∗ < 3.5) and is sustained for t & 220.
These changes in dominant wavenumber are consistent with the energies demonstrated
in figure 11(a).

The three-dimensional wavenumber 3 structure achieved at saturation is represented
in the contours of axial vorticity at two different depths, as shown in figure 12(a,b).
The structure is composed of three concentrated regions of low vorticity migrating
around the r= 1 circumference. As described earlier, the contours near the horizontal
boundary (z/H = 0.1) illustrate a circular ring of low vorticity attributed to the
discontinuity at the disk–tank interface. The small-scale wavy structures described
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FIGURE 12. (Colour online) Flow condition of Ro= 0.05 and Ek = 8× 10−5 at t = 469.
(a,b) Contours of axial vorticity at two different heights of (a) z/H=0.1 and (b) z/H=0.5.
The flow is reflectively symmetric about the z/H= 0.5. Axial vorticity contour levels are
as in figure 5. (c) Contours of azimuthal vorticity displayed on the entire r–z plane with
levels plotted as in figure 8. (d) An isometric view of an axial vorticity iso-surface of
ωz = 1.96 is shown. The arrow indicates the chevron-type patterns identified in the flow.

earlier (see figure 9b) are evident in the interior and satellite vortices. As with the
previous cases, this flow maintains its reflective symmetry about the horizontal
mid-plane, as observed in the azimuthal vorticity contours in figure 12(c). An
iso-surface of axial vorticity at t = 469 is illustrated in figure 12(d). The iso-surface
illustrates three vortices arranged in a triangle extending the entire depth of the tank.
Additionally, distinct chevron-type features can be observed on the inner wall of the
axial vorticity iso-surface.

Increasing the flow conditions further beyond the instability onset by decreasing
the Ekman number has shown similar characteristics to those exhibited by increasing
the Rossby number. That is, the intensification of nonlinear effects encourages
coalescence of vortices which yield wavenumbers that are smaller than the linear
predictions. The flows presented so far in this paper have all demonstrated reflective
symmetry about the horizontal mid-plane and steady saturated states. The next section
details transitions between chaotic, steady and time-periodic flows observed at an even
higher Rei.

3.2.3. High-Rei regime
Unsteady saturated and time-dependent flows have been reported in experimental

and numerical studies at high-Rei conditions. Früh & Read (1999) experimentally
investigated a similar system and observed weak fluctuations, modulated oscillations,
highly irregular flow, and period-doubled solutions in their positive-Ro parameter
space. Flows with weak fluctuations were discovered near the onset of instability
at low Ek while all other time-dependent flows were realized at high Rei values
(both Ro and Ek being small or large). An extended experimental and numerical
study conducted by Früh & Nielsen (2003) found time-dependent behaviour only
for flows with three or fewer vortices for Re & 150 (at constant Ek = 3 × 10−4). A
similar qualitative result was reported by van de Konijnenberg et al. (1999), who
found symmetric and steady flows for k > 4 and time-dependent flow for k 6 3 in a
parabolic bowl. Periodic deformations via slight oscillations of the triangular interior
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FIGURE 13. (Colour online) Flow conditions of (a,c) Ro = 0.77, Ek = 1 × 10−3 and
(b,d) Ro = 0.924, Ek = 1 × 10−3. Visual comparison between (a,b) experimental particle
tracking and (c,d) the axial vorticity contours from a three-dimensional simulation. Axial
vorticity contour levels as for figure 5.

boundary for k= 3 was seen while a periodic formation and decay of small vortices
were obtained for k = 2. A decrease in wavenumber corresponded to an increase
in Reynolds number. In their numerical simulations of the axisymmetric flows
in this differential-disk system, Vo et al. (2014, 2015) found no evidence of
unsteady solutions throughout their computed Rossby and Ekman number ranges
(0.01 . Ro . 0.6 and 5× 10−5 . Ro . 3× 10−3, respectively).

In unpublished experimental flow visualizations from particle tracking carried out
in 1998, a typical travelling wavenumber 2 flow was revealed at Ro = 0.77 and
Ek = 1 × 10−3. The apparatus used is described in Früh & Read (1999). Increasing
the Rossby number to Ro = 0.924 while holding Ek constant produced a flow
which appears axisymmetric in the horizontal plane with an indication of a pair of
toroidal Taylor-like vortices in the vertical plane. Images of the experimental flow
visualization are shown in figure 13(a,b). To elucidate the flow structure and dynamics
in this regime, this section investigates high-Rei flows based on the flow conditions
investigated experimentally. Thereafter, the high-Rei condition is held constant while
Ro and Ek are varied to examine whether or not the characteristics present at the
high-Rei regime are dependent only on Rei, or if they are further a function of both
Ro and Ek. Additionally, any transitions in the temporal properties of the flow will
be described.

