

Reference Manual

Gregory J Sheard and Christopher J Camobreco

2 November 2018

 i

Table of Contents

Table of Contents ___ i

Chapter 1: Overview __ 1

About Viper __ 1

Audience for this Manual ___ 1

Getting Started __ 1
Rules for inputting text into Viper __ 2
Rules for inputting mathematical expressions into Viper _______________________________ 3
Implicit and user-defined variables __ 6

Unresolved Bugs ___ 6

Chapter 2: Background ___ 9

The Navier—Stokes Equations ___ 9
Newtonian and non-Newtonian Fluids ___ 9
Incompressible Flow ___ 9

The Spectral-Element Method and Spatial Discretization ______________________ 10

Time Integration ___ 13

Coordinate Systems ___ 15

Discrete forms of the Advection Operator ___________________________________ 16

Stability Analysis ___ 16
Absolute and Convective Instabilities __ 17
Global Stability Analysis __ 18

Scalar Transport & the Boussinesq Approximation for Buoyancy-Driven Flows __ 20
Advection-Diffusion __ 21
Passive Tracer Particle Tracking __ 22

Forcing Terms ___ 24

Magnetohydrodynamics (and the SM82 Model) ______________________________ 26
Quasi-static MHD __ 27

Viper Solvers __ 29

Running Simulations in Parallel ___ 29
Parallel base flow simulations __ 30
Parallel linear stability and optimal growth analysis computations ______________________ 30
Parallel spectral-element/Fourier computations _____________________________________ 31
Running Viper __ 33
Getting the most out of Viper ___ 33

Chapter 3: Pre-Processing __ 35

Accepted Mesh Formats ___ 35

Converting from Gambit ___ 37

Chapter 4: Configuring Simulations ____________________________________ 39

Commands recognised in the viper.cfg file _______________________________ 39
btag ___ 39
gvar_curve ___ 41
gvar_dt __ 41

 ii

gvar_forcing_fu __ 41
gvar_forcing_fv __ 42
gvar_forcing_fw ___ 42
gvar_forcing_fs __ 42
gvar_forcing_gu ___ 43
gvar_forcing_gv ___ 43
gvar_forcing_gw ___ 43
gvar_forcing_gs __ 44
gvar_init_field ___ 44
gvar_init_scalar_field ___ 44
gvar_kink __ 45
gvar_mhd_coeff ___ 45
gvar_movref __ 45
gvar_n ___ 46
gvar_rkv ___ 46
gvar_scalar_diff __ 46
gvar_scalar_uvel_forcing __ 46
gvar_usrvar ___ 47
mesh_file ___ 47

Chapter 5: Running Simulations _______________________________________ 49

Saving and Loading flow field data using restart files _________________________ 50

Using Macros and Loops ___ 50

Chapter 6: Post-Processing __ 53

Visualizing Flow Fields with Tecplot _______________________________________ 54

Plotting ASCII Data Files __ 55

Chapter 7: Command List ___ 57

Advect __ 57

Arnoldi __ 58

Autocorrf __ 59

Avg_one_dir ___ 59

Axi ___ 60

Axirotate __ 60

Buoyancy __ 61

Current ___ 62

Diff ___ 62

Energies ___ 63

Energyf ___ 63

Exit ___ 64

Filt_s_adv ___ 64

Flowrate ___ 64

Fixscalar __ 64

Flux __ 65

Forceflow __ 65

Forces ___ 66

 iii

Fourier ___ 67

Freeze __ 68

Getminmax __ 68

Help __ 70

Init ___ 70

Int ___ 70

Intf ___ 71

Iterate __ 72

L2 __ 72

Line __ 73

Load ___ 74

Loop ___ 75

Lsa ___ 75

Macro __ 76

Mask ___ 76

Meshpts ___ 77

Mhd __ 77

Moments __ 78

Nu_horiz_2d ___ 78

Nu_xsect_2d ___ 81

Onlyw __ 82

Order ___ 82

Overint ___ 82

Pbc ___ 83

Pert __ 83

Pert2 ___ 84

Pert_ke_evol ___ 85

Pres __ 85

Quit __ 86

Rand ___ 86

Reconload ___ 86

Reconstore __ 87

Rotate __ 88

Sample __ 89

Samplef ___ 90

Save __ 90

Scalar __ 91

 iv

Set __ 91

Spreadscalar ___ 92

Stab __ 93

Step __ 94

Stop __ 94

Stopcrit ___ 94

Svd ___ 95

Svv ___ 96

Tec_floq (Deleted) ___ 97

Tecp __ 97

Tg ___ 100

Tic __ 100

Timeavg __ 101

Toc __ 102

Tony_psi ___ 102

Track __ 103

Transgrowth __ 105

Vismat ___ 106

Womersley __ 106

Wvel ___ 107

Chapter 8: References ___ 108

Appendix A __ 111

Derivation of the quasi-static MHD equations ______________________________ 111

 1

Chapter 1: Overview
This Chapter provides an introduction to both the Viper package itself, as well as this

manual. In addition, the Getting Started guide describes what is required to begin using

Viper. Background theory behind the numerical algorithms implemented by Viper is

described in Chapter 2. In Chapter 3, mesh generation and conversion is described. In

Chapter 4, the configuration of simulations is described, and Chapter 5 details the

execution of simulations and the solution methods employed by the solver. Chapter 6

treats the visualization and post-processing of data, and Chapter 7 describes each of the

commands available to use within Viper. A bibliography for further reading is provided

in Chapter 8.

About Viper

Viper is a Computational Fluid Dynamics (CFD) package that solves the time-

dependent incompressible Navier—Stokes equations in either two or three dimensions.

Viper uses a spectral-element method to discretize the Navier—Stokes equations in

space, and employs a third-order accurate backwards multistep method to evolve the

solutions in time. Viper further includes the capability to solve the advection-diffusion

transport of a scalar field in conjunction with the solution of an evolving fluid flow, and

this field can be coupled with the momentum equations under the Boussinesq

approximation to solve natural convection problems. It also has the ability to model

some magnetohydrodynamic phenoma (quasi-2D and quasi-static problems).

Furthermore, it is also able to perform linear stability and transient growth analysis.

Audience for this Manual

This manual is intended for users of the Viper software – it contains descriptions of the

commands and functionality of the Viper package, as well as information on how to

generate and convert meshes for simulation, and how to extract and process useful data

from the computed solutions. Readers are assumed to have an Undergraduate-level

background in fluid mechanics. This is not a Developer’s Manual – no information

about the underlying source code is provided. Readers will not find details about the

subroutines, variables and modules behind the package, but they will find information

about third-party source code contributions and libraries that Viper employs.

Getting Started

To run simulations, users will need the Viper executable (the latest executable files

compiled for various platforms are available at http://sheardlab.org/. By default, Viper

searches for a configuration file viper.cfg, and if this file is not located in the

current directory, the user is prompted to supply an alternative path/file name. The

contents of the configuration file are described in Chapter 4. Once the configuration

file is found, Viper processes the commands given in the file to establish the conditions

for the simulation. The configuration file supplies the mesh file name, and it establishes

parameter values, initial and boundary conditions for the simulation. Once the

configuration phase is complete, the user is prompted to supply input commands.

http://sheardlab.org/

 2

An example of a simple list of commands to execute a simulation is as follows:

init

step 100

save

tecp

stop

These commands do the following: Initialise a simulation to allow time integration to

proceed (init), integrate forward in time by 100 time steps (step 100), save the

flow field solution to a default file ff_out.dat (save), output a binary file for post-

processing and plotting using the Tecplot visualization package (tecp), and exit Viper

(stop). A detailed description of all of the available commands recognised by Viper

is given in Chapter 7.

Rules for inputting text into Viper

Viper employs text input and processing routines that allow for comments, and permit

numerical values to be entered in any format recognised by FORTRAN. The same

rules apply for command line input as well as macro and configuration file input:

 Commented lines: If a line begins with a “#” followed by a space, it is regarded

as a comment, and is ignored by Viper. Note: The blank space following the hash

is essential. E.g.,
This is a comment

#This is not a comment

 Comments within a line: If the user wishes to add a comment within a line, then

they can do so by enclosing text in round brackets: “(” and “)”. E.g., the following

text would be read as “Viper reads this, but not this.”
Viper reads this, but (Viper ignores this) not

this.

 Numerical input: If users wish to enter an integer, it can be entered with or without

a negative sign, but can only contain numbers (no decimal points, alphabetical

characters, etc.). E.g., the following are valid integers:
1

34

796954

-343

The following are invalid as integers: and may either be rounded by the code, or

cause an error, so should be avoided. If floating-point numbers were required, then

the following are all valid (note that in some builds of Viper 1e-10 may not be

valid, but 1.0e-10 always will be):
.1

3.

-4.5

4.1e-10

 3

 Case sensitivity: Linux systems are case sensitive, whereas Windows systems are

not, allowing upper- and lower-case characters to be substituted at will. Therefore,

when processing input and output filenames, Viper preserves the capitalization

specified by the user. If a user wishes to load a file “Macro.txt” and enters

“mACRO.TXT”, the file will not be found under Linux, resulting in an error,

whereas under Windows the file will be located and input without an error.

Internally, Viper converts all input variable names to lower case, so users should be

aware that under Linux, Viper makes no distinction between variables with the same

name, but different capitalisation: i.e., “DT” is treated as “dt”.

 Verbatim text: To input a string of characters as a single entry, the text should be

enclosed by single quotes. This is especially important to avoid brackets in

mathematical expressions being confused with an in-line comment, or blanks being

confused for the end of the function. E.g. 1: Viper would misread sin(23*x) as

sin, ignoring the bracketed component, whereas it would be input in full if

expressed as ’sin(23*x)’. E.g. 2: Viper would misread y*t + x^2 as y*t,

ignoring the component after the blank, whereas it would be input in full if

expressed as ’y*t + x^2’.

Rules for inputting mathematical expressions into Viper

A powerful feature of Viper is the ability to read mathematical expressions input by the

user at run time, and evaluate them. Viper employs this capability for the processing

of user-defined boundary conditions, functions, initial conditions, integrands for L2

norms, etc.

Important: If a function is incorrectly structured, or is evaluated incorrectly (e.g.,

due to an incorrect variable name being supplied), it MAY NOT return an error,

and the output will be incorrect. Care must be taken to ensure that functions are

input correctly.

The following information outlines the allowable components of mathematical

expressions:

Mathematical operators:

Operator Function

+
Addition

E.g., 11+24.5

-
Subtraction

E.g., 58.5 – 1e3

*
Multiplication

E.g., 7.5*t

/
Division

E.g., 23/4

^
Power

E.g., for x2, type x^2

 4

Parentheses:

Users may enclose parts of their expressions in pairs of round, square, or curly brackets:

All opening brackets must have a corresponding closing pair. E.g., (…), […], {…}.

Mathematical functions:

A large number of mathematical functions are available, which form a superset of the

intrinsic mathematical functions available in Fortran.

Class Function Syntax

Trigonometric

Sine of 𝑥 sin(x)

Cosine of 𝑥 cos(x)

Tangent of 𝑥 tan(x)

Inverse sine of 𝑥, |𝑥| ≤ 1 asin(x)

Inverse cosine of 𝑥, |𝑥| ≤ 1 acos(x)

Inverse tangent of 𝑥 atan(x)

Cardinal (un-normalized) sine function of 𝑥 sinc(x)

Sine integral function of 𝑥 sini(x)

Cosine integral function of 𝑥 cosi(X)

Hyperbolic

Hyperbolic sine of 𝑥 sinh(x)

Hyperbolic cosine of 𝑥 cosh(x)

Hyperbolic tangent of 𝑥 tanh(x)

Hyperbolic cosecant (1/𝑠𝑖𝑛ℎ) of 𝑥 csch(x)

Hyperbolic secant (1/𝑐𝑜𝑠ℎ) of 𝑥 sech(x)

Hyperbolic cotangent (1/𝑡𝑎𝑛ℎ) of 𝑥 coth(x)

Logarithms

and

exponentials

Base 10 logarithm of 𝑥, where 𝑥 > 0 log10(x)

Natural logarithm of 𝑥, where 𝑥 > 0 log(x)

Logarithm of 𝑥

(base 𝑛, where 𝑛 > 0 and 𝑥 > 0)
logn(x,n)

Exponential number raised to the power 𝑥 exp(x)

Exponential integral function of 𝑥 expi(x)

Logarithmic integral function of 𝑥

(exponential integral of the natural logarithm of

𝑥)

logi(x)

Bessel

Functions

Bessel function of the 1st kind, of 𝑥, order 0 besj0(x)

Bessel function of the 1st kind, of 𝑥, order 1 besj1(x)

Bessel function of the 1st kind, of 𝑥, order n,

for integers 𝑛 ≥ 0
besjn(n,x)

Bessel function of the 2nd kind, of 𝑥, order 0 besy0(x)

Bessel function of the 2nd kind, of 𝑥, order 1 besy1(x)

Bessel function of the 2nd kind, of 𝑥, order n,

for integers 𝑛 ≥ 0
besyn(n,x)

Modified Bessel function of the 1st kind, of 𝑥,

order 0
besi0(x)

Modified Bessel function of the 1st kind, of 𝑥,

order 1
besi1(x)

Modified Bessel function of the 1st kind, of 𝑥,

order n, for integers 𝑛 ≥ 0
besin(n,x)

 5

Modified Bessel function of the 2nd kind, of 𝑥,

order 0
besk0(x)

Modified Bessel function of the 2nd kind, of 𝑥,

order 1
besk1(x)

Modified Bessel function of the 2nd kind, of 𝑥,

order n, for integers 𝑛 ≥ 0
beskn(n,x)

Error

Functions

Error function of 𝑥 erf(x)

Complimentary error function of 𝑥 erfc(x)

Inverse error function of 𝑥 ierf(x)

Inverse of the complimentary error function of

𝑥, −1 < 𝑥 < 1
ierfc(x)

Fresnel

Functions

Sine Fresnel integral function of 𝑥 fress(x)

Cosine Fresnel integral function of 𝑥 fresc(x)

Elliptic

Integral

Functions

Complete elliptic integral of the 1st kind, K

−1 < 𝑥 < 1
ellk(x)

Complete elliptic integral of the 2nd kind, E

−1 < 𝑥 < 1
elle(x)

Incomplete elliptic integral of the 1st kind, F

−1 < 𝑥 < 1, −
𝜋

2
< 𝜙 <

𝜋

2

iellf(x,𝝓)

Incomplete elliptic integral of the 2nd kind, E

−1 < 𝑥 < 1, −
𝜋

2
< 𝜙 <

𝜋

2

ielle(x,𝝓)

Other

Square root of 𝑥, 𝑥 ≥ 0 sqrt(x)

Cube root of 𝑥 cbrt(x)

Absolute value of 𝑥 abs(x)

Maximum value of 𝑥 or 𝑦 max(x,y)

Minimum value of 𝑥 or 𝑦 min(x,y)

Delta function (1 if 𝑥 = 0, 0 otherwise) delta(x)

Step function (0 if 𝑥 < 0, 1 otherwise) step(x)

Hat function (1 if |𝑥| ≤ 0.5, 0 otherwise) hat(x)

Smoothed hat function (1 if |𝑥| < 0.5(1 −
𝑥𝑠); 0 if |𝑥| > 0.5(1 + 𝑥𝑠); or 0.5(1 +

cos(𝜋(|𝑥| − 0.5)/𝑥𝑠)) otherwise

hatsmth(x,xs)

Sawtooth function of 𝑥,

(𝑥 − 𝑓𝑙𝑜𝑜𝑟(𝑥) varying from 0 to 1)
saw(x)

Gaussian function of 𝑥 gauss(x)

Round to nearest whole number

(e.g. 3.7 becomes 4.0)
anint(…)

Truncate argument to nearest whole number

(e.g. 3.45 becomes 3.0, -2.1 becomes -2.0)
aint(…)

Return greatest integer less than or equal to

argument

(e.g. 3.2 becomes 3.0, -2.1 becomes -3.0)

floor()

Return smallest integer greater than or equal to

argument

(e.g. 3.2 becomes 4.0, -2.1 becomes -2.0)

ceiling()

Gamma function of 𝑥 gamma(x)

Logarithm of the gamma function of 𝑥, 𝑥 > 0 lgamma(x)

 6

Random number in the range [0, 𝑥)

Note: The result of this function is treated as

always time- and space-varying

rand(x)

Finally, conditional statements can be input using the function

if(condition, then, else),

which evaluates the conditional statement condition, and then evaluates the

expression then or else, when the conditional statement is true or false, respectively.

The conditional statement can be constructed using the following relations:

Condition Symbol

Less than (<) <

Less than or equal to (≤) <=

Greater than (>) >

Greater than or equal to (≥) >=

Equal to (=) = or ==

Not equal to (≠) !=

Implicit and user-defined variables

A number of variable and parameter names are reserved by Viper. These include the

spatial coordinates x, y and z, time t and time step dt, velocity components u, v and

w, the kinematic static pressure p, the scalar field s, the electric potential field e, the

reciprocal kinematic viscosity RKV, and the shear rate SR. These variables can be used

in mathematical expressions input into Viper either on the command line (such as

during the int or l2 commands), or in the configuration file (such as in btag

statements). Users should consult the specific entries for each command to see which

of the implicit variables are allowed.

In addition to the implicit variables, Viper also facilitates the creation of “user-

defined variables”. User-defined variables are defined using the gvar_usrvar

statement in the configuration file, and assign a user-specified name to a number or

mathematical expression to be evaluated at run-time. User-defined variables can appear

in subsequent mathematical expressions, including within subsequent gvar_usrvar

statements.

Unresolved Bugs

Function simplification by math parser:
Platforms: All

Symptoms: A mathematical expression, as part of a user defined variable or

command input, may be read by Viper incorrectly. Simplifications such as performing

addition, multiplication, removal of brackets etc. may lead to two operators being

placed next to each other, such as ‘+-’ or ‘--’, which the parser may not be able to

 7

simplify. An error message notifying that the function has not been simplified correctly

will be provided.

Workaround: Always check output.txt files for math parser error messages.

Rearrange terms and add brackets as necessary such that the function can be read

correctly. Particularly, rather than ‘𝐴 − 𝐵’ try ‘𝐴 + (−𝐵)’, where 𝐴 and 𝐵 are

expressions which the math parser may also need to simplify. To observe the entire

simplification process, use the verbose Viper executable, if available.

 9

(1a)

Chapter 2: Background
This Chapter provides background theory for the fluid flow solvers and analysis tools

implemented within Viper.

The Navier—Stokes Equations

The motion of all fluids is described by the Navier—Stokes equations. Applying a

conservation-of-momentum principle yields

𝜌𝒈 − 𝛁𝑝 + 𝛁 ∙ 𝝉𝑖𝑗 = 𝜌
𝐷𝒖

𝐷𝑡

where 𝒈 is the gravity acceleration vector, p is a scalar pressure field, ∇ is the gradient

operator, 𝝉𝑖𝑗 is the viscous stress tensor, 𝒖 is a velocity vector, and 𝑡 is time.

The velocity time derivative is sometimes referred to as the substantial

derivative, which is defined

𝐷𝒖

𝐷𝑡
=

𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ 𝛁)𝒖

The fluid must also satisfy a conservation-of-mass argument, which can be expressed

as

𝜕𝜌

𝜕𝑡
+ 𝛁 ∙ (𝜌𝒖) = 0

Newtonian and non-Newtonian Fluids

A significant simplification to the momentum equation of the general Navier—Stokes

equations is possible, if viscous stresses are assumed proportional to strain rates and the

coefficient of viscosity, 𝜇. For a simple shear flow, this can be written

𝜏 = 𝜇
𝑑𝑢

𝑑𝑦

Fluids that satisfy this assumption are classified as Newtonian fluids, and a remarkably

large number of fluids are well-described by this relationship, including air and water.

Fluids that do not satisfy this relationship are classified as non-Newtonian, and include

many polymers, emulsions and suspension fluids, including blood.

Incompressible Flow

If the flow has constant density in space and time, it can be regarded as incompressible.

If there is no fluid interface (such as a free surface), the gravity term can be omitted, as

its action is constant everywhere in the flow. Combining this simplification with the

incompressibility condition yields momentum and continuity for a Newtonian fluid

𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ 𝛁)𝒖 = −

1

𝜌
𝛁𝑝 + 𝜈∇2𝒖

 10

(1b) 𝛁 ∙ 𝒖 = 0

where we introduce a kinematic viscosity

𝜈 =
𝜇

𝜌
 .

Finally, equation (1a) can be used to reveal the single most important parameter

describing the viscous behaviour of Newtonian fluids, the Reynolds number. If the

length, velocity, time and kinematic pressure are respectively scaled by 𝐷, 𝑈∞, 𝐷/𝑈∞

and 𝜌𝑈∞
2 , respectively, where 𝐷 is a reference length scale and 𝑈∞ is a reference speed,

the momentum equation can be rewritten as

𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ 𝛁)𝒖 = −𝛁𝑝 +

1

𝑅𝑒
∇2𝒖

where all quantities are now non-dimensional, and where the Reynolds number is

defined as

𝑅𝑒 =
𝑈∞𝐷

𝜈
 .