The flow condition of Ro= 0.77 and Ek= 1× 10−3 (Rei = 193) is considered first.
An axisymmetric simulation of this flow condition demonstrates saturation towards
a steady-state flow. The three-dimensional direct numerical simulation generates
a wavenumber 2 structure first arising in the linear regime and remaining dominant



370 T. Vo, L. Montabone, P. L. Read and G. J. Sheard

(a) (b)

FIGURE 14. (Colour online) Flow conditions of Ek = 1 × 10−3 and Ro = 0.924.
(a) An oblique view of an iso-surface of axial vorticity in the three-dimensional flow.
(b) Snapshots of axial vorticity over time shown through a close-up of the flow
corresponding to the marked box in (a). The flow is shown in a stationary frame of
reference relative to the rotating flow.

during its nonlinear development. The energy in the wavenumber 1 structure increases
gradually over time and eventually plateaus as the second most energetic non-zero
wavenumber. Axial vorticity contours in the horizontal mid-plane illustrated in
figure 13(c) exhibit excellent agreement with the experimental observations. Both
the experimental visualization and three-dimensional simulation illustrate an elliptical
vortex located at the centre of the tank with two vortices situated on opposite sides
of the ellipse.

In contrast, significantly different dynamics are observed when the Rossby number
is increased to Ro = 0.924 (Rei = 323). For comparison against experimental
visualization, a top-down view of the axial vorticity contours at mid-depth is provided
in figure 13(d). The flow exposes a structure which is almost axisymmetric, especially
in the central region, which is visually similar to that observed experimentally. A
numerical simulation for the axisymmetric solution at this same flow condition
was computed. At this higher Rossby number, the axisymmetric solution illustrates an
unsteadiness in the axial jets supplied by Ekman pumping from the rapid disk rotation
emanating from the disk–tank interfaces. The presence of stronger axial jets driven by
faster spinning disks (larger Ro) causes an instability to develop as a breaking of the
hyperbolic zone at the point where the jets meet. This unsteadiness in turn breaks the
reflective symmetry about the horizontal mid-plane and the flow saturates to a perfect
periodicity in time. This periodic flapping of the axial jets is not seen in the saturated
three-dimensional flow, rather the axial jets become three-dimensional and fluctuate
irregularly. This irregular fluctuation is shown in figure 14, which displays snapshots
of an axial vorticity iso-surface over time. The iso-surface is chosen to conveniently
highlight the breaking of the axial jets around the periphery of the disks.

Since the axisymmetric solution is periodic rather than steady state, the three-
dimensional direct numerical simulation is not initialized with a prescribed base
flow but rather begins with the axisymmetric boundary conditions (tank and disk
rotation) and white noise. This is applicable to the remaining flows simulated in this
section. The three-dimensional direct numerical simulation exhibits chaotic behaviour
in the energies of all wavenumbers, as shown in figure 15(a). The saturated flow
is described by a dominant wavenumber 2 structure with its first harmonic (k = 4)
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FIGURE 15. (Colour online) Flow conditions of a constant Rei = 323 at (a–c) Ek= 1×
10−3, Ro = 0.924, (d–f ) Ek = 7 × 10−4, Ro = 0.707, (g–i) Ek = 5 × 10−4, Ro = 0.549, (j–
l) Ek = 3 × 10−4, Ro = 0.375, (m–o) Ek = 7 × 10−5, Ro = 0.126. (a,d,g,j,m) Energy time
series, (b,e,h,k,n) the axial vorticity contours illustrated in the r–θ mid-plane, (c,f,i,l,o) iso-
surfaces of axial vorticity demonstrating the axial dependence of the flow structures. The
axial vorticity plots are represented at times corresponding to the ending time of their
respective energy time series.

being the second dominant mode. The erratic oscillations in energy are caused by
the irregular fluctuations in the axial vorticity strands stemming from the disk–tank
interface when viewed in the r–z plane. In this chaotic state, the reflective symmetry
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about the horizontal mid-plane is lost. Additional visualizations of the flow are also
shown in figure 15(a) via contours and an iso-surface of axial vorticity to illustrate
the depth dependence of the flow.

Other flows at Rei = 323 are investigated by decreasing both Ek and Ro. The
energies of the non-zero wavenumbers, axial vorticity contours and iso-surfaces are
illustrated in figure 15. As Ek and Ro decrease, the flow transitions from being chaotic
at Ek = 1 × 10−3 to steady state at 5 × 10−4 6 Ek 6 7 × 10−4. It should be noted
that as the Ekman number is decreased, the energy in the wavenumber 1 structure
increasingly becomes comparable to the wavenumber 2 mode while remaining the
second dominant mode. This causes the initial dipole to rotate off-axis and broadens
one of its vortices. Additionally, the central structure becomes thinner, loses symmetry
and breaks apart with decreasing Ekman number. Despite the comparable energies in
the leading modes, the energies maintain a plateau which demonstrates a steady-state
solution. That is, the rigid instability structure drifts about the axis of rotation.

Further decreasing below Ek = 3 × 10−4 causes the wavenumber 1 structure
to become dominant and compete with the wavenumber 2 structure. The vortex
which was broadened due to the increase in energy in the wavenumber 1 structure
eventually deforms into a strand of vorticity that no longer encloses a region of fluid
(figure 15d,e). The strand of vorticity folds back into itself partially and connects with
the opposing vortex adopting an S-shaped appearance for the structure as a whole.
In the case of Ek = 3 × 10−4, the energies in the non-zero wavenumbers saturate
to a clear periodic undulation over time. This undulation also exists at the lower
Ek = 7 × 10−5 although it is weaker and not as obvious on a logarithmic scale and
not perfectly periodic. That is, the temporal behaviour of the flow transitions from a
periodic to an irregular state from Ek = 3× 10−4 to Ek = 7× 10−5. The decrease in
Ekman number also demonstrates more prominent waves in the flow.

At these smaller Ekman numbers, the unsteadiness is caused by a horizontal
flapping of the axial vorticity strand. This periodic motion is illustrated in figure 16(a)
over a time span coinciding with the period demonstrated in the energy oscillations
for Ek = 3 × 10−4. The strand of axial vorticity thickens as its tail curls towards
the edge of the disk and becomes thinner as the tail kicks away from the disk.
The opposing vortex does not deform significantly throughout this motion and the
flow maintains a reflective symmetry about the horizontal mid-plane. A similar
periodic motion is observed for Ek= 7× 10−5. However, the opposing vortex is much
thinner and deformations are more prominent at this Ekman number as compared to
Ek= 3× 10−4. In addition, there is a continuous formation and decay of vorticity at
its periphery, which may be the cause of the imperfect undulations demonstrated in
the energy time series. A similar feature was also observed by van de Konijnenberg
et al. (1999), although they reported the feature as being periodic and the vortices
appeared coherent.

In stark contrast to the periodic and irregular flow observed at low Ek, the
fluctuations in energy for Ek = 1 × 10−3 are not caused by irregular wavering of
the axial vorticity strand but rather erratic oscillations of the axial jets and continuous
deformation of the axial vorticity patches situated at the periphery of the disk. The
flow deformations over approximately two undulations of the energy in k = 2 are
illustrated in figure 16(b).

To our knowledge, this study is the first to report the wavering of the axial
vorticity strand and recognize its association with periodic change in the energy of
the dominant wavenumber. Bergeron et al. (2000) were able to obtain flow states
at large Reynolds number conditions which illustrated time-periodic behaviour when
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(a)

(b)

FIGURE 16. (Colour online) (a) Flow conditions of Ek = 3 × 10−4 and Ro = 0.375.
Snapshots of axial vorticity over a time span corresponding to the period associated with
the k = 1 energy fluctuations. (b) Flow conditions of Ek = 1 × 10−3 and Ro = 0.924.
Erratic changes in the flow are illustrated through snapshots of axial vorticity over two
undulations in the dominant wavenumber 2 structure. The arrows in the insets indicate
regions of interest as described in the text.

visualized with vorticity contours and through measurements of the global enstrophy.
However, they did not provide a physical explanation as to why these flows exhibit
this periodic behaviour. At least a single strand of axial vorticity can be seen in
their figures 17 and 18, rather than a completely closed vortex, much like that
shown in figure 16(a). Their time evolution snapshots appear to demonstrate a
modulation of this axial vorticity strand, similar to the instability described here.
The change they observe may be related to the wavering in the tail of the axial
vorticity strand in addition to changing its size. This could be a possible explanation
for their time-dependent behaviour. It must be noted that their time-periodic states
were obtained with free-slip boundary conditions whereas no-slip boundary conditions
are used in this study. They note that at very large Reynolds numbers, the no-slip
boundary condition causes a continuous generation of vorticity erupting from the
inner rod used to drive the rotation of the disks which leads to chaotic flow. Similar
chaos was observed by Früh & Nielsen (2003), who reported that time-dependent
flow may originate from a co-existence of global modes or from the generation of
small vortices off the inner rod.
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The pure and S-shaped dipole structures captured in these simulations resemble
structures in Venus’s polar vortices. A dipole structure at the north pole of Venus
was first mapped by the Pioneer Venus Orbiter in the 1970s in the middle atmosphere
(Taylor et al. 1979, 1980). The more recent European Space Agency’s Venus Express
mission captured an S-shaped dipole structure at the south pole via the Visible and
Infrared Thermal Imaging Spectrometer (Piccioni et al. 2007), though this is a thermal
feature rather than a vorticity structure. The dynamics of Venus’s south polar vortex
are very complex, with its internal structure constantly varying on a daily time scale
(Luz et al. 2011; Garate-Lopez et al. 2013).