Equation (1a) comprises several terms, which from left to right are the velocity

time derivative term, the advection term, the pressure term, and the viscous diffusion

term. Viper solves this equation using an operator-splitting technique (Karniadakis,

Israeli & Orszag 1991), where the advection, pressure, and diffusion terms are solved

individually at each time step. This procedure will be described in more detail later.

The Spectral-Element Method and Spatial Discretization

The spectral-element method is a class of finite element methods, which is used to solve

partial differential equations by discretizing a spatial domain into small regions

(elements), over which a high-degree polynomial basis is employed. This is an

improvement over the traditional finite element method, which employs a piecewise

linear basis.

The partial differential equations being solved are recast in weak form by

applying the Galerkin method (a form of the method of weighted residuals). The

Galerkin method replaces the continuous partial differential equation with an integral

equation, which when approximated by numerical quadrature techniques, produces a

set of ordinary differential equations which may be solved in a standard fashion.

Integration is performed within each element using highly efficient Gaussian

quadrature methods, and the global solution is coupled between elements by enforcing

a continuous solution across element interfaces.

The spectral-element method differs from the finite-element method in that

higher-order functions are used as basis functions within each element, and efficient

Gaussian quadrature rules can be employed within each element to approximate the

integral contributions. Viper employs a nodal formulation, in which Lagrangian tensor-

product polynomial basis functions are employed within each element. These functions

 11

are interpolated over a grid of points on each element, which correspond to the

quadrature points for Gauss-Legendre-Lobatto (GLL) quadrature. The GLL quadrature

points include points fixed at the element edges/faces to facilitate a continuous solution

between adjacent elements. In one dimension, GLL quadrature is exact for polynomials

of degree 2n-3, where n is the number of quadrature points. Illustrations of the nodal

polynomial expansion basis employed by Viper are shown below.

One-dimensional nodal expansion modes for a polynomial of degree 6 (from Karniadakis & Sherwin

2005).

 12

Construction of a two-dimensional nodal expansion basis from the product of two one-dimensional

expansions of degree 5 (from Karniadakis & Sherwin 2005).

Viper accepts quadrilateral (four-sided) elements in two dimensions, and hexahedral

(six-faced) elements in three dimensions. General curvilinear elements are mapped

onto a bi-unit square for implementation of the standard GLL quadrature rules, as

illustrated below.

Mapping of a bi-unit square onto a general curvilinear quadrilateral element (from Karniadakis &

Sherwin 2005). An analogous mapping onto a bi-unit cube is conducted for three dimensional

hexahedral elements.

A result of the mapping procedure is a restriction on the allowable distortion of

elements. No element corner is permitted to have an inner angle equal to, or greater

than, 180°. Examples of valid and invalid quadrilateral elements are shown below.

 13

Examples of (a) valid and (b) invalid quadrilateral elements (from Karniadakis & Sherwin 2005).

The use of element mapping permits geometries of considerable complexity to be

modelled using a spectral-element discretization, and the combination of a high-degree

basis and the highly accurate Gauss-Legendre-Lobatto quadrature rules provides

excellent spatial convergence properties. Exponential convergence (an increasing rate

of error reduction with increasing resolution) is often achieved in practical spectral-

element computations (Karniadakis, Israeli & Orszag 1991; Blackburn & Sherwin

2004; Karniadakis & Sherwin 2005; Sheard & Ryan 2007).

To illustrate the flexibility of curvilinear quadrilateral and hexahedral elements

in discretizing sometimes complicated geometries, meshes are reproduced below from

Sheard & Ryan (2007).

Left: Meshes employed for two- (top) and three- (bottom) dimensional computations of the

axisymmetric and three-dimensional pressure-driven flows past spheres moving through a tube,

respectively (Sheard & Ryan 2007). The upper half of the three-dimensional mesh has been removed

to reveal the meshed surface of the sphere. Right: An isosurface plot showing streamwise vorticity in

the flow, which demonstrates the existence of non-axisymmetric flow.

Time Integration

The Navier—Stokes equations are integrated forward in time using an operator splitting

scheme referred to as a stiffly-stable scheme when first proposed for high-order

computation of incompressible fluid flows by Karniadakis, Israeli & Orszag (1991),

and later recognised as a class of backwards-multistep schemes by Blackburn &

Sherwin (2004).

 14

(1d)

(1e)

(1c)

Operator splitting schemes employ the basic idea that if some equation of the

form
𝜕𝒖

𝜕𝑡
= 𝐿𝒖

where 𝐿 is some operator that can be written as a sum of 𝑚 pieces,

𝐿𝒖 = 𝐿1𝒖 + 𝐿2𝒖 + ⋯ + 𝐿𝑚𝒖 ,

then the solution that updates the variable 𝒖 from time step 𝑛 to 𝑛 + 1 can be

calculated by summing the contribution of each operator on 𝒖 separately (Press et al.

2002).

Backwards-multistep methods are based on backwards differentiation: that is, the time

derivative is evaluated at time 𝑛 + 1 (or approximated at time 𝑛 + 1 by a combination

of sufficient values at previous times to achieve the desired order of accuracy), and the

appropriate-order backwards difference scheme dictates the combination of 𝒖 values at

previous times required to find 𝒖𝑛+1.

For the incompressible Navier—Stokes equations, Karniadakis, Israeli &

Orszag (1991) propose a three-step time splitting scheme

𝒖̂ − ∑ 𝛼𝑞𝒖𝑛−𝑞𝐽−1
𝑞=0

Δ𝑡
= ∑ 𝛽𝑞𝐍(𝒖𝑛−𝑞)

𝐽−1

𝑞=0

+ 𝑭(𝒙, 𝑡) + 𝑮(𝒙, 𝑡)𝐓𝑰𝒖𝒏−𝒒

𝒖̂̂ − 𝒖̂

Δ𝑡
= −𝛁𝑝𝑛+1

𝛾𝒖𝑛+1 − 𝒖̂̂

Δ𝑡
=

1

𝑅𝑒
∇2𝒖𝑛+1 ,

where 𝑭(𝒙, 𝑡) and 𝑮(𝒙, 𝑡) are the coefficients for constant and linear forcing terms, 𝑰 is

the identity matrix, 𝐍(𝒖) is the non-linear advection operator, and for third-order

accuracy in time (𝐽 = 3), the required coefficients are:

Coefficient Value

𝛾 11/6

𝛼0 3

𝛼1 −3/2

𝛼2 1/3

𝛽0 3

𝛽1 −3

𝛽2 1
Table: Third-order backwards-multistep scheme coefficients.

The first substep involves solving the advection term explicitly. The second substep

first requires evaluation of the pressure, 𝑝. We first take the divergence of both sides,

and enforce the incompressibility constraint on the intermediate velocity field 𝒖̂̂ as

𝛁 ∙ (
𝒖̂̂ − 𝒖̂

Δ𝑡
) = 𝛁 ∙ (−∇𝑃𝑛+1)

 15

∴
𝛁 ∙ 𝒖̂̂ − 𝛁 ∙ 𝒖̂

Δ𝑡
= −∇2𝑃𝑛+1

∴
−𝛁 ∙ 𝒖̂

Δ𝑡
= −∇2𝑃𝑛+1 .

The intermediate velocity field 𝒖̂ is calculated during the first substep, so this equation

can be solved as a Poisson equation for the pressure 𝑝, with appropriate high-order

Neumann boundary conditions for pressure imposed on homogeneous boundaries, and

Dirichlet pressure boundary conditions are imposed in the standard fashion. This

pressure field can then be used to find the second intermediate velocity field 𝒖̂̂ (Eq. 1d).

The third substep involves solving a set of Helmholtz equations (Eq. 1e) for each of the

velocity components, to determine the final velocity field 𝒖𝑛+1. Boundary conditions

for the velocity field are imposed during this substep.

Coordinate Systems

The preceding equations are presented in vector form for generality. The component

forms of these equations vary depending on the coordinate system being employed.

Viper has the capability to compute flows in either a Cartesian (x, y, z) or a cylindrical

(z, r, θ) coordinate system. These are illustrated below:

http://en.wikipedia.org/wiki/Image:Rectangular_coordinates.svg, http://en.wikipedia.org/wiki/Image:Cylindrical_coordinates2.svg

In three dimensions, the derivative operators acting on a scalar field in Cartesian

coordinates are written as

𝛁 = 〈
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
〉 , ∇2 =

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 ,

and divergence of a vector field is written as

𝛁 ∙ () =
𝜕

𝜕𝑥
() +

𝜕

𝜕𝑦
() +

𝜕

𝜕𝑧
() .

In cylindrical coordinates, the derivative operators are written

http://en.wikipedia.org/wiki/Image:Rectangular_coordinates.svg
http://en.wikipedia.org/wiki/Image:Cylindrical_coordinates2.svg

 16

𝛁 = 〈
𝜕

𝜕𝑧
,

𝜕

𝜕𝑟
,
1

𝑟

𝜕

𝜕𝜃
〉 , ∇2 =

𝜕2

𝜕𝑧2
+

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
) +

1

𝑟2

𝜕2

𝜕𝜃2
 ,

and the divergence operator is written

𝛁 ∙ () =
𝜕

𝜕𝑧
() +

1

𝑟

𝜕

𝜕𝑟
(𝑟()) +

1

𝑟

𝜕

𝜕𝜃
() .

Discrete forms of the Advection Operator

The advection operator for the incompressible Navier—Stokes equations can be

expressed in several forms by applying vector identities. These include the convection

form ((𝒖 ∙ ∇)𝒖), the rotation form ((∇ × 𝒖)𝒖), and the skew-symmetric form

(
1

2
(𝒖 ∙ ∇)𝒖 +

1

2
∇(𝒖𝒖)). These forms are exactly equivalent in a continuous sense, but

are not precisely equivalent in a discrete sense. Zang (1991) describes the implications

of using each of these forms in numerical computations, and the following table

summarises the conservation properties of, and the number of derivative operations

required to compute, each of these terms.

Form of advection

operator

Conserves (in

inviscid limit)

Number of derivative

operations (2D / 3D)

Convective Nothing 4 / 9

Rotation
Momentum and

kinetic energy
4 / 6

Skew-symmetric
Momentum and

kinetic energy
8 / 18

Note that pre-March 2013 Viper used to employ each of 3 possible forms of the

advection operator (previously chosen using the advect command): convective,

rotational, and skew-symmetric (though the rotation form is replaced by the convection

form in cylindrical coordinates). Blackburn & Sherwin (2004) showed that the

convection form produced results that converged slightly more rapidly than the skew-

symmetric form with increasing spatial resolution. Furthermore, practice has

demonstrated that similar convergence is achieved for each form, and the speed

decrease for the rotational and skew-symmetric forms are therefore difficult to justify.

Therefore, the convective form is used throughout the code from builds 12 March 2013

onwards.

Stability Analysis

Broadly, stability analysis is the study of the state of systems, and their stability. Many

canonical fluid flows develop as a result of instabilities, which often emerge through

the solution becoming dependent on an additional dimension. For instance, below a

Reynolds number 𝑅𝑒 ≈ 46, the flow past a straight circular cylinder is two-

dimensional and time-independent. As the Reynolds number is increased beyond this

Reynolds number, the flow becomes unstable to temporal disturbances, and the wake

 17

alters to the classical von Kármán vortex street, which is again two-dimensional, but is

now time dependent (being periodic in time).

A subsequent transition occurs at 𝑅𝑒 ≈ 190, where the two-dimensional

Kármán vortex street becomes unstable to three-dimensional sinuous disturbances in

the spanwise direction along the cylinder. The image below shows the various wake

states through these transitions.

 (a) (b) (c)

Instabilities developing in the wake of a circular cylinder. (a) The steady two-dimensional wake below

Re = 46 (Van Dyke 1982), (b) the periodic two-dimensional Kármán vortex street above Re = 46, and

(c) the three-dimensional “Mode A” wake above Re ≈ 190 (Thompson, Hourigan & Sheridan 1996).

Absolute and Convective Instabilities

Instabilities can be categorised as being either local or global, depending on whether

the instability develops on a local velocity profile, or the whole flow field, respectively.

The terms absolute and convective are then used to further describe the evolution

behaviour of the instability. An absolutely unstable disturbance will spread in all

directions and contaminate the entire flow, whereas in a convectively unstable flow the

disturbances are washed (convected) away from their point of origin.

Given some control parameter 𝑅, and considering two critical values, 𝑅𝑐

(transition from stable to convectively unstable flow), and 𝑅𝑡 (point at which the flow

becomes absolutely unstable), the sketches in the subsequent figure outline the various

responses of systems, depending on their stability.

 18

(2a)

(2b)

Instability responses. (a-c) Single travelling wave: (a) stable, (b) convectively unstable, (c) absolutely

unstable. (d-e) Stationary mode: (d) stable, (e) absolutely unstable. (f-h) Conterpropagating travelling

waves: (f) stable, (g) convectively unstable, (h) absolutely unstable. Figure reproduced from Huerre &

Monkewitz (1990).

Global Stability Analysis

Numerically, a global stability analysis inspects the evolution of a small disturbance to

an underlying base flow. The formulation of this technique begins by decomposing the

velocity and pressure fields (𝒖, 𝑝) into a two-dimensional base flow (𝒖̅, 𝑝̅) and a three-

dimensional disturbance (𝒖′, 𝑝′),

𝒖 = 𝒖̅ + 𝒖′,
𝑝 = 𝑝̅ + 𝑝′.

Substituting these into equation (1), cancelling the base flow terms, and neglecting

products of the (small) perturbation field yields the linearised Navier—Stokes

equations

𝜕𝒖′

𝜕𝑡
+ (𝒖̅ ∙ 𝛁)𝒖 + (𝒖 ∙ 𝛁)𝒖̅ = −𝛁𝑝′ +

1

𝑅𝑒
∇2𝒖′

𝛁 ∙ 𝒖′ = 0

Equation (2) differs from equation (1) only in the advection term, and thus an almost

identical solution algorithm can be efficiently employed to integrate the disturbance

field forward in time.

A further simplification is possible by decomposing the disturbance field into a

Fourier series expansion in the spanwise direction,

 19

𝒖′(𝑥, 𝑦, 𝑧, 𝑡) = ∫ 𝒖̂
∞

−∞

(𝑥, 𝑦, 𝑡)𝑒𝑖𝛽𝑧𝑑𝛽 ,

which then allows us to decouple modes with a different spanwise mode number, 𝛽.

𝒖′(𝑥, 𝑦, 𝑧, 𝑡) = ⟨

𝑢̂(𝑥, 𝑦, 𝑡)𝑒𝑖𝛽𝑧

𝑣(𝑥, 𝑦, 𝑡)𝑒𝑖𝛽𝑧

𝑤̂(𝑥, 𝑦, 𝑡)𝑒𝑖𝛽𝑧

⟩ ,

𝑝′(𝑥, 𝑦, 𝑧, 𝑡) = ⟨𝑝̂(𝑥, 𝑦, 𝑡)𝑒𝑖𝛽𝑧⟩ .

The stability behaviour has then been reduced to a two-parameter problem in 𝑅𝑒 and 𝛽.

An important note in terms of the numerical implementation, is that perturbation fields

with different wavelengths only couple with the base flow, so each can be computed

independently.

Simplistically, the stability properties for a particular pair of values of 𝑅𝑒 and

𝛽 is determined by integrating the perturbation field forward in time, and monitoring

the growth or decay of the field. Strictly, for 𝑇-periodic base flows (for steady base

flows, the same technique applies, but the time period 𝑇 can be arbitrarily selected), the

perturbation field evolves over one period subject to an operator 𝐀 as

𝒖𝑛+1
′ = 𝐀(𝒖𝑛

′) .

The eigenvalues of 𝐀 correspond to the Floquet multipliers of the system, 𝜇 = 𝑒𝜎𝑇,

where 𝜎 is the growth rate of the instability. The stability of the base flow (𝒖̅, 𝑝̅) is

determined by the magnitude of the Floquet multiplier, |𝜇|. If |𝜇| > 1, then the flow is

unstable to perturbations of the chosen spanwise wavelength at the prescribed Reynolds

number, and is stable if |𝜇| < 1.

A number of methods are available to determine the eigenvalues (and

corresponding eigenvectors) of 𝐀, though due to the size of the systems typically under

investigation, 𝐀 is not constructed explicitly. Instead, the base flow and perturbation

field are integrated in time, and the perturbation field after successive periods is

inspected to determine the eigenspectrum of the system. Barkley & Henderson (1996)

and others propose a block-power method based on modified Arnoldi iteration to

determine the leading eigenvalue of the system, and Sheard, Thompson & Hourigan

(2003) employed a power method to resolve the magnitude of the Floquet multiplier of

the fastest-growing mode.

Viper facilitates both Arnoldi and power methods to solve the large-scale

eigenvalue problems presented by a global linear stability analysis. An implicitly

restarted Arnoldi method (Sorensen 1995; Lehoucq, Sorensen & Yang 1996) is

implemented in the ARPACK package, which is called by Viper using the arnoldi

command.

The power method (used in Sheard, Thompson & Hourigan 2003; Sheard &

Ryan 2007) isolates the fastest-growing mode, and subsequently computes the

magnitude of the Floquet multiplier, by evolving the perturbation field over sufficient

periods to allow the modes with smaller growth rates to wash out of the solution. The

perturbation field is normalised at each period (permitted due to the linearity of the

 20

solution) to avoid the solution diverging as a result of its exponential behaviour.

Ultimately, the perturbation field comprises only the fastest-growing mode, and the

amplification factor applied to this mode from one period to the next corresponds to the

magnitude of the Floquet multiplier, |𝜇|. The main limitations of the power method are

that it cannot resolve the complex components of the leading Floquet multiplier, and it

can only find the eigenvalue corresponding to the fastest-growing mode.

The linear Floquet stability analysis technique implemented by Viper is capable

of determining the global stability of two-dimensional (or axisymmetric) flows to three-

dimensional (non-axisymmetric) linear disturbances that are spanwise (azimuthal)-

periodic. This facility is implemented using the floq command, and calculations

employing either an implicitly restarted Arnoldi method, or the power method, are

invoked using the arnoldi or stab commands, (described in Chapter 7),

respectively.

Scalar Transport & the Boussinesq Approximation for
Buoyancy-Driven Flows

It is sometimes useful to follow the propagation of a scalar quantity through a transient

or steady flow field, either for the purposes of flow visualization, or to simulate the

transport of scalar quantities in a flow (such as the transport of oxygen in a bioreactor,

for instance).

Viper facilitates two mechanisms for scalar transport: one method introduces a

scalar field, which is evolved subject to an advection-diffusion transport equation, and

the other method seeds the flow with passive tracer particles, whose positions are

updated along with the flow solution.

The advection-diffusion approach is also employed by a facility for computing

buoyancy-driven flows by means of a Boussinesq approximation (use command

buoyancy). For computations employing this facility, the scalar field acts as a

normalised temperature field, and the diffusion coefficient represents a thermal

diffusion coefficient.

The Boussinesq approximation provides a means of coupling the momentum

and scalar transport equations. An additional body force term is appended to the

momentum equations. This term linearly relates the differences in relative temperatures

to a buoyancy ratio, which appears as the buoyancy term

𝒆𝒚𝑔
𝜌

𝜌0
,

where g is the acceleration due to gravity (in the +𝒆𝒚 direction, which is specified using

the buoyancy command), 𝜌 is the (local) fluid’s density, and 𝜌0 is a reference fluid

density. This density ratio is related to the difference in relative temperatures via

𝜌

𝜌0
= 1 − 𝛼(𝜃 − 𝜃0)

where 𝛼 is the volumetric thermal expansion coefficient of the fluid, 𝜃 is a

(dimensional) relative temperature, and 𝜃0 is a (dimensional) reference temperature.

 The Boussinesq approximation provides an excellent means of adding

additional accuracy to natural convection flows, by simulating the effects of buoyant

 21

(3)

rising due to lower density fluid (and the accompanying circulation this induces).

However, as compressible solvers incur significantly higher computational costs, the

density differences simulated must remain small (all other terms in the equations solved

treat the fluid as incompressible). This directly requires small temperature gradients for

the Boussinesq approximation to remain valid. For more information on the validity of

the Boussinesq approximation see Gray and Giorgini (1976), with two other key

assumptions being that all other fluid properties (such as viscosity) remain independent

of temperature and that viscous dissipation is negligible.

 Regardless of the use of the Boussinesq approximation, the scalar fields are

always calculated using the extrapolated velocity and scalar fields, after the advection

operation (first substep). Then the resulting scalar field at the future time (n+1; both

substeps are performed for the scalar equation) is input into the gravity term in the

momentum equation.

Advection-Diffusion

The transport of a passive scalar field s on an evolving flow field 𝒖 is described by

𝐷𝜙

𝐷𝑡
=

𝜕𝜙

𝜕𝑡
+ (𝒖 ∙ 𝛁)𝜙 = 𝜈𝑠∇2𝜙

where 𝜈𝑠 is the coefficient of diffusion for the scalar field. Physically, this equation

describes the movement of the scalar field in time with the flow field, plus diffusion of

the scalar field. The numerical solution of this equation can be problematic, as the value

of the scalar field at locations in the flow that do not necessarily correspond to grid

points can be required.