It should be noted that three-dimensional simulations have been performed in the
present work at several flow conditions additional to those described in §§ 3.1–3.3
(these additional cases are included in figure 4). The simulations establish trends
which describe saturated modes being equivalent to the wavenumber predicted by
linear stability analysis for flows in the vicinity of the instability onset, and as
the internal Reynolds number is increased either by increasing the Rossby number
or decreasing the Ekman number, the structures of the stable flow state exhibit
azimuthal structures that are different (lower wavenumber) from those predicted
by linear stability analysis. The comparable energy in each azimuthal wavenumber
structure exacerbates nonlinear effects, which causes unstable structures of varying
wavenumbers to compete and interact.

In addition, it was also found (though not shown here), that wavenumbers associated
with the mode II instability had little influence on the stability of the flow in the
nonlinear regime. The energy in the mode II wavenumbers is observed to briefly
dominate in the linear regime as for the linear stability analysis, but in the nonlinear
regime their energy is seen to quickly decay. Thus, the mode II instability is not
expected to dictate the structure of real flows. The next section investigates the
sensitivity of a flow and the hysteretic nature of the primary instabilities present in
these flows.

3.3. Flow sensitivity and bifurcation analysis
The sensitivity of the three-dimensional flow is investigated in this section via two
different studies. The first considers initializing the steady-state axisymmetric base
flows perturbed with various initial conditions at constant Ro and Ek to examine
the variation of the stable azimuthal wavenumbers observed upon saturation. The
second considers changing the Rossby number of a saturated three-dimensional flow
to investigate hysteresis effects which have been observed experimentally (e.g. Früh &
Read 1999). These cases are discussed separately in the following sections. Following
this, a bifurcation analysis of the various linear instability modes determined through
linear stability analysis is presented.

3.3.1. Perturbing the axisymmetric solution
The saturated three-dimensional flows observed in the previous sections were

initialized from the evolved steady-state axisymmetric solution perturbed with white
noise. Since many of the prior energy time series demonstrated a single stable
azimuthal wavenumber of very large energy compared to the other wavenumbers, it
is expected that different initial conditions of the same flow condition will achieve
the same stable solution. In this section, the steady-state axisymmetric base flows are
initially seeded with various unstable linear mode solutions, with and without white
noise.
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FIGURE 17. (Colour online) Flow condition of Ro = 0.5 and Ek = 3 × 10−3. (a) The
growth rates for a range of wavenumbers obtained through linear stability analysis.
The dashed line represents neutral stability, where points above and below symbolize
unstable and stable wavenumbers, respectively. The inset shows representative axial
vorticity contours of linear instabilities of finite amplitude superimposed onto its respective
steady-state axisymmetric base flow shown at z/H = 0.5. Nonlinear effects have been
neglected, and contour levels are as in figure 5. (b) Energies of the first 23 non-zero
wavenumbers over time. The inset shows typical contours of axial vorticity at z/H = 0.5
of a saturated flow regardless of the initial conditions provided they are axisymmetric.
Equi-spaced contour levels are plotted in the range 2Ω ± 5ω.

A flow characterized by Ro= 0.5 and Ek= 3× 10−3 is considered for investigation
here. The large growth rates inherent in the high-Ro and high-Ek flow allows for
shorter computation times in reaching a saturated solution. According to the linear
stability analysis, the most unstable wavenumber is predicted to be k= 3. The growth
rates of this flow and its linear instability structure are shown in figure 17(a) and its
inset, respectively.

A three-dimensional direct numerical simulation has been initialized with its
steady-state axisymmetric base flow and white noise. The energies contained in each
azimuthal wavenumber over time for the first 23 non-zero wavenumbers are shown
in figure 17(b). The three-dimensional solution agrees with the linear prediction as
the energy in the wavenumber 3 structure is dominant during the initial stages of
the flow development. The structures of the linear and nonlinear wavenumber 3
structures are very similar in appearance. As nonlinear effects become apparent, the
even wavenumbers slowly increase in energy over time and eventually surpass the
wavenumber 3 structure, resulting in a dominant wavenumber 2 flow.

To see the effects of different initial conditions, the steady-state axisymmetric base
flow was seeded with an instability mode of a single wavenumber. Eigenvectors
for k = 2, 3, 4 and k = 6 were separately seeded into the initial steady-state
axisymmetric base flow and the energies of the leading wavenumbers were monitored
until the flow evolved into a saturated state. As the non-seeded flow indicated a
wavenumber 2 structure at saturation (figure 17b), it is expected that all seeded flows
will ultimately produce the same wavenumber provided the axisymmetric flow is
insensitive to initial conditions. For all eigenvector-seeded cases, the wavenumber 2
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structure and its harmonics prevail and demonstrate saturated energy profiles similar
to that obtained by the non-seeded case. For example, a wavenumber 3 seeded
eigenvector illustrates a triangular structure at the initial state which evolves into a
dipole structure at the final state due to nonlinear interactions as the energies in the
odd wavenumbers decay. The axial vorticity contours of a typical nonlinear solution
for the saturated wavenumber 2 at this flow condition is depicted in the inset of
figure 17(b).

The sensitivity of axisymmetric flow solutions at other flow conditions has also been
analysed. A lower limit of Ro=0.1 and Ek=2×10−4 was considered for investigation
as lesser forcing conditions require a longer time integration and greater computational
resources to simulate the smaller growth rates and flow structures. The tested flow
solutions have all shown the same insensitivity characteristics as Ro= 0.5 and Ek =
3× 10−3 (figure 17). This type of insensitivity has also been observed by Bergmann
et al. (2011), who studied a different type of rotating flow. In that study, the sensitivity
of the flow was examined through the testing of various initial conditions involving a
flow initialized from rest, initialized from manually disrupting a developed triangular
structure and initialized with a high rotation rate such that the flow was axisymmetric.
The resultant flow for all three cases exhibited a triangle, which suggests that the flow
was insensitive to initial conditions.

3.3.2. Perturbing the non-axisymmetric solution
To further study the flow sensitivity, the effect of hysteresis was investigated by

changing the forcing conditions of non-axisymmetric saturated flows. This change in
forcing is to mimic, to an extent, experimental conditions which have experienced
strong hysteresis and have shown dependence on the direction of the change of
experimental conditions (e.g. Früh & Read 1999; van de Konijnenberg et al. 1999;
Bergeron et al. 2000; Früh & Nielsen 2003).

Two saturated flow conditions of Ro= 0.0325 and Ro= 0.02375 at Ek = 8× 10−5

have been interchanged. The Rossby number is changed instantly from Ro= 0.0325
to 0.02375 and vice versa at an arbitrary time after a stable saturated flow has
been reached. These flow conditions were chosen such that they belong in the lower
parameter regime, in contrast to the previous section, to illustrate the lower growth
rates and that the hysteresis effects can occur over a minor change in Ro. Additionally,
large Ek conditions do not display a large variety of unstable wavenumbers and
therefore are not suitable for this type of sensitivity study. The Rossby number
was varied instead of the Ekman number because it demonstrated a rapid change
in wavenumber over a small range. The energy time series of these saturated flow
solutions are depicted in figure 18. Stable wavenumbers of k = 4 and k = 5 are
exhibited in the saturated state for Ro= 0.0325 and Ro= 0.02375, respectively, which
differ from the linearly predicted state of k= 7 for both flows (refer to figure 4).

The non-axisymmetric solution of Ro = 0.0325 and Ek = 8 × 10−5 at t = 2350 is
used as the initial condition. This time is marked by a vertical dashed line as shown
in figure 19(a), and corresponds to a time where the dominant mode has saturated.
The axial vorticity structure at this nominated time (t = 2350) and the final time
(t= 3450) display no significant differences. At t= 2350, the flow is dominated by a
wavenumber 4 structure with the energy in its harmonics saturating over time while all
other wavenumbers are decaying. As the Rossby number is decreased to Ro= 0.02375,
the energies in each azimuthal wavenumber drop gradually over a short time period.
The energies in each wavenumber then demonstrate the same trends established before
t= 2350. That is, a stable square configuration is observed and the harmonics of k= 4
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FIGURE 18. (Colour online) The energy time series for Ek=8×10−5, for (a) Ro=0.0325
with the first 39 non-zero wavenumbers with an inset illustrating a close-up region of the
competing modes just beyond the linear regime, and (b) Ro = 0.02375 with the first 31
non-zero wavenumbers. Saturated stable states of k = 4 and k = 5 are obtained for each
flow, respectively.