 The same general form of time integration scheme is used (Karniadakis, Israeli

& Orszag (1991)), however, as only advection and diffusion terms are present (there is

no pressure field) a two-step scheme is employed. The velocity field after the first

substep (of the momentum equations) is determined. Then the first substep of the scalar

evolution equation is solved. This involves calculating both the scalar advection, and

any 𝑢-velocity scalar forcing terms (due to gvar_scalar_uvel_forcing)

𝜙̂ − ∑ 𝛼𝑞𝜙𝑛−𝑞𝐽−1
𝑞=0

Δ𝑡
= ∑ 𝛽𝑞(𝒖𝒏+𝟏 ∙ 𝛁)𝜙

𝐽−1

𝑞=0

+< 𝐜𝐨𝐞𝐟𝐟 > 𝒖𝒏+𝟏 ,

where <coeff> is the coefficient for scalar forcing (which is separate to the diffusion

coefficient, and is defined with gvar_scalar_uvel_forcing).

The second substep involves solving a Helmholtz equation for the diffusion term,

𝛾𝜙𝑛+1 − 𝜙̂

Δ𝑡
= 𝜈∇2𝜙 ,

which is when boundary conditions on the scalar field are imposed. Once the scalar

field has been determined, the appropriate term in the momentum equation(s) are

updated, if present (due to simulating the Boussinesq approximation; see buoyancy).

For second-order accuracy in time (𝐽 = 2), the required coefficients are:

 22

Coefficient Value

𝛾 3/2

𝛼0 2

𝛼1 −1/2

𝛽0 2

𝛽1 −1
Table: Second-order backwards-multistep scheme coefficients.

This method is best suited for problems involving continuously varying scalar fields

present throughout the flow. In Viper, advection-diffusion of a scalar field is initiated

by specifying boundary conditions for a scalar field (see viper.cfg commands

btag and gvar_scalar_diff), and the command scalar.

The image sequence below demonstrates the capability of this scalar transport

function. Shown are contours of scalar field concentration, and the scalar field is

advected on a periodic wake behind a square cylinder in a channel, with a low diffusion

specified.

Contours of scalar field concentration, demonstrating fluid mixing behind a square cylinder at 𝑅𝑒 =

 90 in a channel with blockage ratio 1/8.

Passive Tracer Particle Tracking

The simulated evolution of passive tracer particles is facilitated by means of a nearly-

4th-order Runge—Kutta technique proposed by Coppola, Sherwin & Peiró (2001).

This tool is extremely adept at simulating the planar laser-induced fluorescence (PLIF)

technique of dye visualization used to great effect by Williamson (1996); Leweke,

Thompson & Hourigan (2004). The image below compares experimental dye

 23

visualization of an arresting sphere with a numerical simulation produced using Viper,

and visualised using the Tecplot package.

A time sequence (from left to right) comparing simulated particle tracking computations (top) and

experimental dye visualization (bottom) for an arresting cylinder at 𝑅𝑒 = 500 with a translation

distance of two cylinder diameters (Sheard, Leweke, Thompson & Hourigan 2007).

The particle tracking algorithm updates particle positions within each element in

parametric space using a 4th-order Runge—Kutta time integration scheme. When a

particle crosses an element boundary, a series of first-order sub-steps is employed to

step to and across the element interface(s). As the step size is typically small compared

to the size of the elements, the technique nearly preserves the 4th-order temporal

accuracy of the Runge—Kutta scheme.

Particles can either be injected at a single point or at several points within the

flow, or the entire flow field can be seeded with a uniform distribution of particles.

Visualization of particles can be performed either by outputting the discrete particle

locations in physical space to a text file, or by plotting the particle concentration using

the Tecplot package as per the image reproduced here. For Tecplot output, a particle

concentration is calculated based on a localised summation of particles subject to a

Gaussian mask about each data point. The variance of the Gaussian mask used varies

based on the local mesh refinement.

 24

Forcing Terms

The Navier-Stokes equations can be augmented with the addition of a variety of forcing

terms, allowing for the modelling of various flows (these modifications are also able to

be used in concert with other modifications, such as the use of the Boussinesq

approximation). These can take the form of either constant forcing terms, defined with

gvar_forcing_f[u,v,w,s], or linear forcing terms, defined with

gvar_forcing_g[u,v,w,s], where the options represent the equation which will

be modified (𝑢-, 𝑣- or 𝑤-velocity component momentum equation, or the scalar field

equation). The linear forcing terms are always linear in the respective component for

the equation (the 𝑢-momentum equation can have a term linear in 𝑢-velocity appended).

The only exception is the hard coded gvar_scalar_uvel_forcing which

appends a term to the scalar equation which is linear in the 𝑢-velocity component. In

either case a coefficient for the term can be specified, which can be a function of all

native or used defined variables in the viper.cfg file, and is zero by default. Some

common examples follow:

For periodic flows (infinite length ducts, channels or boundary layers), the pressure can

be decomposed into a driving background pressure gradient, and a fluctuating

component,

𝑝 = −
2

𝑅𝑒
𝑥 + 𝑝′,

where the coefficient (−2/𝑅𝑒) is unique to the boundary layer problem this example

is from (and which is negative as the pressure gradient decrease in the direction of

increasing flow velocity, which in this case is the positive 𝒆𝑥 direction). Hence, the

momentum equation is rewritten as,

𝜕𝒖

𝜕𝑡
= −(𝒖 ∙ 𝛁)𝒖 − ∇𝑝′ +

2

𝑅𝑒
𝒆𝑥 +

1

𝑅𝑒
∇2𝒖.

The implementation within the configuration file is shown below, nothing that the

forcing must be applied only to the 𝑢-velocity component equation, for a background

pressure gradient in the positive 𝒆𝑥 direction:

gvar_usrvar Re 200 (Reynolds number)

gvar_rkv 'Re'

gvar_forcing_fu '2/Re'

Note that the Reynolds number only represents the reciprocal kinematic viscosity if the

characteristic length and velocity scales are non-dimensionalized to a maximum of 1.

This is highlighted here as the characteristic velocity will likely vary as the simulation

evolves, particularly if shear and other diffusive effects act upon the velocity profile.

Hence, although the original pressure gradient defined is constant, its effect on the flow

will not allow it maintain a constant characteristic velocity. This effect can be quite

large if the effects of buoyancy also modify the velocity field (natural convection). In

such cases, the forceflow command may be preferable, as this adjusts the forcing

such that the flowrate remains constant, and hence the characteristic (reference) velocity

is held constant. If this disparity seems concerning, the flow fields which evolve (both

 25

when varying with time, and when steady state) are very similar, it is just that in one

case the forcing varies and the flow rate is held constant (forceflow) and in the other

the forcing is held constant and the flow rate varies (gvar_forcing_fu).

A common use for the linear (gradient) terms (gvar_forcing_g[u,v,w,s]) are

to represent linear friction (Rayleigh friction) or Coriolis forces. This particular

example refers to the simulation of a magnetohydrodynamic flow, discussed in the

following section, where the effects of Hartmann braking are simulated by linear

friction.

The momentum equation for a quasi-2D magnetohydrodynamic flow (in which the

pressure has not been decomposed, and hence which will be simulated using

forceflow) is:

𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ ∇)𝒖 = −∇𝑝 +

1

𝑅𝑒
∇2𝒖 −

𝐻

𝑅𝑒
𝒖

The final term, with coefficient (−𝐻/𝑅𝑒) for a confined duct flow, represents the linear

friction term. This will be implemented in the configuration file as,

gvar_usrvar Re 200 (Reynolds number)

gvar_usrvar H 100 (Hartmann friction parameter)

gvar_rkv 'Re'

gvar_forcing_Gu '-H/Re'

gvar_forcing_Gv '-H/Re'

In this case two forcing terms are needed (it is a two-dimensional simulation), as the

friction term acts on both the 𝑢- and 𝑣-velocity components, as denoted by 𝒖 = (𝑢, 𝑣).

Even though the reader may yet to be introduced to magnetohydrodynamics, the ease

with which the forcing terms can be implemented shows how broad reaching their

impact can be regarding flow modelling.

A final example considers the additional, hard coded forcing term,

gvar_scalar_uvel_forcing which allows for an additional advection term to

be placed in the scalar advection-diffusion equation (although only in the 𝑥 direction).

This is beneficial when simulating a heat flux distributed along the 𝑥-direction. Note

that an energy balance over a control volume is required to determine the effect of the

thermal gradient along the duct.

The dimensional scalar advection-diffusion equation is written as:

𝜕𝜃

𝜕𝑡̂
+ (𝒖̂ ∙ ∇̂)𝜃 = 𝜅∇̂2𝜃,

where the temperature (similar to the pressure) is decomposed into periodic fluctuation

and a background horizontal thermal gradient,

𝜃 = 𝜃′ + 𝐴𝑥̂,

 26

where the background gradient,

𝐴 =
𝜅(d𝜃 d𝑦̂⁄)

w

𝑄̂
,

will need to be determined for the exact problem based on an energy balance, but should

have a form similar to that provided above. On substitution into the advection term of

the scalar transport equation, their will be two components, the conventional advection

of the fluctuating temperature,

(𝒖̂ ∙ ∇̂)𝜃′

and the advection of the thermal gradient

(𝒖̂ ∙ ∇̂)𝐴𝑥̂ = 𝒖̂𝐴

Hence, after non-dimensionalization, there will be a gradient in temperature which is

advected, or forced, by the 𝑢-velocity component, which requires the use of

gvar_scalar_uvel_forcing. This merely requires the coefficient to be

specified in the configuration file.

Hopefully, the breadth of the uses of the forcing terms has been appropriately described,

as they allow for a wide variety of problems to be modelled.

Magnetohydrodynamics (and the SM82 Model)

The motion of an electrically conducting fluid in the presence of a magnetic field is

considered to be a magnetohydrodynamic problem, which assumes that the velocity and

magnetic fields are coupled. In general, the approximation of a low magnetic Reynolds

number is used to decouple the velocity and magnetic fields, with the magnetic

Reynolds number defined as:

𝑅𝑒𝑚 = 𝜎𝜇𝑢𝐿 =
𝑢𝐿

𝜆
,

where 𝜎 is the electrical conductivity of the fluid, 𝜇 the permissivity of free space, and

𝜆 = (𝜎𝜇)−1 the magnetic diffusivity (𝑢 and 𝐿 are characteristic fluid length and velocity

scales). The magnetic Reynolds number represents the rate of advection of the magnetic

field (if it is frozen into the fluid) to the rate of diffusion of the magnetic field. The

formation of the term, from an order of magnitude analysis of the advection-diffusion

equation of the magnetic field, 𝑩, can be found in Davidson (2001). If the magnetic

Reynolds number is low, the magnetic field is dominated by diffusion, and the velocity

and magnetic field equations are decoupled (the magnetic field influences the velocity

field, but the velocity field does not influence the imposed magnetic field). A full

discussion of the electromagnetic MHD equations, and the full quasi-static

approximation briefly discussed above, can be found in Davidson (2001).

The magnetic field influences the velocity field through the Lorentz force, given

by 𝒋 × 𝑩, where 𝒋 is the current density. This may be induced by the change in magnetic

flux as a material surface of the fluid moves through the magnetic field (from Faraday’s

law of induction), or if it is externally applied by a voltage difference (or both).

Although there are significantly more complexities, the presence of the Lorentz force

is the key difference between MHD and OHD flows. The effect of the Lorentz force is

 27

to reduce velocity differentials (higher velocity fluids have larger current densities), and

creates much thinner boundary layers. These scale based on the Hartmann number,

which is the ratio of the square of the strength of electromagnetic to viscous forces,

𝐻𝑎 = (
𝜎𝐵2𝐿2

𝜌𝜈
)

1/2

where 𝐵 represents the strength of the (imposed) magnetic field. An important

component of the Hartmann number is the magnetic damping time 𝜏−1 = 𝜎𝐵2/𝜌 which

represents the rate at which momentum diffuses along magnetic field lines (see, for

example, Davidson (1995), Sommeria and Moreau (1982), Pothérat (2007)). The

strength of the magnetic field also strongly defines the thickness of the boundary layers,

which on walls perpendicular to the magnetic field scale as 𝐻𝑎−1 and on walls parallel

to the field as 𝐻𝑎−1/2. When considering finite geometries the Hartmann friction

parameter 𝐻 = 𝑛(𝐿2/𝑎2)𝐻𝑎 may be more appropriate, where 𝑛 is the number of walls

perpendicular to the field, 𝑎 the distance between two Hartmann walls and 𝐿 the

characteristic length scale (see Pothérat (2007)).

Finally, an interaction parameter is defined, which represents the ratio of

electromagnetic to inertial forces,

𝑁 =
𝐻𝑎2

𝑅𝑒
.

These three key parameters are of great importance to the validity of the SM82 model

(Sommeria and Moreau (1982)). If diffusion of momentum (along magnetic field lines)

occurs much more rapidly than transfer of momentum due to viscosity, then flow

structures will be elongated along field lines. This requires electromagnetic forces

which are much stronger than both inertia or viscosity, hence 𝑁 ≫ 1 and 𝐻𝑎 ≫ 1. A

𝑅𝑒 ≫ 1 also helps supress velocity variations between transverse planes. Finally, under

the quasi-static approximation (time steady magnetic fields, and 𝑅𝑒𝑚 ≪ 1) the flow

can be assumed to be quasi two-dimensional (averaging the flow along the field lines).

The flow simulated is truly two dimensional, hence to account for the difference (as the

Hartmann boundary layers break the two-dimensionality) an additional linear Hartmann

braking term must be appended to the momentum equation, which takes the form

−
𝐻

𝑅𝑒
𝒖.

This linear friction term (which is formally accurate to the first order in 𝑁) can easily

be simulated using linear forcing terms defined in the viper.cfg file

(gvar_forcing_gu and gvar_forcing_gv).

Quasi-static MHD

Unlike the SM82 model, the quasi-static solver computes the electric potential field,

and hence requires electric potential boundary conditions to be specified. Note that

commands that can output information on other fields (such as the scalar field), are not

necessarily equipped to output information about the electric potential field (hence use

the current command). Furthermore, the quasi-static MHD equations can only

simulate an electric field in one dimension, as noted hereafter (see Appendix A for

derivations, that indicate which magnetic field directions have been hard coded).

 28

The quasi-static equations to be solved are:

𝜕𝒖

𝜕𝑡
= 𝐍(𝒖) − 𝜵𝑝 +

1

𝑅𝑒
∇2𝒖 + 𝑁(𝒋 × 𝒆𝑩)

𝛁 ∙ 𝒖 = 0

where 𝐍(𝒖) = −(𝒖 ∙ 𝛁)𝒖 is the non-linear advection operator, 𝒋 is the induced current

density, 𝑁 the interaction parameter and 𝒆𝑩 is a unit vector in the direction of the

magnetic field. Ohm’s law defines the current density as

𝒋 = −𝜵𝜙 + 𝒖 × 𝒆𝑩

where 𝜙 represents the electric potential field. The MHD approximations (discussed in

Davidson (2001)), require solenoidal (closed loop) currents, hence requiring

𝛁 ∙ 𝒋 = 0 ∴ ∇2𝜙 = 𝛁 ∙ (𝒖 × 𝒆𝑩) ∴ ∇2𝜙 = 𝒆𝑩 ∙ (𝛁 × 𝒖)

where the last modification uses a vector identity and requires a uniform magnetic field.

 Following a similar approach to Karniadakis, Israeli & Orszag (1991), to

integrate from time n to time n+1, the equations are cast at the future time, the time

derivative term is replaced by a backwards differencing relation, and an appropriate-

order extrapolation of the non-linear term to the future time is used. The momentum

equation then becomes

𝛾0𝒖𝑛+1 − ∑ 𝛼𝑞𝒖𝑛−𝑞𝐽𝑖−1
𝑞=0

Δ𝑡

= ∑ 𝛽𝑞𝐍(𝒖𝑛−𝑞)
𝐽𝑒−1

𝑞=0
− 𝛁𝑝𝑛+1 +

1

𝑅𝑒
∇2𝒖𝑛+1 + 𝑁(𝒋𝑛+1 × 𝒆𝐵).

The same coefficients are used for time integration as the velocity field. The solution

of the momentum equation is divided into three sub-steps, almost identically to the

integration of the velocity field, although with additional terms present:

𝒖∗ − ∑ 𝛼𝑞𝒖𝑛−𝑞𝐽𝑖−1
𝑞=0

Δ𝑡
= ∑ 𝛽𝑞𝐍(𝒖𝑛−𝑞)

𝐽𝑒−1

𝑞=0
+ 𝑁(𝒋𝑛+1 × 𝒆𝐵),

𝒖∗∗ − 𝒖∗

Δ𝑡
= −𝛁𝑝𝑛+1,

𝛾0𝒖𝑛+1 − 𝒖∗∗

Δ𝑡
=

1

𝑅𝑒
∇2𝒖𝑛+1.

Poisson equations are solved for the electric potential field and the pressure. The

sequence of calculations is therefore:

1. Extrapolate velocity field to n+1 time:

𝒖̃𝑛+1 = ∑ 𝛽𝑞𝒖𝑛−𝑞
𝐽𝑒−1

𝑞=0
,

 29

2. Obtain electric potential field from solution of Poisson equation (note the

electric potential field boundary conditions are imposed during this calculation):

∇2𝜙̃𝑛+1 = 𝛁 ∙ (𝒖̃𝑛+1 × 𝒆𝐵),

3. Calculate current density:

𝒋̃𝑛+1 = − 𝛁𝜙̃𝑛+1 + 𝒖̃𝑛+1 × 𝒆𝐵,

4. Evaluate first intermediate velocity field:

𝒖∗ = ∑ 𝛼𝑞𝒖𝑛−𝑞
𝐽𝑖−1

𝑞=0
+ Δ𝑡(𝐍(𝒖̃𝑛+1) + 𝑁(𝒋̃𝑛+1 × 𝒆𝐵)),

5. Obtain pressure from solution of Poisson equation (this is constructed by taking

the divergence of the pressure sub-step, and enforcing the divergence-free

constraint on the second intermediate velocity field; the pressure boundary

conditions are imposed during this calculation):

 ∇2𝑝𝑛+1 = (𝛁 ∙ 𝒖∗) Δ𝑡⁄ ,

6. Evaluate third intermediate velocity field:

𝒖∗∗ = 𝒖∗ − Δ𝑡𝛁𝑝𝑛+1,

7. Obtain the final velocity field from the Helmholtz equations (the velocity

boundary conditions are imposed during this calculation):

∇2𝒖𝑛+1 −
𝛾0𝑅𝑒

Δ𝑡
𝒖𝑛+1 = −

𝑅𝑒

Δ𝑡
𝒖∗∗.

Viper Solvers

Viper provides several solvers for computing a range of fluid flow problems. To

compute flow in two-dimensional domains (either in Cartesian or cylindrical coordinate

systems, computations are performed on a two-dimensional mesh comprising

quadrilateral (four-sided) spectral elements. The stability of two-dimensional flows to

three-dimensional instability modes can be determined by means of the global linear

stability analysis capabilities of the code. In these computations, the base flow, and

individual Fourier modes of three-dimensional perturbation fields are each computed

on a two-dimensional mesh.

Three-dimensional computations may be performed either using hexahedral

(six-faced) spectral elements for general geometries, or a Fourier expansion of a two-

dimensional domain for geometries which have a symmetry in the out-of-plane

direction (either 𝑧 for Cartesian or 𝜃 for cylindrical coordinate system computations).

Running Simulations in Parallel

Viper is parallelized using the Message Passing Interface (MPI). With MPI, separate

copies of the program are run on each processor, with each being allocated its own

block of memory. MPI supplies routines that facilitate communication of data between

each processor, synchronization, etc.

Speedup is a measure of the benefit available from parallel computing, and is

defined as a ratio of the time taken to run a simulation over a single processor to the

 30

time taken to run the same simulation over multiple processors. Optimal speedup would

equal the number of available processors, though unfortunately there are practical

limitations to how much speedup is available in real computations. There is an

increasing memory overhead due to duplication of data structures (mesh connectivity,

derivative matrices, etc.) on each MPI process. There is also time lost when processes

sit idle waiting for others to reach a collective MPI communication routine, as well as

for the communications between processes. To gain a good benefit from parallel

computing, the amount of work to be done in parallel must be significant to overcome

the performance degradation due this overhead.

To gain the most benefit from parallel computations, care is required to ensure

that an appropriate number of MPI processes are used. For instance, if a simulation

contains 5 flow fields, and the user chooses to run the simulation over two MPI

processes, then one process will compute two fields and sit idle while the other process

carries out the necessary calculations for its third field. In terms of speedup, this means

that even if the computation was ideal (no overhead), the maximum available speedup

would be 5/3 = 1.667, not 2 as may have been hoped. Avoiding idle MPI processes is

the only technique available for end-users to maximise their speedup and efficiency in

parallel computations using Viper. The sections below provide advice on how to best

select the number of MPI processes for their computations.

Parallel base flow simulations

Viper is written to parallelize simulations by distributing multiple fields across multiple

processes. Single-field computations (i.e. two-dimensional quadrilateral and three-

dimensional hexahedral simulations) obtain no speedup if run across multiple

processes; these simulations are most efficiently carried out on a single processor.

Parallel linear stability and optimal growth analysis computations

These simulations require the simultaneous computation of a two-dimensional base

flow field and one or more perturbation fields. Each individual perturbation field must

be evolved iteratively over a specified time interval. The total compute time required

for a single field is problem and parameter dependent, but typically varies between tens

to hundreds of hours. There is a one-way coupling only in this algorithm, where the

perturbation fields depend on the base flow velocity fields from previous time steps,

but not vice versa. Hence, the master process evolving a base flow solution is required

to communicate this solution via a single MPI_BCAST communication at every time

step to the processes on which the perturbation fields are being evolved. This algorithm

therefore exhibits a strong parallel scalability.

It is possible to acquire, in a single large parallel job, a comprehensive spectrum

of instability growth rates as a function of perturbation wavenumber. Further efficiency

gains are possible where available RAM permits by clustering multiple perturbation

fields onto each MPI process; this reduces the message-passing overhead and improves

the efficiency of the project-wide utilisation of resources. A short time integration test

depicts the scalability of this algorithm. The reference case involved time integration

of a base flow and 1 or more perturbation fields evolved on a single processor, and the

compute time was compared with that from a set of simulations where the job was

distributed across multiple processors. The figure below plots the resulting compute

time, demonstrating a negligible increase in compute time in the distributed case from

1 to 4 fields (processors), an approximately 30% increase in time between 4 and 16

fields (processors), and constant compute time from 16 to beyond 1000 fields

(processors). To compare, the times from the 1-CPU reference case divided by the

 31

number of fields (processors) are also plotted. Memory restrictions limited this

reference case to 64 fields.

Time integration of a two-dimensional base flow on MPI process 0 plus nProcs-1 test cases over

processes 1 to nProcs-1. The compute time for this test case is denoted by the blue unbroken line, while

for reference the average time per field from 1-CPU simulations are plotted with the black dashed line.

Therefore, a significant performance gain can be achieved by running these simulations

in parallel, with the computation of the required fields being shared between available

processors. The total number of time integration solutions required at each time step is

𝑁𝑝 + 1, where 𝑁𝑝 is the number of active perturbation fields (as we also need to evolve

the base flow1).

The maximum number of MPI processes that should be used when computing

linear stability analysis computations is 𝑁𝑝 + 1. To avoid idle MPI processes, users

should compute with either this number of MPI processes, or whole factors of this

number. For example, if a linear stability analysis computation was analysing 7

perturbation fields, then the total number of fields being computed is 8, and

computations should employ 8, 4, 2, or 1 MPI process. Less efficient speedup would

be achieved for computations using 7, 6, 5, or 3 MPI processes.

Parallel spectral-element/Fourier computations

The spectral-element/Fourier algorithm computes a three-dimensional solution where a

Fourier series represents the variation in the flow in the out-of-plane direction. MPI is

therefore useful for the efficient parallel computation of three-dimensional flows in

domains with geometric homogeneity in one dimension.

This algorithm predominantly evolves the flow in Fourier space (pressure and

diffusion substeps), permitting much of the work at every time step to be conducted in

isolation on Fourier modes distributed across MPI processes. However, within each

time step, the flow must be transformed back to physical space for calculation of a

nonlinear advection term, before being transformed back to Fourier space. This is

accomplished via a pair of MPI_ALLTOALLV() calls bracketing inverse and forward

Discrete Fourier transforms. This erodes the scalability of the routine when compared

to the more lightly coupled linearised solver.

1 Note that if users are performing stability analysis on a frozen base flow (using the freeze

command), then there are effectively only 𝑁𝑝 fields to be computed to complete each time step.

 32

A short time-evolution test of a representative 3D flow simulations containing

between 2 and 256 Fourier modes distributed over the same number of processors.

Figure 2 shows that the compute time increases 1.89 times from the 2-field/2-processor

case to the 256-field/256-processor case. The reference case computed on a single

processor demonstrates a consistent average compute time up to the maximum 64 fields

that could be accommodated in a single-CPU job. The code facilitates further efficiency

gains where RAM limitations permit by clustering multiple Fourier modes onto each

MPI process, which further reduces the message-passing overhead.

Time integration of a three-dimensional flow computed with between 2 and 256 Fourier modes

distributed across the same number of processors. The compute time for this test case is denoted by the

blue unbroken line, while for reference the average time per field from 1-CPU simulations are plotted

with the black dashed line.

Dividing the compute times for the distributed cases by the corresponding times

for the 1-CPU cases provides a measure of the speedup obtained by parallelisation. The

figure below shows the measured speedups up to the available 64 processors for the

aforementioned linearised solver and spectral element-Fourier 3D solver. Power law

fits to the data demonstrate that the speedups scale with the -0.873rd and -0.862nd power

of the number of processors, respectively. An ideal (linear) speedup would scale with

the -1 power.

Speedup plotted against number of processors for the linearised (blue) and Fourier 3D (red) solvers

described earlier. Power law fits to the data are shown on the figure.

 33

Spectral-element/Fourier computations are initialised using the fourier

command, and the number of Fourier planes is specified at this time. The number of

Fourier planes corresponds to the number of sample points in the Discrete Fourier

Transform. Any number of planes greater than 2 is permitted. Viper uses the Discrete

Fourier Transform code supplied with the Intel Math Kernel Library, so users are not

restricted to numbers of planes in powers of two. Due to the conjugate symmetry

property of discrete Fourier transforms of real data (no imaginary component), the

negative frequency modes need not be explicitly computed. With a number of planes

Nf, the number of Fourier modes being computed is Nf /2 + 1, where integer division is

used (round down to the nearest whole number). For example, if a user wishes to

compute a spectral-element/Fourier computation with 31 planes, this corresponds to 16

modes, and therefore simulations would best be performed on 16, 8, 4, 2, or 1 MPI

process. As with linear stability analysis calculations, poorer performance will result if

the number of MPI processes was not a factor of 16.

Running Viper

While the Viper executable can run on a single processor directly, to run an MPI job

across multiple processors, users must use the command “mpirun”. For example, to

execute Viper over 4 processors, the following command would be called:

mpirun –n 4 ../viper.x < macro.txt > output.txt

Here mpirun is used to distribute the program viper.x (which here is located in

the parent directory (../) over 4 processors (specified with the option –n 4), with

input taken from the text file macro.txt, and output being written to output.txt.

If the command mpirun is not recognized under your NCI login, you will need to load

the relevant module. Users should add a statement similar to the following statement

to their .login file in their home directory:

module load openmpi/1.8.8

(or)
module load openmpi/1.10.7-mlx

The exact modules necessary for using Viper are detailed in the Login Setup section of

Chapter 5, based on the system on which they are running Viper. Contact either A/Prof.

Gregory Sheard, or the appropriate system administrators, for assistance in which

current openMPI modules should be loaded. Note that there is currently no Windows

version of Viper available.

Getting the most out of Viper

The parallelization of Viper is implemented to scale up both the simulation of linearized

perturbation fields (such as for linear stability analysis, Floquet stability analysis, and

transient growth analysis), and the spectral element-Fourier 3D solver. In each case,

perturbation fields or Fourier modes are distributed over the available processors.

 34

Viper is designed to handle jobs where the number of fields or Fourier modes

does not match the number of processors, but to get the most out of a parallel run, jobs

would ideally have the same number of fields assigned to each processor (so each is

doing a similar amount of work). Therefore, the number of fields should be set to be

an integer multiple of the number of processors.

For linear stability analysis, the total number of fields is 1 + the number of

perturbation fields (don’t forget the base flow!), while for spectral-element-Fourier

3D runs, the number of fields is equal to the specified number of Fourier modes (set

using the “-k” option in the fourier command).

Be aware that there is a communication overhead in MPI jobs due to the time

taken to communicate data between processors, which could be significant for high-

resolution Viper runs with a large number of fields. Therefore, users may not

necessarily find that the fastest execution time will occur when the maximum number

of processors (i.e. equal to the number of fields) is employed. Users are encouraged to

experiment with the number of processors for their specific jobs to determine the most

efficient setup.

 35

Chapter 3: Pre-Processing
To conduct a CFD computation, some pre-processing is usually required. For

simulations performed using Viper, the pre-processing phase entails the construction of

meshes using a mesh generation package, and if necessary, converting these meshes

into a format accepted by Viper.

Accepted Mesh Formats

Viper currently accepts conforming meshes comprising quadrilateral (4-sided) or

hexahedral (6-faced) elements. Quadrilateral meshes are employed for two-

dimensional, axisymmetric, or three-dimensional spectral-element/Fourier

computations. Hexahedral meshes are employed for three-dimensional computations

in general geometries. Conforming meshes require that adjacent elements meet edge-

to-edge or face-to-face.

The format for mesh files used by Viper is a text-based format which first lists

the vertex coordinates, and then describes the elements, their connectivity, and the

boundary numbers of each edge/face. The following outlines the required mesh format:

Nvert

x1, y1, [z1,] 1

x2, y2, [z2,] 2

:

:

xNvert, yNvert, [zNvert,] Nvert

Nelem

1, N1, N2, N3, N4, [N5, N6, N7, N8,] B1, B2, B3, B4,

[B5, B6,] 1

2, N1,...,N4/N8 (2D/3D), B1,...,B4/B6 (2D/3D), 1

:

:

Nelem, <Vertex numbers of element corners>, <Boundary

numbers of element edges>, Region

The following definitions apply:

 Nvert Number of mesh vertices

 Nelem Number of mesh elements

 Region Fluid region (currently not used)

 xn, yn, zn Spatial (x, y, z) coordinates of mesh vertices

 N1-N8 Ordered numbering of vertices at element corners

 B1-B6 Ordered numbering of boundaries on element edges/faces

 36

The numbering convention employed when constructing elements from mesh vertices

is outlined below for quadrilateral (left) and hexahedral (right) elements. The

corresponding numbering of boundary edges/faces is also shown.

An example mesh file is shown below:

e.g.

441

 -5.000000000000000000E-01 4.000000000000000000E+00 1

 -4.956479999999999775E-01 4.000000000000000000E+00 2

 -4.885530000000000150E-01 4.000000000000000000E+00 3

 -4.770739999999999981E-01 4.000000000000000000E+00 4

 -4.587140000000000106E-01 4.000000000000000000E+00 5

 -4.298960000000000004E-01 4.000000000000000000E+00 6

.........

 4.885530000000000150E-01 5.000000000000000000E+00 439

 4.956479999999999775E-01 5.000000000000000000E+00 440

 5.000000000000000000E-01 5.000000000000000000E+00 441

400

1 1 2 23 22 3 0 0 4 1

2 2 3 24 23 3 0 0 0 1

........

397 416 417 438 437 0 0 1 0 1

398 417 418 439 438 0 0 1 0 1

399 418 419 440 439 0 0 1 0 1

400 419 420 441 440 0 2 1 0 1

The first row defines how many nodes there are, in this case 441. Each row thereafter

defines the x and y coordinates of each node, and its corresponding number. After the

location of each of the 441 nodes has been defined, then define how many elements

there are, in this case 400. The next rows then define the information about each element

(although the element number is now in the first column, rather than the last column as

for nodes).

 37

The first number (1) is the element number, the second number is the bottom

left corner of the element specified by node number (1), then the bottom right node (2),

then the top right node (23), then the top left node (22). This counter-clockwise order

must always be used. The next four numbers are used to specify the btag values

interpreted by the viper.cfg file. Hence, for the element boundary between the

bottom left and right nodes (1 and 2), a btag number of 3 is assigned. Then nothing

for the right side and top sides of the element (specified by a zero number), then a btag

number of 4 is assigned to the left hand side of the element (between nodes 22 and 1).

This goes on for each element, where the last element (400), has a bottom left corner of

node (419), a bottom right corner of node (420), a top right corner node of (441) and a

top left corner node of (440). It also has a btag of 2 assigned to the right side (between

nodes 420 and 441), and a btag of 1 assigned to the top side (between nodes 441 and

440). The number in last column number is redundant (the 1 at the end of each row).

However, it must still be specified (i.e. a 1 must be here for every element).

Note that regardless if the mesh is converted from a Gambit file, it is likely that

the mesh file will contain CRLF line headers. These will need to be removed using

dos2unix <mesh_file> (including extension) on the mesh file, when operating

on a linux system.

Converting from Gambit

The Gambit mesh generation package can be used to generate meshes for use in Viper.

Conversion utilities available from The Sheard Lab website (http://sheardlab.org/)

convert Gambit mesh files exported in the FIDAP format (.FDNEUT files) to the Viper

text-based mesh format.

From Gambit, the conversion process is as follows:

1. Create a mesh comprising either quadrilateral (4-sided 2D) or hexahedral (6-

faced 3D brick) elements.

2. Set the Solver type to FIDAP

3. Define boundary conditions, using different names for each uniquely numbered

boundary.

4. Save mesh: Select FILE → EXPORT → MESH to save mesh with .FDNEUT

extension.

5. Exit Gambit.

6. Rename file to default mesh_in.FDNEUT for conversion.

7. Invoke the appropriate conversion tool (2D or 3D).

8. A new text file is created containing mesh information readable by Viper.

 39

Chapter 4: Configuring Simulations
Prior to running a simulation, a configuration file must be created to provide Viper with

the necessary information to establish and solve the flow correctly. This information

must be contained in a text file named viper.cfg, which should be located in the

directory in which Viper is invoked (where the queue script is).

The viper.cfg file contains the following information:

 Location of the mesh file,

 Values for simulation parameters (e.g., dt, RKV, N),

 User-defined functions,

 Initial and boundary conditions.

The commands used to supply these details to Viper are described in the following

section.

Note that most commands in which a floating point value was specified are now capable

of accepting either previously user defined variables, or a mathematical function, of

either global or user variable type. If a command still only accepts floating point values,

please contact Dr. Gregory Sheard such that this can be updated to the new convention.

Commands recognised in the viper.cfg file

btag

Syntax: btag <tag_num> <var> <boundary_type_ID>

[<param1> <param2> <param3>]

Function: Defines the condition to be imposed on a particular boundary.

Description:

The btag command is used to link boundary tag numbers in the mesh file

<tag_num> with a type of boundary (defined by an ID number

<boundary_type_ID> recognised by Viper. Currently, Viper accepts the

following boundary ID numbers:

1. Constant Dirichlet boundary (values of components of flow variables are given

by <params>).

2. Static user-defined Dirichlet boundary (components are expressed as

mathematical expressions that are functions of spatial coordinates x, y, z, and

the reciprocal kinematic viscosity, RKV).

3. Transient user-defined Dirichlet boundary (components are again expressed as

mathematical expressions, which here can also be functions of time, t).

4. Periodic boundaries (x-direction only). This boundary requires boundary

edges/faces to be identical on a pair of periodic boundaries.

5. Symmetry boundary (no velocity normal to the boundary, and zero shear stress

along the boundary – this condition is inexactly imposed at the conclusion of

each time step).

Viper permits the separate prescription of velocity, pressure, scalar and electric

potential field boundary conditions on a boundary through the <var> string, which can

be set to “vel”, “p” “s” or “e” (case insensitive), for velocity, pressure, the scalar

field (often temperature) and the electric potential field, respectively.

 40

In addition, if <var> takes the value “s”, then a scalar field will automatically be

initialized, which will then be computed using a backwards-differentiation advection-

diffusion scheme similar to that used for the velocity field. Users should also then

specify the coefficient of scalar diffusion using gvar_scalar_diff.

Note that velocity boundary conditions can alternatively be specified per component,

by setting <var> to u, v, or w. This is useful for prescribing exact stress-free boundary

conditions on horizontal or vertical boundaries (by setting the normal velocity

component to a zero Dirichlet condition, and the tangential component(s) to zero

Neumann condition(s); a zero Neumann condition is the natural default if no explicit

boundary condition is specified.

Note that a positive value specified for a Neumann boundary conditions refers to

an outward normal vector.

The following are examples of the use of btag:

e.g. 1:

\> btag 5 vel 3 ‘x*cos(t)’ ‘2.0’ ‘3.0’

Specifies that boundary number 5 (in the mesh file) will be prescribed a transient user-

defined Dirichlet velocity condition with velocity components 𝑢 = 𝑥 𝑐𝑜𝑠(𝑡),

𝑣 = 2.0, and 𝑤 = 3.0.

e.g. 2:

\> btag 4 p 1 0.5

Specifies that boundary number 4 will be prescribed a fixed Dirichlet pressure condition

with 𝑝 = 0.5 on the boundary.

e.g. 3:

\> btag 5 u 1 ‘0.0’

Specifies that boundary number 5 will be prescribed a fixed Dirichlet velocity condition

with 𝑢 = 0.0 on the boundary.

e.g. 4:

\> btag 3 w 2 ‘0.0’

Specifies that the out-of-plane velocity component on boundary number 3 will be

prescribed a Neumann velocity condition with a gradient value of 0.0.

e.g. 5:

\> btag 4 p 2 0.5

Specifies that boundary number 4 will be prescribed a Neumann condition with an

outward normal gradient of the pressure field, having a value of 𝑑𝑝/𝑑𝑛 = 0.5 at the

boundary.

 41

e.g. 6:

\> btag 2 s 4

Specifies that boundary number 2 will be prescribed a periodic condition, whereby the

values of the scalar field at this boundary will be equal to values at a corresponding

boundary with identical element distribution in y (and z if 3D).

gvar_curve

Syntax: gvar_curve <bndry>

Function: Specifies a boundary number on which to apply automated

boundary curvature.

Description:

The domain boundary number <bndry> corresponds to the boundary number as

defined in the btag statements in the viper.cfg file. Continuous blended curves

comprising circular arcs are constructed along edges corresponding to boundary

number <bndry>. Continuous curvature is not enforced for adjacent edges on a single

element to avoid illegal element mappings. In 3D, an edge-curvature-preserving

interpolation is applied to generate the curved surface on each boundary face.

gvar_dt

Syntax: gvar_dt <value>

Function: Sets the time step Δt.

Description:

The time step Δ𝑡 is set to <value>, where <value> must be greater than 0.0,

otherwise the default value 𝛥𝑡 = 0.005 is used instead.

gvar_forcing_fu

Syntax: gvar_forcing_fu <function>

Function: Add a forcing term to the u-velocity momentum equation.

Description:

This command adds a forcing term of the form +𝐹 to the u-component of the Navier-

Stokes momentum equations. The forcing term 𝐹 (<function>) may be a constant,

a function of time only, a spatially varying steady-state function, or a time-dependent

spatially varying function, and in each case may be expressed in terms of user-defined

variables (gvar_usrvar) in addition to t, x, y, z and RKV.

Note: By default, the forcing term is zero.

 42

e.g.:

\> gvar_forcing_fu ‘x-y+t-3.47’

gvar_forcing_fv

Syntax: gvar_forcing_fv <function>

Function: Add a forcing term to the v-velocity momentum equation.

Description:

This command adds a forcing term of the form +𝐹 to the v-component of the Navier-

Stokes momentum equations. The forcing term 𝐹 (<function>) may be a constant,

a function of time only, a spatially varying steady-state function, or a time-dependent

spatially varying function, and in each case may be expressed in terms of user-defined

variables (gvar_usrvar) in addition to t, x, y, z and RKV.

Note: By default, the forcing term is zero.
e.g.:

\> gvar_forcing_fv ‘x-y+t-3.47’

gvar_forcing_fw

Syntax: gvar_forcing_fw <function>

Function: Add a forcing term to the w-velocity momentum equation.

Description:

This command adds a forcing term of the form +𝐹 to the w-component of the Navier-

Stokes momentum equations. The forcing term 𝐹 (<function>) may be a constant,

a function of time only, a spatially varying steady-state function, or a time-dependent

spatially varying function, and in each case may be expressed in terms of user-defined

variables (gvar_usrvar) in addition to t, x, y, z and RKV.

Note: By default, the forcing term is zero.
e.g.:

\> gvar_forcing_fw ‘x-y+t-3.47’

gvar_forcing_fs

Syntax: gvar_forcing_fs <function>

Function: Add a forcing term to the scalar advection-diffusion equation.

Description:

This command adds a forcing term of the form +𝐹 to the u-component of the scalar

advection-diffusion equation. The forcing term 𝐹 (<function>) may be a constant,

a function of time only, a spatially varying steady-state function, or a time-dependent

spatially varying function, and in each case may be expressed in terms of user-defined

variables (gvar_usrvar) in addition to t, x, y, z and RKV.

Note: By default, the forcing term is zero.
e.g.:

\> gvar_forcing_fs ‘x-y+t-3.47’

 43

gvar_forcing_gu

Syntax: gvar_forcing_gu <function>

Function: Add a linear forcing term to the u-velocity momentum equation.

Description:

This command adds a forcing term of the form +𝐺𝑢 to the solver, where 𝐺 is a function

defined using this command, and 𝑢 is the u-velocity component to the u-component of

the Navier-Stokes momentum equations (e.g.
𝑑𝑢

𝑑𝑡
= ⋯ + 𝐺𝑢). The forcing term 𝐺

(<function>) may be a constant, a function of time only, a spatially varying steady-

state function, or a time-dependent spatially varying function, and in each case may be

expressed in terms of user-defined variables (gvar_usrvar) in addition to t, x, y, z

and RKV.

Note: By default, the forcing term is zero.
e.g.:

\> gvar_forcing_gu ‘x-y+t-3.47’

gvar_forcing_gv

Syntax: gvar_forcing_gv <function>

Function: Add a linear forcing term to the u-velocity momentum equation.