5
7

8

4

0 1000 2000 3000
t

0 2000 4000 6000 8000 10 000
t

E
ne

rg
y

6 3
5 4

(a) (b)

FIGURE 19. (Colour online) The Rossby number is changed from (a) Ro = 0.0325→
Ro= 0.02375 and (b) Ro= 0.02375→Ro= 0.0325 with Ek= 8× 10−5. Energies of various
non-zero wavenumbers over time with the change in Ro occurring instantaneously at t=
2350 and t= 3500, respectively, which have been marked by a vertical dashed line. The
insets show the axial vorticity contours extracted at z/H = 0.5 at t = 3750 and t = 9150,
respectively. Contour levels are as in figure 5.

approach a plateau. The wavenumber 5 structure, which was determined to be most
unstable mode for Ro= 0.02375 (see figure 18b), continues to decay. Thus, bi-stability
is evident. The contours of axial vorticity at z/H = 0.5 are illustrated in the inset of
figure 19(a).
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The energy time series for the reverse case of increasing the Rossby number from
Ro= 0.02375 to Ro= 0.0325 at Ek= 8× 10−5 is shown in figure 19(b). The change
in flow conditions is marked by a vertical dashed line at t = 3500. The increase in
Ro causes a sharp increase in energy for all of the azimuthal wavenumbers. The flow
continues to sustain the wavenumber 5 structure over a long period of time with
energies from k = 4 gradually decreasing. At approximately t = 8000, the energies
in k = 4 increase and eventually become dominant at t = 8450. Thus, the stable
configuration observed is the same as that obtained from initializing the flow from
the steady-state axisymmetric base flow with a flow condition of Ro = 0.0325 and
Ek= 8× 10−5.

This pair of flow conditions has demonstrated that multiple stable saturated states
may exist at a single flow condition, depending on how it is approached. This
hysteretic behaviour is in agreement with the strong hysteresis observed in previous
studies of similar shear layer systems (Früh & Read 1999; Bergeron et al. 2000;
Hollerbach et al. 2004; Aguiar et al. 2010).

3.3.3. Bifurcation analysis
The hysteretic nature of the three different linear instability transitions, namely

modes I, II and III (see Vo et al. 2014), has been investigated. The Stuart–Landau
model (§ 2.3) has been applied to the most unstable linear wavenumber and its
harmonics. The nonlinear behaviour is determined through the sign of the l parameter.
The restriction of simulating a particular wavelength and its harmonics is achieved
numerically through a truncation of the azimuthal range of the domain to exactly fit
the wavelength of interest. As a consequence of the axisymmetry of the domain, only
the considered wavenumber and its harmonics are able to fit perfectly in the truncated
domain. Each numerical study has been initiated with the axisymmetric base flow
solution seeded with the most unstable eigenmode scaled to very small amplitudes.

The transitional behaviour of the mode I instability of Ro= 0.05 and Ek= 3× 10−4

is investigated. A plot of the growth rate against wavenumber is shown in figure 5(a),
which illustrates the existence of only the mode I instability and is most unstable to
a wavenumber 5 configuration. The mode transition is determined to be supercritical,
which can be deduced from figure 20. Initially, the amplitude of the wavenumber 5
instability is small and grows exponentially in time until it plateaus at approximately
t=440. This exponential trend is representative of the linear regime, which is required
to obtain an accurate gradient near the vertical axis in figure 20(b). The gradient at
the vertical axis corresponds to the l parameter in the Stuart–Landau equation.
The negative slope (having l = 4.55 × 10−6) indicates that the mode evolution is
supercritical. The d log |Λ|/dt curve approaches the horizontal axis as the mode
saturates. The intercept of the vertical axis, which represents the growth rate of the
mode in the linear regime, has a value of 0.0187, identical to that predicted by linear
stability analysis (see figure 5a).

A range of other flow conditions that are dominated by the mode I instability
have also been investigated. The same Stuart–Landau model consistently finds the
transition of the mode I instability to be supercritical. This confirms and extends
the experimentally determined supercritical behaviour detected for low-wavenumber
instability by Früh & Read (1999), van de Konijnenberg et al. (1999) and Bergeron
et al. (2000). In addition, the Stuart–Landau model has been applied to a variety of
flow conditions that encourage the growth of the mode II and III instability modes.
The l parameter has been determined to be positive in all flow cases, which suggests
that the weakly nonlinear mode evolution behaviour in this type of rotating flow is
supercritical.
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FIGURE 20. Flow conditions described by Ro= 0.05 and Ek = 3× 10−4. (a) Amplitude
of the most unstable isolated mode corresponding to wavenumber 5 against time. (b) The
rate of change in amplitude over time against the square of the amplitude. A negative
linear gradient at the vertical axis indicates that the transition is supercritical.

3.4. Comparison with quasi-two-dimensional model results
The non-axisymmetric structures in these rotating flows are now investigated using a
quasi-two-dimensional model to elicit the differences compared to the computationally
expensive three-dimensional model. Unlike the previous three-dimensional simulations,
the quasi-two-dimensional model computes the non-axisymmetric flow on a two-
dimensional r–θ domain, and by definition there can be no depth dependence.
In addition, the forcing conditions used here are smoothed (described in § 2.2.2),
which are different to those employed in the three-dimensional direct numerical
simulation (§ 2.2.1). Despite these differences, the flow conditions computed for the
three-dimensional model are simulated here for the quasi-two-dimensional model and
comparisons have been performed.