Description:

This command adds a forcing term of the form +𝐺𝑣 to the solver, where 𝐺 is a function

defined using this command, and 𝑣 is the v-velocity component, to the v-component of

the Navier-Stokes momentum equations (e.g.
𝑑𝑣

𝑑𝑡
= ⋯ + 𝐺𝑣). The forcing term 𝐺

(<function>) may be a constant, a function of time only, a spatially varying steady-

state function, or a time-dependent spatially varying function, and in each case may be

expressed in terms of user-defined variables (gvar_usrvar) in addition to t, x, y, z

and RKV.

Note: By default, the forcing term is zero.
e.g.:

\> gvar_forcing_gv ‘x-y+t-3.47’

gvar_forcing_gw

Syntax: gvar_forcing_gw <function>

Function: Add a linear forcing term to the u-velocity momentum equation.

Description:

This command adds a forcing term of the form +𝐺𝑤 to the solver, where 𝐺 is a function

defined using this command, and 𝑤 is the w-velocity component, to the w-component

of the Navier-Stokes momentum equations (e.g.
𝑑𝑤

𝑑𝑡
= ⋯ + 𝐺𝑤). The forcing term 𝐺

(<function>) may be a constant, a function of time only, a spatially varying steady-

state function, or a time-dependent spatially varying function, and in each case may be

expressed in terms of user-defined variables (gvar_usrvar) in addition to t, x, y, z

and RKV.

Note: By default, the forcing term is zero.

 44

e.g.:

\> gvar_forcing_gw ‘x-y+t-3.47’

gvar_forcing_gs

Syntax: gvar_forcing_gs <function>

Function: Add a linear forcing term to the u-velocity momentum equation.

Description:

This command adds a forcing term of the form +𝐺𝑠 to the solver, where 𝐺 is a function

defined using this command, and 𝑠 is the scalar variable, to the scalar advection-

diffusion equation (e.g.
𝑑𝑠

𝑑𝑡
= ⋯ + 𝐺𝑠). The forcing term 𝐺 (<function>) may be a

constant, a function of time only, a spatially varying steady-state function, or a time-

dependent spatially varying function, and in each case may be expressed in terms of

user-defined variables (gvar_usrvar) in addition to t, x, y, z and RKV.

Note: By default, the forcing term is zero.
e.g.:

\> gvar_forcing_gs ‘x-y+t-3.47’

gvar_init_field

Syntax: gvar_init_field <u_fn> <v_fn> <w_fn> <p_fn>

Function: Sets an initial velocity/pressure field for a simulation.

Description:

Viper solves the time-dependent Navier—Stokes equations forward in time from some

initial condition, subject to imposed boundary conditions. If no initial velocity field is

set, Viper begins computing from a zero interior velocity field. This facility allows

user-specified functions for the velocity fields to be specified, which can, in some cases,

make simulations more stable or more efficient, by permitting an improved “first guess”

of the velocity field to be used.

If the user subsequently calls load to load a velocity field from a saved file, then that

velocity field is used to begin the computation, rather than what is specified by

gvar_init_field.

Functions <u_fn>, <v_fn>, <w_fn> and <p_fn> are input for each of the

velocity components u, v and w, and the kinematic static pressure p. These functions

accept variables time t, spatial coordinates x, y, and z, and the reciprocal kinematic

viscosity RKV. In two dimensions, z is assumed to be zero.

gvar_init_scalar_field

Syntax: gvar_init_scalar_field <s_fn>

Function: Sets an initial scalar field for a simulation

Description:

If the user subsequently calls load to load a velocity field from a saved file, then that

velocity field is used to begin the computation, rather than what is specified by

gvar_init_field.

 45

A function <s_fn> is input for the initial scalar field distribution at the

beginning of the computation. This functions accept variables time t, spatial

coordinates x, y, and z, and the reciprocal kinematic viscosity RKV. In two dimensions,

z is assumed to be zero.

gvar_kink

Syntax: gvar_kink <elem> <vertex>

Function: Specifies a node at which to allow a curvature discontinuity on a

boundary in 2D.
Description

A kink, or a discontinuity in curvature, is permitted at the mesh node corresponding to

element <elem> and vertex <vertex> in 2D. <elem> must be a positive integer,

which is set to the largest element number if <elem> is greater than the number of

elements, and <vertex> is a positive integer between 1 and 4. This feature is used to

avoid attempts by the automated curvature algorithm in Viper to create unrealistic

curvature, such as a rounded curve or around a sharp corner. An example of this is the

sharp trailing edge of an aerofoil.

gvar_mhd_coeff

Syntax: gvar_mhd_coeff <coeff>

Function: Sets the prefactor for the quasi-static MHD term in the momentum

equation.
Description

The coefficient <coeff> must be a real non-negative value. For more information on

the quasi-static solver, refer to Chaper 2: Quasi-Static MHD, or the command mhd.

gvar_movref

Syntax: gvar_movref <u> [<v> <w>]

Function: Specifies time-varying functions for the velocity of a moving

reference frame.

Description:

The user inputs time-varying functions for the velocity of a moving reference frame.

Functions can include variables time t, reciprocal kinematic viscosity RKV, and any

previously defined user-specified functions. At least one function (for the u-velocity)

must be supplied. Functions for v and w components are optional.

If this command is included in the viper.cfg file, this facility adjusts the velocity

fields at each time step to accommodate a time-varying moving reference frame. The

sign convention is such that if the user wishes for the velocities within the

computational domain to be adjusted to match a time-varying boundary condition, both

should be specified with the same sign.

 46

gvar_n

Syntax: gvar_n <value>

Function: Sets the element polynomial degree 𝑵 (p-resolution).

Description:

The element polynomial degree 𝑁 is set to an integer <value>, where <value> must

be equal to, or greater than, 𝑁 = 2. The default value is 𝑁 = 4. In 2D and 3D, the

number of nodes per element is 𝑁2 and 𝑁3, respectively. The maximum allowable

polynomial degree is restricted only by system resources. Increasing this value

improves spatial resolution of computations on a mesh, though users should note that

this incurs costs due to larger and slower calculations, and less stable calculations,

requiring a smaller time step. However, discontinuities will not necessarily be more

accurately modelled by higher polynomial orders. Furthermore, very high polynomial

orders (say greater than 20) may cause issues with modelling the advection operator,

which is effectively of order 𝑁(𝑁 − 1). Increasing the spatial resolution, or the use of

a controlling factor, such as spectral vanishing viscosity (see svv) may be needed if

divergence in simulations is noticed at very high polynomial orders.

gvar_rkv

Syntax: gvar_rkv <value>

Function: Sets the reciprocal kinematic viscosity RKV.

Description:

The reciprocal kinematic viscosity parameter RKV is set to <value>. If the simulation

imposes a unit reference velocity, and employs a mesh with a unit reference length, then

the Reynolds number of the simulation is equal to the value of the RKV parameter. The

default value is 10.0.

gvar_scalar_diff

Syntax: gvar_scalar_diff <coeff>

Function: Sets the diffusion coefficient for transport of a scalar field.

Description:

The parameter <coeff> specifies the coefficient of diffusion for the advective-

diffusive transport of a passive scalar field on a fluid flow. The scalar field S is

integrated using an auxiliary semi-Lagrangian advection-diffusion algorithm (e.g., see

Maday, Patera & Rønquist, J. Sci. Comp., 5(4), 263-292, 1990).

gvar_scalar_uvel_forcing

Syntax: gvar_scalar_uvel_forcing <coeff>

Function: Sets a scalar forcing multiplied by the u-velocity.

Description:

This command adds a forcing term to the scalar advection- diffusion equation,

multiplied by the x-direction (Cartesian) / axial z-direction (cylindrical) velocity

component. The forcing term takes the form −<coeff> ∗ 𝑢, which is appended to the

scalar advection- diffusion equation (e.g.
𝑑𝑠

𝑑𝑡
= ⋯ −<coeff> ∗ 𝑢). The real parameter

<coeff> (which can be specified as a function of user-defined variables) is the

 47

prefactor of this term. Its sign is such that a positive (left-to-right) u-velocity and a

positive-valued coefficient will lead to a decrease in the scalar field.

Note: This function is currently only implemented in 2D.

gvar_usrvar

Syntax: gvar_usrvar <var_name> <var_function>

Function: Defines a user-defined variable as a function.

Description:

The function is a mathematical expression, which can be a function of time t, spatial

coordinates x, y, z, the reciprocal kinematic viscosity RKV, plus any previously created

user-defined variables. A character string is required for each of the <var_name> and

<var_function> parameters. <var_name> is the name of the new variable, which

cannot be the same as an existing or previously defined user-specified variable, and

<var_function> is a string specifying the function evaluated when <var_name>

appears in subsequent functions, that appear in either viper.cfg or macro.txt

files.

mesh_file

Syntax: mesh_file <filename>

Function: Defines the macro-element distribution.

Description:

The mesh_file contains the node coordinates and macro-element information,

before the interpolating polynomials are applied. It should be a data file (.msh) which

is commonly converted from an .FDNEUT file. The macro-elements can be observed

using tecplot by calling tecp with a polynomial order of 𝑁 = 2. Any other polynomial

order will then display the locations of the interpolating nodes. The format of the mesh

file is described in Chapter 3, Accepted Mesh Formats, noting that all nodes and

elements should be unique.

 49

Chapter 5: Running Simulations
Once a suitable configuration file is established to define the problem to be solved,

Viper is relatively easy to use. Instructions can either be input interactively by the user,

or supplied to the code in a macro file. While Viper executables exist for use under a

Windows operating system as well as Linux platforms, it is a command-line

application: there is no Graphical User Interface (GUI).

When invoked, Viper automatically seeks the configuration file viper.cfg,

and if not found, it prompts the user for a file containing appropriate configuration

instructions. Once a suitable file is located, Viper then proceeds to process the contents

of the configuration file, during which the mesh data is input, boundary and initial

conditions are established, and various mapping and indexing arrays are generated.

These processes are accompanied by output printed to the screen, which should

be checked carefully if the process fails, or the subsequent simulation produces

undesirable or unexpected results.

Finally, the user is instructed on how to activate the help utility, which can be

used to find out what commands are available, and give detailed instructions on their

usage. An example of screen output upon launching Viper is shown below.

An example of the screen output after Viper is launched: the configuration file viper.cfg has

successfully been located and processed, and Viper awaits input from the user.

 50

This chapter describes a number the tasks and features that can be employed when using

Viper.

Saving and Loading flow field data using restart files

Sometimes a simulation has not finished before a user needs to end their session at a

terminal, and sometimes hardware faults or divergence within a computation can cause

a simulation to fail, potentially losing hours of valuable work. Viper facilitates a buffer

against these potential calamities by allowing the user to save the computed flow fields

at instants in time to restart files. This is implemented with the save and load

commands.

The save command can be used at the end of, or many times during, a

simulation, to store the velocity fields for a possible restart of the computation in a later

session. At the beginning of a subsequent Viper session, the load command can be

used to read in the saved velocity fields, allowing the simulation to proceed from where

it was saved.

Restart files are also useful in allowing the user to initiate a computation from

a saved solution, but run it at a different parameter (such as the Reynolds number).

Using Macros and Loops

The macro facility provides an alternative to manually (interactively) entering

commands during a Viper session. This is especially useful if the user wishes to run

jobs remotely (such as on high-performance computing facilities), or if there is a

lengthy list of complex commands the user may wish to execute several times. Macros

are simply text files containing a list of commands recognisable by Viper. Each

command must appear on its own line, and spaces and tabs are treated the same. The

macro file can have any name or extension the user wishes.

Input control can be passed to a macro file either from within Viper, or when

launching Viper. Within Viper, the macro command is used to open and execute

commands within a supplied macro file. From the Linux shell / Windows command

prompt, the user can execute Viper with instruction to take input from the macro file,

rather than the keyboard, by using the left angled bracket feature of both operating

systems, i.e.:

\> viper.x < macro

launches the Viper executable viper.x, and input is piped from the file named

macro.

Macro files can be nested – it is possible to include the command macro within a

macro file.

For repetitive tasks, Viper has the ability to execute a sequence of commands in

a loop. This is facilitated using the loop command, which permits the user to specify

their required number of iterations. Additional loops can be nested within parent loops,

and macro files can also be called from within loops. Therefore, powerful and

complicated sets of instructions can be executed with very few user-input keystrokes.

For example, a macro file could be established, named macro1.txt, containing the

following:

 51

axi

init

step 1000

save –f save.dat

tecp –f tecplot.plt

stop

The user could then invoke Viper, and use the macro command to read from the macro

file, by typing

macro macro1.txt

Macros can be combined with loops for some considerable flexibility. Imagine two

macro files, macro2.txt and macro3.txt, containing:

macro2.txt commands: macro3.txt commands:

init

loop 3

macro macro3.txt

endl

stop

step 100

save –s –f save.dat

tecp –s –f tecplot.plt

flowrate

forces 2

forces_bndry2.dat

From within Viper, if the command

macro macro2.txt

is called, the macros and loop command make this equivalent to typing the following

list of commands:

init

loop 3

step 100

save –s –f save.dat

tecp –s –f tecplot.plt

flowrate

forces 2 forces_bndry2.dat

step 100

save –s –f save.dat

tecp –s –f tecplot.plt

flowrate

forces 2 forces_bndry2.dat

step 100

save –s –f save.dat

tecp –s –f tecplot.plt

flowrate

forces 2 forces_bndry2.dat endl

stop

 53

Chapter 6: Post-Processing
Once a simulation has been completed, the output usually requires some form of post-

processing to be converted into useful results. Viper outputs data in two primary

formats: ASCII files and Tecplot binary files.

Text-based (ASCII) files typically contain time history data of various

quantities, with each line in the file containing data at time increments through the

computation. For instance, the command flowrate is used to output the flow rate

through each boundary on a mesh, and the example below shows the content of such an

output file for a mesh with four boundaries, two of which (boundaries 3 and 4) are

impermeable (no flow through them):

The contents of the ASCII output file created after a number of calls to flowrate.

Notice that results are stored in these files at a very high precision (approximately 17

significant figures) to ensure that all the precision of the double-precision arithmetic of

the code is preserved in the output.

Commands which can be used to create ASCII data files include (see their

entries in the subsequent Command List for more information):

autocorrf nu_horiz_2d

arnoldi nu_xsect_2d

avg_one_dir pert_ke_evol

current reconload

energies reconstore

energyf sample

flowrate samplef

flux save

forceflow stab

forces svd

get_min_max tecp

int tg

intf time_avg

L2 tony_psi

line track

moments womersley

 54

For visualization of the computed flow fields, Viper generates binary data files

suitable for plotting using the Tecplot package (see www.tecplot.com for more

information). These files should carry the default extension.plt, though files with

extension .dat can also be opened with Tecplot. To generate a Tecplot binary file,

use the command tecp, but note that specialist Tecplot plotting files are also

generated when computing a global linear stability analysis using either tec_floq or

arnoldi.

Visualizing Flow Fields with Tecplot

Flow fields visualised using Tecplot contain the spatial coordinate and connectivity data

defining the mesh, plus data fields corresponding to various quantities. Users have

some control over which variables are stored – see the tecp command description for

more information.

The images below show examples of visualization of data in Tecplot. Shown is

a portion of a larger two-dimensional computational domain, and plotted are the mesh,

flooded contours of velocity magnitude (one of the numerous quantities available),

velocity vectors, and streamlines.

(a)

(b)

(c)

(d)

Visualization of a portion of the computational domain of a two-dimensional simulation. (a) The mesh,

(b) flooded contours of instantaneous velocity magnitude, (c) velocity vectors, and (d) velocity

streamlines.

Users are encouraged to experiment with Tecplot, as there are many possibilities for

plotting available, and with some practice, first-class figures can be generated.

http://www.tecplot.com/

 55

Plotting ASCII Data Files

The Tecplot package can also be used for plotting the data contained in the ASCII data

files, as by default, Tecplot can read the columnar data format presented in these files.

From a Windows desktop, users can right-click on an ASCII data file (with the .dat

extension), and can select Open With  Tecplot. Alternatively (and on Linux systems),

these files can be loaded from within Tecplot in the standard fashion.

(a)

(b)

Graphing data with Tecplot: (a) A screenshot showing a time-dependent data set loaded into Tecplot

with default plotting options. (b) A plot from Sheard & Ryan (2007) generated using Tecplot.

In the above figure, both the default appearance of plotted data in Tecplot, and an

example of a published plot, are shown to illustrate that a substantial flexibility in

appearance and style can be obtained using features of the plotting software.

 57

Chapter 7: Command List
Viper recognises a number of commands which are used to initialise, run, and obtain

output from, a simulation. A description of each command similar to those given here

can be obtained while running Viper by invoking the Help facility, i.e.:

\> help <command_name>

where <command_name> is the name of the command for which a description is

required. A list of available commands can be generated simply by typing:

\> help

The full list of commands are provided below, sorted alphabetically. Each entry

contains the following information:

Syntax: The command, plus any [optional] <parameters> or -

options that can be supplied.

Function: A brief description of the action performed by the command.

Description: A more detailed description of the functionality of the command.

Note that anywhere a floating point value could be specified in a command, a

mathematical function or previously user defined variables should also be able to be

input (so long as it evaluates to a floating point value). If a command still only accepts

floating point values (and provides an error if a variable is provided instead), please

contact Dr. Gregory Sheard such that this can be updated to the new convention.

Advect

Syntax: advect <option>

Function: Toggle advection substep on/off during time integration.

Description:

The advection term of the Navier—Stokes equations can be written in a number of

forms which are equivalent in a continuous sense, though not in a discrete sense. Viper

currently implements only the convective form of the advection term. The advect

command can be used to switch the advection term off (or back on again) during

computations of the base flow (does not apply to perturbation fields during Floquet

stability analysis. The default setting of this feature is ON.

Toggling is performed as followed:
 advect on

 Turn on computation of the advection term.
 advect off

 Turn off computation of the advection term.

Note that switching off the advection term reduces the equations being solved to

the creeping flow equations.

See also: diff, pres.

 58

Arnoldi

Syntax: arnoldi <Neigs> <Nits> [<file_prefix>]

Function: Perform an Arnoldi iteration of global linear three-dimensional

stability analysis.

Description:

If Floquet stability analysis is being performed (call floq prior to init), this

command performs an iteration of the Implicitly Restarted Arnoldi Method, which is

used to compute several of the leading complex eigenvalues (Floquet multipliers) and

the corresponding eigenvectors (perturbation velocity fields for the Floquet modes) of

the linear operator A, which describes the effect of integrating the perturbation field

forward in time by one period, T.

 The <Neigs> parameter is an integer specifying the number of leading eigenvalues

that are to be computed (typically only a handful are desired).

 The <Nits> parameter is an integer specifying the number of Arnoldi vectors that

are generated at each iteration. The relation <Nits> ≥ 2 + <Neigs> must be

satisfied, but otherwise <Nits> should be kept reasonably small to reduce the

storage cost of the method.

 The optional string <file_prefix> is added to the beginning of the output files

created upon convergence of the eigenvalues. This is essential to avoid files

accidentally being overwritten if multiple jobs are being run in the same directory.

Presently, this facility can only be employed on a single spanwise/azimuthal

wavelength. This approach is far more powerful than the stability analysis capability

provided by the stab command, which only returns the magnitude of the leading

Floquet multiplier. The arnoldi command returns the complex components of

several of the leading modes.

Once the arnoldi routine converges on the requested number of eigenvalues, the

eigenvector fields are saved to Viper restart files

<file_prefix>save_floq_eigXXXX.dat, and to Tecplot binary files

<file_prefix>tecp_floq_eigXXXX.plt. The converged Floquet

multipliers are printed to screen (or STDOUT), and to a file named

<file_prefix>floq_mult_eigs.dat.

On the first occasion that this command is called in a Viper session, an Arnoldi restart

file <file_prefix>saved_arnoldi_eigs.dat is searched for. If it exists, the

state of a previously saved Arnoldi iteration is loaded, and the computation continues

from that position.

At the conclusion of every arnoldi call, the current state of the Implicitly Restarted

Arnoldi Iteration is saved in <file_prefix>saved_arnoldi_eigs.dat.

This feature allows the user to perform an Arnoldi stability analysis over several Viper

sessions. Users should note that if a file of the same name exists in the working

directory, it will be overwritten without prompting the user.

See also: floq, stab.

 59

Autocorrf

Syntax: autocorrf [-f <filename> -x <x> <y>]

Function: Return the autocorrelation of each SE/Fourier velocity component

at a point.

Description:

This command outputs the time (𝑡), the supplied spatial coordinates, and the

autocorrelation of each velocity component along the span at a physical point on the

mesh.

Notes:

 Unlike the monitor command, autocorrf interpolates the flow quantities to

the requested location, rather than just output the values at the nearest mesh node.

 Furthermore, the points are calculated and output to file at the time that

autocorrf is called.

 autocorrf can only be called after init.

Given a discrete Fourier transform of the spanwise variation of a velocity component

Fu, the autocorrelation s calculated first by taking the product of Fu and its complex

conjugate, and then by finding the inverse discrete Fourier transform of this product.

The following options are available:
 -f <filename>

 Used to specify a filename <filename> (including extension) to save

the flow values to. If omitted, the default filename is samplef.dat.
 -x <x> <y>

 Used to specify the (𝑥, 𝑦) coordinates of a point in the computational

domain at which the Fourier coefficients are to be determined.