The three-dimensional flow described by Ro=0.05 and Ek=3×10−4 was studied in
§ 3.1, corresponding to the reference case in the vicinity of instability onset. The direct
numerical simulation illustrated a wavenumber 5 structure upon saturation. In contrast,
the quasi-two-dimensional solution for the same flow condition demonstrates an
axisymmetric stable state. The axisymmetric structure is composed of a ring exhibiting
low vorticity encompassing a circular region of high vorticity. The discrepancy in the
observed states between the three-dimensional and quasi-two-dimensional models is
explained by the smoothed forcing condition employed in the latter model. An
in-depth linear stability analysis on quasi-two-dimensional flows finds that the
effect of smoothing the forcing condition causes the base flow to become more
stable towards non-axisymmetric perturbations. This is primarily due to the thicker
Stewartson layers which arise in the base flow from the smoothed forcing. Thus, as
this condition is already near the critical internal Reynolds number for instability in
the three-dimensional model, adopting a smoothed forcing has caused the flow to
become stable in the quasi-two-dimensional model. The greater stability exhibited
in the quasi-two-dimensional non-axisymmetric flows as a result of the smoothed
forcing condition imposed was also observed for other flow conditions near the onset
of instability.
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FIGURE 21. (Colour online) Flow condition of Ro=0.17 and Ek=2.5×10−4. A sequence
of axial vorticity simulated using a quasi-two-dimensional model. Time increases from left
to right and continues into the row below. The times are given by t = 100 (a), 200 (b),
300 (c), 400 (d), 500 (e), 700 (f ), 1000 (g) and 2000 (h), respectively. Equi-spaced axial
vorticity contour levels are plotted in the range 2Ω ± 5ω. Dark and light contour shading
represent low and high values, respectively.

Considering flow conditions further away from the instability threshold highlights
the excellent agreement in the qualitative results between the three-dimensional direct
numerical simulations and the quasi-two-dimensional flows. The flow characterized by
Ro=0.17 and Ek=2.5×10−4 demonstrated a wavenumber 2 consistently disturbed by
a wavenumber 1 structure in the three-dimensional solution (figure 9b) at saturation.
The quasi-two-dimensional simulation starts with an axisymmetric flow which evolves
to a wavenumber 4 structure, then a wavenumber 2 structure, and subsequently
transforming into an unequal dipole structure similar to the three-dimensional solution.
The qualitative agreement between the last panels of figures 9(b) and 21 is
remarkable. Additionally, both saturated flows are steady-state and show a constant
drift about the rotation axis. It should be noted that the simulations of the
two models have been computed using two different meshes. The only notable
difference is the small-scale wave patterns present in the three-dimensional solution.
Since inertial waves are intrinsically three-dimensional, they are suppressed in the
quasi-two-dimensional simulation.

The similarity of the saturated wavenumber between the quasi-two-dimensional and
three-dimensional solutions suggests that the inertial waves have no significant effect
on the resulting wavenumber. However, the similarity may be due to the inertial
waves being negligibly weak in comparison to the large-scale structure or that
the investigated flow conditions are not sufficiently close to wavenumber-transition
thresholds. These views stem from studies investigating a different system involving
baroclinic instability. Williams, Haine & Read (2004) found through numerical
simulations that the influence of small-amplitude stochastic perturbations (mimicking
inertia–gravity waves) on the flow was small unless the flow was unstable to multiple
wavenumbers of similar growth rates. In such cases, the stochastic waves were able to
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FIGURE 22. (Colour online) Flow conditions of (a,d) (Ro, Ek) = (0.5, 3 × 10−3), (b,e)
(Ro, Ek)= (0.5, 1× 10−3) and (c,f ) (Ro, Ek)= (0.05, 8× 10−5), illustrating axial vorticity
contours of the saturated flow states from the (a–c) three-dimensional direct numerical
simulation and (d–f ) quasi-two-dimensional solutions. Contour levels as for figure 21.

strongly affect the wavenumber selection. Their earlier experimental study of the same
system (Williams, Read & Haine 2003) noted similar results in that inertia–gravity
waves influenced the selection of the large-scale structures provided the flow was
near a potential transition from one wavenumber to another.

The qualitative agreement of the saturated structures between the two models
has also been observed for other flow conditions that are far beyond the instability
onset. Several examples are exhibited in figure 22. Again, the depth-dependent wave
features are not evident in the quasi-two-dimensional solutions. Additionally, these
axial vorticity contours demonstrate a strong similarity with the vortical structures
visualized experimentally and numerically by Früh & Read (1999) and van de
Konijnenberg et al. (1999). These non-axisymmetric results demonstrate that the
quasi-two-dimensional model is capable of capturing the highly nonlinear stable
states at flow conditions well beyond the instability onset.