See also: energyf, samplef.

Avg_one_dir

Syntax: avg_one_dir [-k <field> -dir <dir> -var <var>]

Function: Average a specified field along a specified direction.

Description:

This routine averages a single variable, along a single specified direction over the field

given by option "-k". This routine works best if the mesh has mesh lines parallel to the

direction to be used for averaging.

The following options are available:
-k <field>

Used to specify an integer perturbation field number. A legitimate value

must be specified, hence the field number must be less than or equal to

the number of floquet modes present (k <= Nfloq_modes). To

average all fields, set "-k" value to a negative number.
-dir <dir>

Used to specify a single direction to average along, either 𝑥 or 𝑦 (e.g. to

average along the x direction: –dir x), but not 𝑧 (see the comment

below).
-var <var>

Used to specify a single variable to average along, either one of the

velocity components, 𝑢, 𝑣, or 𝑤, or the scalar field, 𝑠. (e.g. for the scalar

field: –var s) .

 60

This function requires the solution to be initialised, and cannot be used unless the

simulation is two-dimensional. It cannot be invoked in a spectral-element-Fourier

3D simulation.

See also: init.

Axi

Syntax: axi

Function: Toggles between cylindrical and Cartesian coordinate systems (2D

only).

Description:

Two-dimensional computations may be carried out in either a Cartesian (the default; 𝑥-

𝑦-𝑧) or a cylindrical (𝑧-𝑟-𝜃) coordinate system. This command is used to toggle

between the two modes.

If cylindrical coordinates are switched on, then the computations are performed in an

axisymmetric sense, where 𝑦 = 0.0 is taken to be the symmetry axis 𝑟 = 0.0.

Therefore, the user should ensure that no mesh vertices include a negative 𝑦-coordinate,

as this will produce unpredictable, incorrect, and non-physical results.

Notes:

 axi has no effect on three-dimensional computations, which are currently restricted

to Cartesian coordinates only,

 axi can be toggled at any time, though the computation will need to be re-

initialized prior to further time stepping. Care should be taken to ensure that post-

processing commands (e.g., forces, flowrate, tecp, etc.) are called with the

appropriate axi setting.

See also: wvel.

Axirotate

Syntax: axirotate <omega>

Function: Computes cylindrical coordinates computations in a frame rotating

about the axis.

Description:

This command activates extra terms required to compute flows in a rotating reference

frame if using cylindrical coordinates (i.e. 𝑧-𝑟-𝜃, see axi). These include Coriolis

corrections to the base flow and perturbation fields, and centripetal corrections to the

base flow. The user must supply an angular velocity for the rotating frame, <omega>.

Notes:

A positive-signed <omega> equates to rotation out of the page above the symmetry

axis.

This feature only makes sense when swirling flow (wvel) is activated. Therefore

calling this command also activates wvel. All boundary conditions must be expressed

relative to the rotating frame. i.e., if a wall is rotating with the flow, it should be

expressed as a Dirichlet velocity boundary with zero velocity (i.e. no movement relative

to the rotating frame).

This function requires the simulation be two-dimensional, but will activate axi to

toggle to the appropriate co-ordinate system for any two-dimensional simulation.

 61

See also: axi, wvel.

Buoyancy

Syntax: buoyancy [-g <gx> <gy> -a <exp_coeff> -c

<froude>]

Function: Activate Boussinesq buoyancy term.

Description:

This command implements density-driven convection by means of a Boussinesq

approximation. The Boussinesq approximation is valid for small density variations, as

under these conditions the density difference enters only through the gravity term.

Use the -g option to supply 𝑥- and 𝑦-components of a gravity vector. These will be

automatically rescaled into a unit vector. The momentum equations are modified by

adding a gravity term:

−𝜌′𝒈

where 𝒈 is a unit vector in the direction of gravity, the direction of which is set using

the -g option. The -g option takes vector components in 𝑥 and 𝑦 (specified with <gx>

and <gy>, respectively), which are rescaled by Viper into a unit vector. A 𝑧 component

cannot be specified, and is zero by default. 𝜌′ is the fluctuating component of density

due to temperature variations, and is expressed as:

𝜌′ =< 𝐞𝐱𝐩_𝐜𝐨𝐞𝐟𝐟 >∗ S

The coefficient in front of the temperature, S, i.e. <exp_coeff>, is supplied by the

user with the -a option, which may be expressed as a function including user-specified

variables/functions. The direction of buoyancy is such that a positive <exp_coeff>

will cause colder fluid to fall in the direction of gravity, and hotter fluid to rise opposite

to the direction of gravity. While this implementation is designed to implement a

temperature-based density-driven convection, in fact any density-driven convection can

be incorporated in this fashion (e.g. density variation due to solute concentration, etc.)

provided that the basis can be transported as a scalar field.

The -c option specifies a Froude number (which represents the ratio of inertia to

gravity, e.g. 𝐹𝑟 = 𝐿𝜔2/𝑔 or 𝐹𝑟 = 𝑉2/𝐿𝑔). If this option is specified, this Froude

number is multiplied by the -a coefficient, and the resulting coefficient is used to

modify the advection terms to account for centrifugal buoyancy effects in the flow. To

consider only centrifugal buoyancy effects, set the gravity vector to zero.

Examples of use of the buoyancy command:

HOT (high-𝑆) fluid will RISE (left, negative 𝑥); buoyancy coefficient is 100.0:
> buoyancy -g 1.0 0.0 -a 100.0

HOT (high-𝑆) fluid will RISE (upward, positive 𝑦); buoyancy coefficient is

30.0:
 > buoyancy -g 0.0 -2.3 -a ‘3*10’

HOT (high-𝑆) fluid will move radially inward due to centrifugal effect:
> buoyancy -g 0.0 0.0 -a ‘3*10’ -c 100

HOT (high-𝑆) fluid will move radially inward and rise due to centrifugal and

gravity effects
 > buoyancy -g 1.0 0.0 -a ‘3*10’ -c 100

Notes:

 62

This command requires that the scalar advection-diffusion field is active, as this

field represents the temperature field.

The scalar diffusion coefficient must be set appropriate to the diffusion properties

of whatever medium is being evolved (e.g. thermal diffusion coefficient for

temperature, etc.).

The centrifugal buoyancy term will only be activated if a positive Froude number

is specified.

Current

Syntax: current [-f <filename> -k <field>]

Function: Reports on divergence of electric current in quasi-steady MHD

simulations.

Description:

Calculates the divergence of the electric current field in a quasi-static MHD simulation,

and outputs to a text file the integral of the square of the divergence over the

computational domain. These calculations can only be performed if the solution has

been initialised.

Notes:

For spectral element-Fourier domains, the integral is evaluated over the domain

volume. For Cartesian 2D base flows and perturbaion fields having zero spanwise

wavenumber, the result is computed on the 2D plane (i.e. a value expressed per unit

span). For axisymmetric base flows and perturbation fields having zero azimuthal

wavenumber, the integral result is calculated over the full 2*pi radian azimuthal domain

size. For linearised perturbation fields having non-zero wavenumber, the integral is

calculated using the corresponding azimuthal/spanwise span of the domain.

The following options are available:
 -f <filename>

 Used to specify a filename <filename> (including extension) to write

the computed integral to. If omitted, the default filename is

int_sqr_div_and_mag_current.dat.
-k <field>

Used to specify an integer perturbation field number, when a linearised

perturbation field is active, to calculate the integral on. A legitimate

value must be specified, hence the field number must be less than or

equal to the number of floquet modes present (k <= Nfloq_modes).

The default is 𝑘 = 0, corresponding to the base flow.

Note: The current requires the quasi-static MHD solver be active. To activate

the electric potential field, define the appropriate electric potential field

boundaries in the viper.cfg file (see btag).

Diff

Syntax: diff

Function: Toggle diffusion substep on/off during time integration.

Description:

Time integration is carried out by solving each of the advection, pressure and viscous

diffusion terms consecutively. This function is used to switch off computation of the

diffusion term. The default setting of this feature is ON. This facility is primarily

provided as a debugging tool.

 63

Note that switching off the diffusion term alters the equations being solved by

Viper.

See also: pres, advect.

Energies

Syntax: energies [-f <filename>]

Function: Output volume-integrated kinetic and potential energies.

Description:

In a simulation with buoyancy, this command computes and outputs to a file the total

kinetic energy, the total vertical buoyancy flux, and the background and available

potential energies. This routine can be used in an SE-Fourier 3D simulation, but the

results will be the total energies calculated on only the fundamental (zero-wavenumber)

mode of the 3D solution. These computations can only be performed if the solution has

been initialized

The following options are available:
 -f <filename>

 Used to specify a filename <filename> (including extension) to write

the computed integral to. If omitted, the default filename is

energies_2d_plane.dat.

Note: The energies command can only be employed in 2D or SE-Fourier 3D

simulations. It must also have a temperature field, buoyancy activated, and a non-

zero gravity vector.

See also: buoyancy,energyf.

Energyf

Syntax: energyf [-f <filename>]

Function: Compute norms of energy in each Fourier mode in an SE/Fourier

3D simulation.

Description:

An energy norm is computed for each Fourier mode of a three-dimensional spectral-

element/Fourier computation. For each Fourier mode (𝑘), the energy norm is given by

the integral

∮ ‖𝒖̂𝒌‖2

Ω

𝑑Ω ,

where the 𝑘𝑡ℎ Fourier mode coefficients of the velocity field are given by 𝒖̂𝒌, and Ω is

the computational domain in the spectral-element plane (either x-y or z-r). This

computation can only be performed if the solution has been initialised.

The following options are available:
 -f <filename>

 Used to specify a filename <filename> (including extension) to write

the computed integral to. If omitted, the default filename is

energyf.dat.

 64

See also: autocorrf, energies,samplef.

Exit

Syntax: exit

Function: Exits Viper.

Description:

Viper terminates immediately, and any unsaved work will be lost. This command

performs the same action as stop and quit.

See also: quit, stop.

Filt_s_adv

Syntax: filt_s_adv [-u <function>]

Function: Activate a filter for the advection of a scalar field.

Description:

Used to establish a filter kernel that multiplies the RHS of the scalar advection

calculation. When <function> evaluates to 0, no advection occurs, when

<function> evaluates to 1, the advection is unchanged. The following options are

available:
 -u <function>

 Used to specify a filename <function> of 𝑥, 𝑦, or 𝑡 (this is currently

only implemented in two-dimensional simulations, but is evaluated at

each timestep). The default is <function> = 1.

Flowrate

Syntax: flowrate [<filename>]

Function: Output flow rate through each boundary.

Description:

The flow rates through each boundary are calculated. This calculation can only be

performed if the solution has been initialised.

The following options are available:
 <filename>

 Used to specify a filename <filename> (including extension) to write

the flowrate through each boundary to. If omitted, the default filename

is flowrate.dat.

Fixscalar

Syntax: fixscalar [<value>]

Function: Constrain a domain integral of the scalar field to a specified value.

Description:

Adds a constant correction during every time step to shift the domain integral of the

scalar field to a value specified by <value>. An example of where this is useful is

when the scalar field represents temperature, and only flux boundary conditions are

imposed, leading to a perpetual heating or cooling in the enclosure. Subsequent calls to

fixscalar toggle it on or off.

The following options are available:

 65

 <value>

 Used to specify a filename <value> to define the integral of the scalar

field. If omitted a default of <value> = 0 is used.

Flux

Syntax: flux [-s] [–vel] [–f <filename>]

Function: Output the flux through each boundary.

Description:

The flux through each boundary is integrated from the component of the dot product of

the gradient of the specified field and the outward normal vector along each boundary.

This command also calculates the integrated absolute value of the flux through each

boundary. These are output in a second set of data columns after the flux data columns.

The following options are available:
 -s

 Used to request that the output flux is that of the scalar field. This option

cannot be requested while –vel is.
 -vel

 Used to request that the output flux is that of the velocity field. Currently

this is not yet implemented, please contact Dr. Gregory Sheard if you

would like this feature to be implemented. This option cannot be

requested while –s is.

 -f <filename>

 Used to specify a filename <filename> (including extension) to write

the flowrate through each boundary to. If omitted, the default filename

is flux_scalar.dat.

See also: flowrate.

Forceflow

Syntax: forceflow [-b <bnum> -q <flowrate> -o <filename>]

Function: Specify a flowrate to be achieved through a specific boundary.

Description:

This command is used to specify a volume flowrate (per unit span) in a 2D simulation

that is to be imposed through a specified boundary. This routine currently only works

in 2D simulations, and is hard-coded to manipulate the 𝑢-velocity only. Hence, it finds

application in duct or channel flow problems, typically with periodic boundaries, as an

alternative to driving the flow with a constant forcing equivalent to an imposed

horizontal pressure gradient. In those cases time-varying flow features can produce a

time-dependent flow rate, making control of the Reynolds number more difficult. This

routine works by checking the flow rate through the requested boundary each time step,

and applying whatever forcing is required to the horizontal (𝑢-) velocity field to

preserve the target flow rate.

This command may be called before or after init, and multiple calls are permitted

(e.g. for facilitating abrupt changes in flowrate, or switching off the flowrate forcing

mid-simulation). The option -o is used to specify an output filename to output the

current applied forcing. If the -o option is called, parameters supplied with the -b and

–q options are ignored, and provided the solution is already initialized, the routine

outputs to a text file named <filename> the most recently applied forcing.

Hence a typical usage of this command is to:

 66

1) Call forceflow with -b and –q options specified (either before or after

init.

2) Repeatedly call forceflow with only the -o option specified to output a

forcing time history. The simulation must be initialised to use the -o option.

The following options are available:
 -o <filename>

 Used to specify a filename <filename> (including extension) to write

the flowrate through each boundary to. If omitted, the default filename

is forceflow_forcing.dat.

-b

 Used to specify a boundary through which the desired flowrate should

be kept constant (which should intersect the 𝑥-axis). The -b value must

be a positive integer between 1 and the maximum number of boundaries.
-q

 Used to specify the desired flowrate. A function of user defined

variables can be specified.

See also: flowrate.

Forces

Syntax: forces <boundary> [<filename>]

Function: Calculate global forces imparted on a specific boundary.

Description:

Calculates the global forces (pressure, viscous and total), in 𝑥, 𝑦 (and 𝑧) imparted on a

single boundary. If no boundary number is specified, or if the simulation has not been

initialised, no calculations or output is performed.

The following options are available:
 <boundary>

 Used to specify a single boundary <boundary> that has been defined

in the viper.cfg file. If multiple calculations on different boundaries

are needed, a separate call to forces must be used for each. They will all

be appended to the same file unless a different optional <filename>

specifier is used for each.
 <filename>

 Used to specify a filename <filename> (including extension) to write

the forcing acting on the boundary to, which will be appended at each

timestep, or with each call to forces that uses the same <filename>.

If omitted, the default filename is forces.dat.

 67

Fourier

Syntax: fourier [-f <filter_dist> -n <Nplanes> -k

<Nmodes> -mode <mode_number> -span -

alias]

Function: Initialise a spectral-element/Fourier 3D computation.

Description:

Three-dimensional computations can be performed on a two-dimensional mesh

provided that the geometry is homogeneous in the out-of-plane direction (z in Cartesian,

θ in cylindrical coordinates). This is achieved by expanding the flow variables in the

out-of-plane direction using a Fourier expansion.

The following options are available:
 -f <filter_dist>

 In cylindrical coordinates (use axi), the vanishinly small grid spacing

near the axis can lead to an amplified stability constraint on the time

step. By default, no filter is applied, but if required, a ramp filter can be

extablished varying from 100% at 𝑟 = 0 to 0% at 𝑟 =

<filter_dist>.
 -n <Nplanes>

 A positive integer is supplied to specify the number of Fourier planes

employed in the computations. After Fourier transformation, this

corresponds to <Nplanes>/2 Fourier modes in the out-of-plane

direction, hence <Nplanes> must be at least 2. A default of 4 planes

is used. Alternately using the –k option may be simpler.

 Note: For best efficiency from parallel simulations, computations should

be run on <Nplanes>/2 + 1 MPI processes, or factors thereof. For

example, if a user wishes to compute with 30 Fourier planes, this

corresponds to 15 complex Fourier modes, resulting in 16 separate fields

to be computed (including the fundamental mode). Thus simulations

would best be run on 16, 8, 4, 2, or 1 MPI process.
 -k <Nmodes>

A positive integer is supplied to specify the number of non-zero Fourier

modes employed in the computations. This option can be used in place

of the clunky -n option. The number of Fourier modes should be a

whole factor of the number of MPI processes available in a simulation.

i.e., If <Nmodes>> = 16, this could be efficiently distributed over 1, 2,

4, 8 or 16 MPI processes in a parallel computation. If the -alias

option is also used, there will be 50% additional modes used to compute

the advection term, and if it is not used, then one extra mode is employed

for advection (this provides a minimal level of antialiasing by default).
 -mode <mode_number>

 The positive floating point value supplied as <mode_number>

specifies the out-of-plane wavenumber describing the extent of the

computational domain in the out-of-plane direction. The mode number

relates to the span by = 2𝜋/<mode_number>. If no span or

mode number is supplied, the computation defaults to a span of 2𝜋,

corresponding to an out-of-plane mode number 𝑚 = 1. If both are

given, the computation will employ the most recently given value.
 -span

 68

 The positive floating point value supplied as specifies the out-

of-plane extent of the computational domain. Users can either specify

an out-of-plane span using this option, or they can use the -mode option

to specify this parameter as an out-of-plane wavenumber (useful for

computations in cylindrical coordinates). The span is taken as being in

length units for Cartesian computations, and in radian for computations

using cylindrical coordinates.
 -alias

 Apply two-thirds rule for anti-aliasing in Fourier space. Note that this

will increase the compute time as 50% more Fourier modes are

included in calculations of the advection term.

Note: The init command must be called after fourier, to prepare for time

integration. Furthermore, you cannot call fourier if Floquet analysis is active

(do not call pert if using fourier). Furthermore, if a load command is called

prior to this routine, the two-dimensional solution input during load is mapped

to the three-dimensional velocity field.

See also: axi,pert,rand.

Freeze

Syntax: freeze

Function: Toggles a freeze on time integration of the base flow.

Description:

The default condition is OFF, which provides for normal time integration of the base

flow velocity field when the step command is used. Sometimes, though, it is useful

to freeze the base flow, while continuing as normal to carry out time integration of

perturbation fields in Floquet analysis, or simulated particle tracking. This could either

be as a result of the base flow being time-independent (in which case freeze could

be used to save time by not evolving the steady-state flow), or in specific cases where

the user may wish to interrogate a frozen snapshot of a normally time-varying flow

field.

See also: track, pert,rotate

Getminmax

Syntax: getminmax [-f <filename> -k <field> -p <function>

-c <cutoff> -x <level> <tol> -e]

Function: Find location and values of minima and maxima of a user-specified

scalar field.

Description:

A user-specified function <function> is input (using the same mathematical

functions available during configuration), and the positions (𝑥, 𝑦, 𝑧) of maxima and

minima, and values of the scalar function at those locations are returned.

 69

Available variables are:

t Current time,

x, y, z Spatial coordinates,

u, v, w, p Velocity components (𝑢, 𝑣, 𝑤) and kinematic static pressure (𝑝),

RKV Reciprocal kinematic viscosity (1/𝜈),

dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz (spatial

velocity gradients
𝑑𝑢

𝑑𝑥
,

𝑑𝑢

𝑑𝑦
,

𝑑𝑢

𝑑𝑧
,

𝑑v

𝑑𝑥
,

𝑑v

𝑑𝑦
,

𝑑v

dz
,

𝑑𝑤

𝑑𝑥
,

𝑑𝑤

𝑑𝑦
,

𝑑𝑤

𝑑𝑧
),

and any user-specified variables defined during configuration.

Local minima and maxima are located where the gradient vector of the scalar field is

zero. The values of all variables are determined at the current time, and the evaluated

locations are output to either the default minmax.dat, or the optional user-specified

<filename>.

The following options are available:
 -f <filename>

 Used to specify a filename <filename> (including extension) to save

the minima/maxima data to. If omitted, the default filename is

minmax.dat.
 -k <field>

 Used to specify an integer perturbation field number (i.e., 1, 2, ... ,

<Nfloq_modes>, when Floquet analysis is active) to search for

maxima/minima. The default is <field> = 0, corresponding to the

base flow.
 -p <function>

 A user-specified function <function> is provided to the routine. If

omitted, the default is vorticity in the x-y plane (
𝑑v

𝑑𝑥
−

𝑑𝑢

𝑑𝑦
): “dvdx-

dudy”.

 -c <cutoff>

 A cutoff value for the square of the magnitude of curvature at turning

points. Turning points below this cutoff threshold are ignored. The

square of the magnitude of the curvature for each located turning point

is output to screen, so users will be able to tune their minima/maxima

identification to isolate only those they wish to find on a simulation-

specific basis. The default value is |𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒|2 = 0.0.
 -x <level> <tol>

 A cutoff for turning points whose scalar value lies within a certain

tolerance <tol> of a specified value <level> can be employed with

this option. Any turning point with a maximum/minimum scalar field

value lying between <level> - <tol> and <level> + <tol>

will be ignored. The defaults are <level> = 0.0 and <tol> = 0.0,

(i.e., no turning points are ignored).
 -e

 If specified, the magnitude of the rate of strain is computed at the

locations found, and this is also output.

 70

Help

Syntax: help [<command name>]

Function: Gives assistance to user.

Description:

If no <command name> input, a list of available commands is given.

If <command name> is provided, a detailed description of the command follows.

Init

Syntax: init

Function: Initialize job for time integration.

Description:

This routine builds all the necessary matrices for time-integration of the flow solution.

If init is called multiple times in a Viper session, all matrices and storage are re-

created afresh. This routine will also initialise particle tracking if required.

Int

Syntax: int [-f <filename> -k <field> -u <function>]

Function: Integrates a user-specified function over the computational domain.

Description:

A user-specified function <function> is input (using the same mathematical

functions available during configuration), and the value of this function is integrated

over the computational domain. Additional available variables are:

t Current time,

x, y, z Spatial coordinates,

u, v, w, p Velocity components (𝑢, 𝑣, 𝑤) and kinematic static pressure (𝑝),

RKV Reciprocal kinematic viscosity (1/𝜈),

dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz (spatial

velocity gradients
𝑑𝑢

𝑑𝑥
,

𝑑𝑢

𝑑𝑦
,

𝑑𝑢

𝑑𝑧
,

𝑑v

𝑑𝑥
,

𝑑v

𝑑𝑦
,

𝑑v

dz
,

𝑑𝑤

𝑑𝑥
,

𝑑𝑤

𝑑𝑦
,

𝑑𝑤

𝑑𝑧
),

and any user-specified variables defined during configuration.

The values of all variables are determined at the current time, and the evaluated integral

is output to either the default text file integral.dat, or the optional user-specified

<filename>. The solution must be initialized for the integral to be computed.

Note that for 3D hexahedral spectral element and spectral element-Fourier domains, the

integral is evaluated over the domain volume. For Cartesian 2D base flows and

perturbation fields having zero spanwise wavenumber, the integral result is computed

on the 2D plane (i.e. a value expressed per unit span). For axisymmetric base flows and

perturbation fields having zero azimuthal wavenumber, the integral result is calculated

over the full 2*pi radian azimuthal domain size. For linearised perturbation fields

having non-zero wavenumber, the integral is calculated using the corresponding

azimuthal/spanwise span of the domain.

The following options are available:
 -k <field>

 Used to specify an integer perturbation field number (i.e., 1, 2, ... ,

Nfloq_modes, when Floquet analysis is active) to calculate the

 71

integral on. The default is <field> = 0, corresponding to the base

flow.
 -f <filename>

 Used to specify a filename <filename> (including extension) to write

the computed integral to. If omitted, the default filename is

integral.dat.
 -u <function>

 Used to specify the function to be integrated. The default is

<function> = 0.

See also: intf,l2.

Intf

Syntax: intf [-f <filename> -u <function>]

Function: Integrates a user-specified function over Fourier modes in an SE-F

3D computation.

Description:

A user-specified function <function> is input (using the same mathematical

functions available during configuration), and the value of this function is integrated

separately on each mode of a spectral element-Fourier 3D computation. The output is

similar to that of the <energyf> command. Additional available variables are:

t Current time,

x, y, z Spatial coordinates,

u, v, w, p Velocity components (𝑢, 𝑣, 𝑤) and kinematic static pressure (𝑝),

RKV Reciprocal kinematic viscosity (1/𝜈),

dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz (spatial

velocity gradients
𝑑𝑢

𝑑𝑥
,

𝑑𝑢

𝑑𝑦
,

𝑑𝑢

𝑑𝑧
,

𝑑v

𝑑𝑥
,

𝑑v

𝑑𝑦
,

𝑑v

dz
,

𝑑𝑤

𝑑𝑥
,

𝑑𝑤

𝑑𝑦
,

𝑑𝑤

𝑑𝑧
),

and any user-specified variables defined during configuration.

The values of all variables are determined at the current time, and the evaluated integral

is output to either the default text file integral.dat, or the optional user-specified

<filename>. The solution must be initialized for the integral to be computed.

Note that for 3D hexahedral spectral element and spectral element-Fourier domains, the

integral is evaluated over the domain volume. For Cartesian 2D base flows and

perturbation fields having zero spanwise wavenumber, the integral result is computed

on the 2D plane (i.e. a value expressed per unit span). For axisymmetric base flows and

perturbation fields having zero azimuthal wavenumber, the integral result is calculated

over the full 2*pi radian azimuthal domain size. For linearised perturbation fields

having non-zero wavenumber, the integral is calculated using the corresponding

azimuthal/spanwise span of the domain.

The following options are available:
 -f <filename>

 Used to specify a filename <filename> (including extension) to write

the computed integral to. If omitted, the default filename is

integralf.dat.
 -u <function>

 Used to specify the function to be integrated. The default is

<function> = 0.

See also: int,l2.

 72

Iterate

Syntax: iterate [-tol <tol> -n <max_its>]

Function: Set up multiple iterations of base flow solution within each time step.

Description:

By default, only one cycle through advection/pressure/diffusion is conducted each time

step. However, in theory an improvement in accuracy (and possibly stability might be

gained if the solution was iterated to improve the accuracy of the extrapolated estimate

of the solution projected to the next time step which is required for the calculation of

the non-linear (advection) term. To invoke this iteration procedure, this command must

be called.

The following options are available:
 -tol <tol>

 Used to specify the convergence threshold for the simulations. The

quantity monitored for convergence is the average change in the solution

vectors each iteration. If iterate is and this option is not specified,

the default is 1e-20. If a negative threshold is specified, iteration will

always proceed until <max_its> has been reached.
 -n <max_its>

 Used to specify the maximum number of iterations performed per time

step. If iterate is invoked and this option is not specified, the default

is 5. If a <max_its> value of less than 1 is specified, the <max_its>

value will be adjusted to 1.

See also: step.

L2

Syntax: L2 [-f <filename> -k <field>]

Function: Compute the L2 norm (integral of velocity magnitude throughout

domain).

Description:

An L2 norm is computed by integrating the square of the magnitude of velocity in

physical space, over the entire computational domain, consistent with the definition of

Barkley, Blackburn & Sherwin (Int. J. Numer. Meth. Fluids 2008; 57:1435-1458). The

integrand is thus defined as (for a three-dimensional computation):

‖𝒖‖2 = 𝑢2 + 𝑣2 + 𝑤2

Note that for 3D hexahedral spectral element and spectral element-Fourier domains, the

integral is evaluated over the domain volume. For Cartesian 2D base flows and

perturbaion fields having zero spanwise wavenumber, the integral result is computed

on the 2D plane (i.e. a value expressed per unit span). For axisymmetric base flows and

perturbation fields having zero azimuthal wavenumber, the integral result is calculated

over the full 2𝜋 radian azimuthal domain size. For linearised perturbation fields having

non-zero wavenumber, the integral is calculated using the corresponding

azimuthal/spanwise span of the domain. The solution must be initialised for any

computation to be performed.

The following options are available:
 -f <filename>

 73

 Used to specify a filename <filename> (including extension) to write

the L2 norm to. If omitted, the default filename is l2norm.dat.

 -k <field>

 Used to specify an integer perturbation field number (i.e., 1, 2, ... ,

Nfloq_modes, when Floquet analysis is active) to search for

maxima/minima. The default is <field> = 0, corresponding to the

base flow.

See also: int,intf.

Line

Syntax: line –p1 <x1> <y1> -p2 <x2> <y2> [-f <filename>

-n <points> -u <fn_str> -avg]

Function: Extract flow field data along a line between specified points.

Description:

The line command extracts flow field values, or gradients along a line between two

specified points, once the solution has been initialised. The line command can

typically only be used in 2D simulations (as the line is specified on the 2D spectral-

element plane). The exception is that if the -avg option is specified, line can also be

used in spectral element-Fourier 3D simulations, where the average along the line and

into the page is evaluated. The averaged value in SE-Fourier 3D simulations is

evaluated using values from the fundamental Fourier mode only. It therefore only works

for linear functions of the flow field variables (when using the -u option), i.e.

specifying “line –u ‘u+v’ -avg" is okay, but " line –u ‘u^2+v^2’ -

avg " is not.

The following options are available:
–p1 <x1> <y1>

Specifies the start point of the line for data extraction. This parameter

must be specified for this command to function.
–p2 <x2> <y2>

Specifies the end point of the line for data extraction. This parameter

must be specified for this command to function.
-f <filename>

Used to specify a filename <filename> (including extension) to load

the flow fields from. If the -f option is not specified, the default

line.dat is used.

-n <points>

Used to specify the number of points (<points>) along the line at

which the data is interpolated. If the -n option is not specified, the

default is 10 points.
-u <fn_str>

Used to supply a user-specified function of variables t, x, y, u, v, w,

scalar field (if active) and their gradients. If this option is used, only the

value of this function is output for each point on the line, rather than all

flow variables/gradients. Hence, this can be useful for reducing the

output file size, if you want the value of only a single variable.

E.g. If the user wishes to interpolate the v-velocity only along a line,

they could call:

 74

\> line –u ‘v’

-avg

If this option is specified, only the average of the interpolated values

along the line is output instead of at each interpolated point. This is

useful for calculating and quickly outputting average values along

boundaries or across cuts through the domain.

Load

Syntax: load [-a <scale_factor> -f <filename> -k

<floq_mode> -m]

Function: Load flow field vectors from file.

Description:

Loads flow field vectors, as well as computation time t, from a user-specified file. This

command loads flow field data from files created with the command save, and is used

to resume a computation from a previously computed solution.

Note that load can be used after the solution has been initialised. Although uncommon,

this allows for the user to replace static Dirichlet boundary conditions with whatever

the velocities were in the restart file.

Update 03/06/2013: load no longer over-writes the RKV parameter value, or the time

step dt value, with the values stored in the restart file. These must be set in the

viper.cfg configuration file.

Update 12/05/2008: This command now no longer recognises the pre-04/11/2006 file

format. For Spectral-element/Fourier simulations, either 2D or 3D SE/Fourier data may

be input.

Update 04/11/2006: This command can now read files containing flow fields at the

three previous time steps, while also being capable of reading the old current-time saved

fields. The new files avoid the annoying perturbation that was added to flows upon re-

start.

The following options are available:
-a <scale_factor>

Used to specify a scaling factor to apply to the field being loaded (default

= 1.0). This is most useful when loading perturbation fields onto Fourier

modes of a spectral element-Fourier 3D simulation.
-k <floq_mode>

Used to specify an integer perturbation field number to load the saved

file into. For linear stability analysis, perturbation fields range over (i.e.,

1, 2, ... , Nfloq_modes). The default is <floq_mode> = 0,

corresponding to the base flow. For SE-Fourier 3D jobs, individual

Fourier modes are numbered 0 (fundamental 2D mode), and [1, 2, ... ,

Nfourier_planes/2].
-f <filename>

Used to specify a filename <filename> (including extension) to load

the flow fields from. If the -f option is not specified, the default

filename ff_in.dat is used.

-m

Specifies that you wish to load spatial coordinates from the file also.

This feature is only required if you wish to load data onto a different

macro-element mesh.

 75

-r

Used to control whether the loaded field replaces whatever is in the flow

field vectors (the default behaviour), or if the loaded field is added to the

base flow (the behaviour if the option is used).

Note: The init command must be called before the use of the -k load option

when loading saved perturbation fields.

See also: save.

Loop

Syntax: loop <num_iterations>

Function: Executes a list of commands <num_iterations> times.

Description:

Following a call to loop <num_iterations>, the user inputs a list of commands

to be executed within a loop. The command list is terminated by entering endl (for

“end loop”). Multiple loops can be nested within one another. The looping begins after

the final endl command is supplied.

The commands are stored in a temporary “scratch” file (visible on Linux systems,

invisible on Windows systems), which may not be deleted if Viper is terminated while

looped commands are being executed. These files are typically named fortXXXXX,

and are safe to delete if Viper is not running in that directory.

See also: macro.

Lsa

Syntax: lsa [-prefix <string> -nev <integer> -ncv

<integer> -tol <integer> -Nsteps <integer> -adjoint]

Function: Find leading eigenmodes of a linear time integration operator.

Note: This is a driver routine. It automatically executes a loop, calls the Arnoldi

command, and conducts the required time integration. The solution must have

been initialised (init) and perturbation fields must be active (pert).

Description:

Linear stability analysis is used to find the amplification factors (Floquet multipliers)

and corresponding perturbation fields (the eigenvalues and eigenvectors, respectively)

of the operator describing the evolution of the perturbation field over a time interval, T.

The following options are available:
-prefix <string>

Used to specify a filename prefix for eventual output of the LSA solver.

The default is lsa_.
-nev <integer>

Used to specify the number of leading eigenmodes to be found by the

Arnoldi solver. The default value (and minimum allowable value) is 1.
-ncv <integer>

Used to specify the length of the Arnoldi factorization used by the

Arnoldi solver. The default value is 6, and the minimum allowable value

is (nev+2)].
-tol <integer>

 76

Used to specify the exponent of the convergence criterion used for the

Arnoldi solver (i.e. 10^<integer>). The default value is −7,

corresponding to 10−7.
 -Nsteps <integer>

Used to specify the number of time steps per Arnoldi iteration update.

The time interval 𝜏 is calculated as 𝑑𝑡 ∗ 𝑁𝑠𝑡𝑒𝑝𝑠. The default value is

1000, and the minimum allowable value is 1.
-adjoint

If specified, the adjoint of the linearised equations will be integrated

backwards in time rather than the default forward time integration of the

linearised equations. The resulting computation is thus no longer a linear

stability analysis, per se. Instead it becomes a calculation of the

eigenmodes of the adjoint of the linearised evolution operator, which is

useful in sensitivity analysis, etc.

See also: init,pert.

Macro

Syntax: macro <filename>

Function: Read commands from a file.

Description:

Specifies a file from which commands are to be input from. The file <filename> is

opened, and commands in the file are executed as if they were entered at the command

line. A number of macro files may be nested (i.e., the macro command can be called

from macro files) to improve the flexibility of this function.

See also: loop.

Mask

Syntax: mask [-u <u_fn> -v <v_fn> -w <w_fn> -s <s_fn> -k

<field>]

Function: Applies a user-defined mask function to a specified field.

Description:

This command can be used to filter, amplify, or in some way modify the u, v (and w)

velocity components of a velocity field, or a scalar field. Each field is applied a mask

with a separate function, as:

𝒇𝒊𝒆𝒍𝒅𝑚𝑎𝑠𝑘𝑒𝑑 =< 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 >∗ 𝒇𝒊𝒆𝒍𝒅𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 .

If no mask function is specified, the default mask is 1.0 (no change to the field).

Furthermore the mask will only be applied if the solution has been initialised.

This command is especially useful for filtering perturbation fields used in stability

analysis. For instance, if the stability of a flow is being computed in a rotating frame,

then the velocities far from the centre of rotation can be very large. This can lead to

instability when random noise introduced at startup is being advected by high rotational

velocities in the base flow. In this case a Gaussian mask could be used to filter towards

zero the perturbation field velocity far from the centre of rotation, e.g.

 77

\> mask –k 1 -u 'exp(-(x^2+y^2))' -v 'exp(-(x^2+y^2))' -w

'exp(-(x^2+y^2))'

The following options are available:
-u <u_fn>

Used to specify a mask function for the u velocity field. The function

can use intrinsic and user-specified variables, such as x, y, t, RKV, etc
-v <v_fn>

Used to specify a mask function for the v velocity field. The function

can use intrinsic and user-specified variables, such as x, y, t, RKV, etc.
-w <w_fn>

Used to specify a mask function for the w velocity field. The function

can use intrinsic and user-specified variables, such as x, y, t, RKV, etc.

-s <s_fn>

Used to specify a mask function for the scalar field. The function can

use intrinsic and user-specified variables, such as x, y, t, RKV, etc.
-k <field>

Used to specify field the mask is applied to. By default, the mask is

applied to the base flow (k = 0). Linearized perturbation fields are

referenced using numbers 1, 2, 3, etc. To mask all fields, set the -k

parameter to a negative value.

Meshpts

Syntax: meshpts [-f <filename>]

Function: Save mesh coordinates to a text file.

Description:

This outputs the (𝑥, 𝑦, 𝑧) coordinates and global node number (𝑛) of every coordinate

in a mesh, including interpolation points within each element. If no filename is

specified, the default meshpts.dat is used. The data is stored in text format at a high

precision, so for large meshes these files can be very large.

Mhd

Syntax: mhd coeff <value>

Function: Used to invoke functions relating to the quasi-static MHD solver.

Description:

Viper facilitates magnetohydrodynamic (MHD) simulations based on the quasi-static

approximation. The quasi-static approximation is asymptotically exact for flows with

magnetic Reynolds number 𝑅𝑒𝑚 ≪ 1, and achieves high accuracy for 𝑅𝑒𝑚 < 𝑂(1).

Under the quasi-static model, the momentum equation is augmented by an additional

term

𝑁(−𝛁𝜙 + 𝒖 × 𝒆𝑩) × 𝒆𝑩,
where 𝑁 is an MHD prefactor, 𝜙 is the electric potential field, 𝒖 is the velocity vector

field, × denotes a vector cross product, and 𝒆𝑩 is a unit vector in the direction of the

magnetic field. From the requirement that the current density is divergence free, Ohm’s

law yields a Poisson equation for the electric potential field

∇2𝜙 = 𝛁 ∙ (𝒖 × 𝒆𝑩)

where ∇2 is the Laplacian operation, and 𝛁 ∙ () denotes the divergence operator.

 78

This command is currently a duplicate of gvar_mhd_coeff and will overwrite the

prefactor 𝑁 set with gvar_mhd_coeff. By default the prefactor takes a zero value.

The electric potential filed must be active for the coefficient to have any effect.

See also: gvar_mhd_coeff.

Moments

Syntax: moments [-f <filename> -x <x> <y> -b <bndry_num>]

Function: Calculate moments about a boundary.

Description:

This calculates the moments about a boundary with respect to a specified origin.

Moments are calculated from the cross product 𝒓 × 𝒅𝑭, where 𝒓 is a moment arm vector

from the user-specified centre about which the moment is calculated (<x>, <y>) to

the boundary surface. 𝒅𝑭 is the integral contribution to the body force used by the

forces command to calculate lift and drag. The resulting moments are counter-

clockwise positive. The calculations are only performed if the solution has been

initialised.

The following options are available:
 -f <filename>

 Used to specify a filename <filename> (including extension) to write

(append) the data to. If omitted, the default filename is moments.dat.
-x <x> <y>

Used to specify the coordinates about which to calculate the moment.

The moment arm 𝒓 extends from coordinate (<x>, <y>) to the

boundary surface. The default is the origin (0, 0).
-b <bndry_num>

Used to specify the boundary number (as defined in the viper.cfg

file) over which the moment is to be calculated. Typically the boundary

number would correspond to a closed boundary such as the surface of a

cylinder. The default is 0, corresponding to no specified boundary,

which does not provide a useful output, but merely avoids the simulation

crashing.

Note: The moments command can only be employed in 2D simulations (it does

not work in 3D or SE-Fourier 3D simulations).

See also: forces.

Nu_horiz_2d

Syntax: nu_horiz_2d -x <x1> <x2> [<x2> <x3> <x3> … <xn>]

–y <y1> <y2> [-scheme <scheme> -k <order> -m –f <filename>

-tol <tolerance> -m <depth>]

Function: Calculate the bulk temperature Nusselt number (2D channel flow,

heated bottom wall).
Description:

The Nusselt number is calcuated along the bottom edge of a rectangular region defined

by the coordinates entered with the -x and –y options. The -x flag accepts a space-

separated list of between 2 and 20 x-coordinates in ascending order, which define

between 1 to 19 integration regions for Nusselt number. The –y flag specifies the lower

 79

and upper y-coordinates for the vertical integration. These should span from a heated

bottom boundary to the upper boundary. The Nusselt number is calculated as

𝑁𝑢 =
1

𝐿
∫ 𝑁𝑢𝑤𝑑𝑥

𝑥𝑛

𝑥1
= (

1

𝑥2−𝑥1
∫ 𝑁𝑢𝑤𝑑𝑥

𝑥2

𝑥1
+

1

𝑥3−𝑥2
∫ 𝑁𝑢𝑤𝑑𝑥

𝑥3

𝑥2
+

⋯
1

𝑥𝑛−𝑥𝑛−1
∫ 𝑁𝑢𝑤𝑑𝑥

𝑥𝑛

𝑥𝑥𝑛−1
),

where 𝐿 is the horizontal length of' the heated plate. The local Nusselt number is defined

as

𝑁𝑢𝑤 =
ℎ

𝑇𝑏𝑢𝑙𝑘 − 𝑇𝑤𝑎𝑙𝑙

𝑑𝑇

𝑑𝑦
|

𝑤𝑎𝑙𝑙

,

 where 𝑇𝑤𝑎𝑙𝑙 is the local temperature of the heated (bottom) wall, ℎ is a characteristic

length,
𝑑𝑇

𝑑𝑦
|

𝑤𝑎𝑙𝑙
 is the vertical temperature gradient at the heated (bottom) wall, and

𝑇𝑏𝑢𝑙𝑘 is the bulk temperature of the fluid. The bulk temperature is calculated as

𝑇𝑏𝑢𝑙𝑘 =
∫ 𝑢𝑇

𝑦2

𝑦1
𝑑𝑦

∫ 𝑢
𝑦2

𝑦1
𝑑𝑦

.