4. Conclusions
The non-axisymmetric flows generated in a differential-disk rotating system with

an aspect ratio of A = 2/3 have been investigated in this paper using a full three-
dimensional model and a quasi-two-dimensional model. The primary purpose was to
establish trends and draw comparisons with the experimental results of Früh & Read
(1999) and the numerical results from the linear stability analysis of Vo et al. (2014).
Flow conditions in the vicinity of the instability onset and those well beyond it have
been examined, and have illustrated differences compared to the linearly preferred
state. In addition, the quasi-two-dimensional model, which has been the primary model
adopted in the literature, has been validated.
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Flows characterized by small Rei near the onset of instability (Rei,c ≈ 22.4) were
first investigated and a reference case was established. In the linear regime, the
wavenumber that contains the most energy typically corresponded to the most
unstable wavenumber predicted by linear stability analysis. However, there were
instances where the unstable wavenumber in the linear regime was not in agreement
with the linear prediction. This was due to the seeding of white noise in the flow at
initialization which fed energy into every wavenumber structure. The random nature
of the white noise resulted in a favoured wavenumber different to that predicted by
linear stability analysis. Despite this, the linearly preferred wavenumber eventually
dominates and stabilizes in the nonlinear regime. Thus, linear stability analysis can
accurately describe the resulting structure in the three-dimensional flow in the vicinity
of instability onset. The structure of the resulting polygon is largely depth-independent
when viewed through axial vorticity contours and maintains reflective symmetry about
the horizontal mid-plane, similar to those described by the axisymmetric base flows
in the same parameter regime.

Flows well beyond the onset of instability achieved by either increasing the Rossby
number or decreasing the Ekman number were investigated to examine nonlinear
effects. The dominant wavenumber in the linear regime was still consistent with the
results from linear stability analysis. However, with the onset of nonlinear effects,
the highest exhibited energy is quickly shifted to lower-wavenumber structures. This
occurs through the coalescence of vortices. In fact, the appearance of the flow
structure at the saturated state may be distorted as a result of multiple wavenumbers
of comparable energy competing with each other. Therefore, flows at sufficiently
large Rei show a preference for low-wavenumber structures, which is in agreement
with experimental studies (e.g. Früh & Read 1999; van de Konijnenberg et al. 1999;
Aguiar et al. 2010). In addition, wavenumbers of the mode II instability in this
higher-Rei regime was found to have little significance for the saturated state as their
energies quickly decayed when nonlinear effects became prominent.

The majority of the flows simulated for this study were found to be steady. However,
time-dependent flows were encountered when an in-depth study of a high Rei was
performed. It was found that a large Ro (and consequently large Ek) caused the axial
jets to become unstable, thereby breaking the mid-plane reflective symmetry. The
irregular fluctuations of these jets in combination with the continuous deformation
of axial vorticity patches at the periphery of the disk resulted in irregular energy
oscillations, which were seen as chaotic. Keeping the Rei constant by decreasing
both Ro and Ek saw the flow transition from chaotic to steady at moderate Ek and
subsequently to periodic flow at low Ek. The period corresponded to the flapping of
an axial vorticity arm.

The saturated flows initialized from steady-state axisymmetric solutions demonstrated
strong insensitivity to initial conditions, provided the flow does not change its
Rossby and Ekman numbers. The flows eventually developed the same stable
azimuthal wavenumber, despite being initially seeded with different unstable
wavenumbers of large amplitude. However, changing the Rossby number of a
developed non-axisymmetric flow exhibited hysteresis effects such that a particular
flow condition is associated with multiple stable azimuthal wavenumbers, as has
been observed experimentally. Lastly, the transitions of the mode I, II and III linear
instabilities were consistently determined to be supercritical.

The non-axisymmetric flows computed using a simple quasi-two-dimensional model
were solved over a much shorter time scale compared to the three-dimensional model.
As a consequence of the imposed smoothed forcing function in the quasi-two-
dimensional model, the flow conditions near the onset of instability were instead
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found to be stable, resulting in an axisymmetric flow. However, flow conditions
well beyond the instability threshold demonstrated strong qualitative agreement with
the three-dimensional direct numerical simulation. Overall, similar trends were seen
between the quasi-two-dimensional simulations and the three-dimensional direct
numerical simulations, in that increasing Rei causes a shift to lower wavenumbers.
These trends differ from that of linear stability analysis and are attributed to
nonlinear effects. An important difference between the quasi-two-dimensional and
three-dimensional solutions is the ability to describe inertial waves, though the
presence of these wave structures did not seem to significantly affect the saturated
wavenumber structure.
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