The integrations are performed using one of several schemes, the default being the

adaptive Simpson’s rule. The calculations are only performed if the solution has been

initialised.

The following options are available:
-x <x1> <x2> [<x2> <x3> <x3> … <xn>]

Used to specify at least two x-locations for spatial averaging between.

Additional points can be specified (up to 20, any more will be ignored),

and must be in ascending order. If the pairs do not share a point,

integration will be performed between them (e.g. if the pairs were listed

<x1> <x2> <x3> … <xn> instead). Furthermore, the maximum

length of a line in a configuration file is unlikely to permit 20 points

being specified by one nu_horiz_2d call, particularly if they are

quoted to many decimal places (which will give a line not terminated

with a (’) symbol error). Multiple nu_horiz_2d calls are recommend,

which will append the same file if needed (or contact Dr. Gregory

Sheard).
–y <y1> <y2>

Used to specify the lower and upper y-coordinates for vertical

Integration. These must be specified for the command to function.
-scheme <scheme>

An integer flag between 1 and 4 is used to specify the quadrature scheme

to be employed, which choices of:

1: Adaptive trapezoidal scheme (this scheme tends to be slower than the

adaptive Simpson's rule, but may be less erroneous at lower tolerances)

2: Adaptive Simpson's rule (this tends to perform well, and is the default

scheme)

3:Adaptive Gauss-Kronrod scheme (this tends to be slower than the

adaptive Simpson''s rule for a given accuracy)

4: Automatic Simpson's rule (this scheme subdivides all intervals at each

iteration and involves redundant function evaluations, and therefore

tends to be slower than the adaptive Simpson's rule)

If the <scheme> number does not equal 3, the –k option is ignored.

 80

-k <order>

An integer flag between 1 and 6 is used to specify the order of the Gauss-

Kronrod scheme to be used. The corresponding numbers of quadrature

points are:

1: 7 Gauss points, 15 Gauss-Kronrod points

2: 10 Gauss points, 21 Gauss-Kronrod points

3: 15 Gauss points, 31 Gauss-Kronrod points

4: 20 Gauss points, 41 Gauss-Kronrod points

5: 25 Gauss points, 51 Gauss-Kronrod points

6: 30 Gauss points, 61 Gauss-Kronrod points

The default is 3: 15 Gauss points, 31 Gauss-Kronrod points. If the

<scheme> number does not equal 3, the –k option is ignored.

-n

If included, this option switches on the outputting of local wall Nusselt

number to a file named nu_horiz_2d.dat. Output includes 𝑡, 𝑥,

wall temperature, bulk temperature, temperature gradient at wall, and

the calculated 𝑁𝑢𝑥. Note that the data will likely not be ordered in 𝑥,

and will only include data at points evaluated by the quadrature routine.
-f <filename>

Used to specify a filename <filename> (including extension) to write

the data to. If the -f option is not specified, the default filename

nu_horiz_2d.dat is used.

-tol <tolerance>

Used to specify the convergence threshold for both the bulk temperate

and spatial averaging integrations required to evaluate the Nusselt

number. The default is 1e-3. If a negative tolerance is specified, the

default will be used instead.
-m <depth>

The is <depth> an integer parameter used to specify the maximum

recursion depth for adaptive schemes. The defines a lower limit on the

smallest size a single division of the x-domain (from 𝑥1 to 𝑥2) can

becombe. Integration will halt if the division would be smaller than

2^<depth>. The default is arbitrarily large. In practice, a <depth> of

10 is sufficient for the calculation to not be limited by the <depth> for

a complex heat flux distribution (although it could be a lot lower for

simple functions, in which case it is unnecessary to use). The main

reason for specifying a recursion depth is that in rare circumstances a

heat flux distribution may be of the wrong shape to ever allow the

requested tolerance to be reached. If this occurred, the simulation would

integrate indefinitely until the walltime limit kills the task, which is a

waste of computational resources. Sadly, no integration scheme is

perfect.

Note: The nu_horiz_2d command can only be employed in 2D Cartesian

simulations. It will not work in 2D cylindrical, 3D, or SE-Fourier 3D simulations.

It also requires an active scalar field (see btag).

See also: line.

 81

Nu_xsect_2d

Syntax: nu_xsect_2d -b <boundary number> [–f <filename>]

Function: Calculate the bulk temperature Nusselt number for a 2D channel

flow, heated bottom wall.
Description:

Calculate the bulk temperature Nusselt number. The Nusselt number is integrated over

the entire domain, with the heated boundary, which must be specified using the -b

option. This routine is useful for calculating heat transfer for channel flows into the

page. Integration of the bulk temperature is over a cross-section that is normal to the

streamwise direction, and averaging is applied over the entire wall. Note that the 𝑥-

direction is the streamwise direction (into the page), and the 𝑦-direction is normal to

the bottom wall.

The Nusselt number is calculated as (this may or may not be divided by 𝐿)

𝑁𝑢 = ∫ 𝑁𝑢𝑤𝑑𝑥
𝑥2

𝑥1
 .

The local Nusselt number is defined as

𝑁𝑢𝑤 =
𝐿

𝑇𝑏𝑢𝑙𝑘 − 𝑇𝑤𝑎𝑙𝑙

𝑑𝑇

𝑑𝑦
|

𝑤𝑎𝑙𝑙

 ,

where 𝑇𝑤𝑎𝑙𝑙 is the local temperature of the heated (bottom) wall, 𝐿 is the vertical length

of' the heated plate (𝐿 = 𝑥2 − 𝑥1),
𝑑𝑇

𝑑𝑦
|

𝑤𝑎𝑙𝑙
 is the vertical temperature gradient at the

heated (bottom) wall, and 𝑇𝑏𝑢𝑙𝑘 is the bulk temperature of the fluid. The bulk

temperature is calculated as

𝑇𝑏𝑢𝑙𝑘 =
∫ ∫ 𝑢𝑇

𝑥2

𝑥1
𝑑𝑥𝑑𝑦

𝑦2

𝑦1

∫ ∫ 𝑢
𝑥2

𝑥1
𝑑𝑥𝑑𝑦

𝑦2

𝑦1

The integration is performed directly using Gauss-Legendre-Lobatto quadrature on the

spectral elements (an iterative scheme is not used, unlike nu_horiz_2d). The

calculations are only performed if the solution has been initialised.
-b <boundary number>

Used to specify the boundary that corresponds to the heated bottom wall. A

positive integer boundary number must be entered.
-f <filename>

Used to specify a filename <filename> (including extension) to write

the data to. If the -f option is not specified, the default filename

nu_xsect_2d.dat is used.

Note: The nu_xsect_2d command can only be employed in 2D Cartesian

simulations. It will not work in 2D cylindrical, 3D, or SE-Fourier 3D simulations.

It also requires an active scalar field (see btag).

See also: line, nu_horiz_2d.

 82

Onlyw

Syntax: onlyw

Function: Toggles computation of w-velocity-only / all velocity components

on/off.

Description:

This command is implemented only in the 2D Cartesian and axisymmetric cylindrical

solvers. During each time step, 𝑢- and 𝑣-velocity fields are reset to zero, forcing the

solution to evolve only in the 𝑧- (𝜃-) direction, and suppressing any instabilities in the

𝑥-𝑦 (𝑧-𝑟) plane. By default all velocity components are computed.

Order

Syntax: order [-vel <n>] [-s <n>]

Function: Change the order of time integration.

Description:

By default, the velocity field (and the scalar field, if active) is computed to third order

accuracy in time. This command allows the user to alter the order of time integration.

In general, a higher order requires a smaller time step. See Chapter 2; Time Integration,

for more information.

The following options are available:
-vel <n>

Used to specify the order of the velocity field (valid options 1 to 3).
-s <n>

Used to specify the order of the scalar field (valid options 1 to 3).

Overint

Syntax: overint [-n <n>]

Function: Calculate the advection/convection operators at higher resolution.

Description:

This routine is used to integrate the advection terms in the momentum equation and the

convection term in the scalar advection-diffusion equation (if active) at a higher

resolution. This is currently only implemented in the 2D solver, and must be called

before init.

The advection and convection operators involve products of variables with gradients of

other variables. Thus a higher resolution is required to properly resolve the result the

operation. If the operators are calculated using the elemental polynomial basis (i.e. an

element with 𝑃 × 𝑃 quadrature points), aliasing may introduce errors possibly leading

to numerical instability (aliasing is where unresolved high-wavenumber/small-scale

parts of the solution are mapped erroneously back onto the resolved modes). Aliasing

tends to be more of a problem at higher Reynolds/Rayleigh numbers, where the physical

viscosity/thermal diffusivity is insufficient to damp the small-scale errors introduced

by aliasing. Over-integration tackles this problem by evaluating the advection operator

at a higher resolution. The result is then interpolated back to the original elemental basis

order.

The following options are available:
-n <n>

An integer (<n> = 𝑁) specifying the number of elemental interpolation

points (i.e. 𝑁 × 𝑁 points) upon which the advection term is evaluated

 83

within each element. If this option is not specified, the "2/3rds rule" is

invoked, whereby 𝑁 = ceiling(
3𝑃

2
). 𝑁 must be greater than number of

quadrature points originally set using gvar_N in the viper.cfg file.

Pbc

Syntax: pbc

Function: Toggle the high-order Neumann pressure boundary condition

off/on.

Description:

By default, a high-order Neumann boundary condition is imposed on the pressure field

on Dirichlet velocity boundaries. This follows from Karniadakis, Israeli & Orszag

(1991), who showed that this was required to preserve the 3rd-order accuracy of time

integration when using the backwards multistep scheme we employ. This command

should be reserved for problem diagnosis: e.g. troublesome instabilities, etc. as the

computation may reduce to 1st order accuracy in time.

Pert

Syntax: pert <m1> [<m2> <m3> ... <mNfloq_modes>]

Function: Establishes perturbation fields for stability analysis.

Description:

This command must be called prior to a call to init, as it is used to specify a number

of spanwise (2D Cartesian) or azimuthal (2D axisymmetric) wavenumbers for linear

stability analysis. Any number of fields can be specified, though the corresponding

increase in memory resources required to compute the flows increases almost linearly

with (<Nfloq_modes>+1). The spanwise/azimuthal wavelength is 𝐿 =
2𝜋

𝑚
, where 𝑚

is the wavenumber.

Linear stability analysis can be conducted with the driver command lsa. Transient

growth analysis can be conducted using the direct time integration approach of' Barkley,

Blackburn & Sherwin by calling the driver routine tg. Transient growth analysis can

be conducted using a reconstruction from eigenmodes of the linear evolution operator

using the approach of Schmid & Henningson by calling the driver routine svd.

If a scalar field is active, calling pert will also invoke a scalar perturbation field,

which may or may not be desired. This is facilitated for stability analysis of Boussinesq

flows - it is unlikely to be useful elsewhere.

Note: floq has been renamed to pert. Furthermore, pert cannot be called if

an SE/Fourier computation is initialized (do not call fourier if using pert). It

also cannot be invoked in 3D, and init must be called after pert to initialize

time stepping.

See also: arnoldi, lsa, pert2, pert_ke_evol, svd, tg.

 84

Pert2

Syntax: pert2 –fst <m1> -lst <mNfloq_modes> -n

<Nfloq_modes> [-log]

Function: Sets linearised perturbation fields.

Description:

This command must be called prior to a call to init, as it is used to specify a number

of spanwise (Cartesian) or azimuthal (cylindrical) wavenumbers for linear perturbation

fields. The spanwise/azimuthal wavelength is 𝐿 =
2𝜋

𝑚
, where 𝑚 is the wavenumber.

Linear stability analysis can be conducted with the driver command lsa. Transient

growth analysis can be conducted using the direct time integration approach of' Barkley,

Blackburn & Sherwin by calling the driver routine tg. Transient growth analysis can

be conducted using a reconstruction from eigenmodes of the linear evolution operator

using the approach of Schmid & Henningson by calling the driver routine svd.

If a scalar field is active, calling pert2 will also invoke a scalar perturbation field,

which may or may not be desired. This is facilitated for stability analysis of Boussinesq

flows - it is unlikely to be useful elsewhere.

The following options are available:
-fst <m1>

Used to specify the first wavenumber in the sequence, which must be a

non-negative integer. The default value is 0.0. No perturbation fields are

established if this is not specified.
-lst <mNfloq_modes>

Used to specify the last wavenumber in the sequence, which must be a

non-negative integer. The default value is 0.0. No perturbation fields are

established if this is not specified.
-n <Nfloq_modes>

Used to specify the number of wavenumbers in the sequence. The

number of floquet modes be a positive integer. The default value is 0,

which will cause an error if left unmodified. No perturbation fields are

established if this is not specified.
-log

Invokes a logarithmic spread of wavenumbers rather than a linear

spread. This option cannot be used with a zero wavenumber (as

log(0) = −∞).

E.g. 1:

\> pert2 –fst 0.0 –lst 5.0 –n 3

Gives wavenumbers 0.0, 2.5, 5.0.

E.g. 2:

\> pert2 –fst 1.0 –lst 16.0 –n 5 –log

Gives wavenumbers 1.0, 2.0, 4.0, 8.0, 16.0.

Note: pert cannot be called if an SE/Fourier computation is initialized (do not

call fourier if using pert). It also cannot be invoked in 3D, and init must be

called after pert to initialize time stepping.

 85

See also: arnoldi, lsa, pert, pert_ke_evol, svd, tg.

Pert_ke_evol

Syntax: pert_ke_evol [-p <prefix> -k <field>]

Function: Outputs the out-of-plane averaged perturbation kinetic energy

evolution terms.
Description:

This command calculates the local minimum, local maximum and volume integrated

values of the terms of the out-of-plane averaged linearised perturbation kinetic energy

evolution equation. This equation is found by taking the dot product of the perturbation

velocity vector with the momentum equation of the linearised perturbation field, then

averaging in the out-of-plane direction. The calculations will only be perfomed if the

solution has been initialised

The following options are available:
-p <prefix>

Used to specify a string containing the filename prefix (three text files

are output, <prefix>_pert_KE_evol_terms_min.dat,
<prefix>_pert_KE_evol_terms_max.dat,

<prefix>_pert_KE_evol_terms_total.dat for the

minimum, maximum and total values for each term, respectively). If the

-p option is not specified, the default prefix pert_KE_evol.dat is

used.
-k <field>

An integer ranging from 1 to the number of active perturbation fields

(Nfloq_modes) in the simulation from which the min/max/total

values are to be calculated. The default field number is 1.

Note: pert_ke_evol can only be employed in 2D simulations. It also requires

an active linearised perturbation field (a previous pert call).

See also: arnoldi, lsa, pert, pert2.

Pres

Syntax: pres

Function: Toggle pressure substep on/off during time integration.

Description:

Time integration is carried out by solving each of the advection, pressure and viscous

diffusion terms consecutively. This function is used to switch off computation of the

pressure term, which also stops the continuity (conservation of mass) constraint being

enforced. The default setting of this feature is ON. This facility is primarily provided

as a debugging tool.

Note: Switching off the pressure term alters the equations being solved by Viper.

See also: diff, advect.

 86

Quit

Syntax: quit

Function: Exits Viper.

Description:

Viper terminates immediately, and any unsaved work will be lost. This command

performs the same action as stop and exit.

See also: exit, stop.

Rand

Syntax: rand [-l <level> -k <field>]

Function: Add a random perturbation to the velocity field.

Description:

This command adds a small random perturbation to the velocity field of an initialized

computation. This can help accelerate the development of instability or transient flow

features. The random noise will be divergence free if added to the base flow, or if added

to a 3D Fourier simulation. Without a call to rand, the user relies on noise at the limit

of numerical precision to trigger the growth of instabilities. The solution must be

initialised for a random perturbation to be added.

Users should use rand with care if they are restarting a simulation (using load) from

a saved spectral-element/Fourier computation, as the added noise will contaminate time

histories of flow quantities captured over multiple runs.

The following options are available:
-l <level>

Used to set the magnitude (<level>) of the added noise. A positive

value must be specified. By default, <level> is 1e-4. It is distributed

in physical space, not Fourier space, and hence, the random noise will

be distributed differently as the macro-element distribution, or

polynomial order, are varied.
-k <field>

For spectral-element-Fourier three-dimensional simulations, this option

allows only a specified Fourier mode (i.e. <field> = 1, 2, 3, etc.) to

be perturbed, rather than all fields (which is the default behaviour). The

<field> value must be no greater than the number of Fourier modes.

For computations where linearized perturbation fields are being evolved,

this option can be used to specify a single mode to be perturbed

(<field> = 0 is the base flow, and positive integers (1, 2, 3, etc.)

identify each linearized perturbation field). The <field> value must

be no greater than the number of perturbation fields which are active.

See also: fourier, pert.

Reconload

Syntax: reconload [-f <filename> -i <scheme> -p –t <tau>]

Function: Load velocity fields from a data file saved using reconstore.

Description:

If the user has earlier stored snapshots of the flow field using reconstore, then this

command is used to load the data from the file, and directs Viper to reconstruct the

 87

velocity field from these snapshots instead of using the standard time integration

scheme. The velocity, pressure, and scalar fields will be reconstructed, provided they

were stored in the file. The user must ensure that the computation proceeding after

reconload is consistent with that used when reconstore was called. For

instance, a different mesh, polynomial order, setting for wvel, presence or otherwise

of a scalar field, could all lead to unpredictable results.

The following options are available:
-f <filename>

 Used to specify a filename <filename> (including extension) to write

the data to. If omitted, the default filename is reconstore.dat.

-i <scheme>

Used to specify the interpolation scheme used. Available choices are

fourier (default), polynomial, or akima (e.g. –i fourier, –i poly,

–i akima). Akima interpolation is preferred to polynomial

interpolation as it is provides a much smoother curve without the

spurious wiggles plaguing polynomial and cubic spline interpolation

schemes.
-p

Used to reconstruct the pressure field. By default, the pressure field is

not reconstructed (saving compute time), as it is not needed for stability

analysis. However, if the user wishes to reconstruct the pressure field

(e.g. for generating plots of the pressure field), the –p option must be

specified when this command is called.
-t <tau>

The file created using reconstore has no information about the time

interval used to store the snapshots of the solution: the user specifies this

with the <tau> parameter, which should be set to the full time interval

over which the snapshot data was acquired (usually this would be the

period of the solution). However, as <tau> is supplied with this

command, which is called at the beginning of a computation used to

perform a subsequent stability analysis (for instance), the user could set

<tau> to be different from the original period, if they desired. This

would rarely be required. Note: For Fourier interpolation, <tau> is the

period of the flow field, whereas for polynomial interpolation, <tau>

is the time between the first and last snapshot. Polynomial interpolation

is only useful if the time of the computation remains within 0 < 𝑡 <

<tau>, to avoid ludicrous extrapolation errors.

Note: reconload should be called after init, and before time stepping

commences.

See also: reconstore.

Reconstore

Syntax: reconstore [-n <Nfields> -f <filename>]

Function: Stores velocity fields for later reconstruction by interpolation.

Description:

Sometimes it is convenient to store a time-varying velocity field solution as a series of

snapshots for later reconstruction using an interpolation scheme. This is particularly

helpful during stability analysis, where it could be wasteful to continue to time integrate

 88

a periodic base flow over the numerous periods required for the eigenvalue iterations

to converge. This command is used to store snapshots of the flow field for later

interpolation. The snapshots must be stored at equi-spaced time intervals.

Reconstruction is achieved by calling reconload, for which a Fourier interpolation

can be used if the stored flow is periodic, and either polynomial or Akima spline

interpolation is available for transient fields. If the user wishes to store a periodic

solution (for reconstruction using Fourier interpolation), they must ensure that the

solution at the beginning of the period is only stored ONCE, and not again at the end of

the period. For reconstruction using polynomial and Akima interpolation, snapshots of

the first and last fields must be explicitly stored, as they are not necessarily the same.

On the first call to this command, the data structures are created, based on the active

fields in the computation (e.g. 𝑢, 𝑣, 𝑤, 𝑝 and/or 𝑠), and the current velocity field is

saved as the first snapshot. On subsequent calls to reconstore, any supplied options

(-n or -f) are ignored, and the velocity field at the present time is stored as subsequent

snapshots.

The following options are available:
-n <Nfields>

Used to specify the number of field snapshots to save.interpolation

scheme used. If reconstore is called in an SE/Fourier 3D

computation, only the (real) fundamental spanwise/azimuthal mode is

stored: in other words, the spanwise-averaged velocity field is stored,

not the three-dimensional solution. The default is <Nfields> = 1.
-f <filename>

 Used to specify a filename <filename> (including extension) to save

all <Nfields> to (all fields are saved after the final snapshot is

stored). If omitted, the default filename is reconstore.dat.

Note: reconstore should first be called after INIT, and at a time when the flow

has been advanced to the point that the first field is to be stored.

See also: reconload.

Rotate

Syntax: rotate <x> <y> <omega>

Function: Specify a rotating frame of reference for stability analysis on a

frozen base flow.

Description:

The command freeze artificially stops any time evolution of a flow field. For some

flows, such as co-rotating vortex pairs, the base flow would otherwise rotate about some

point in the flow. In essence, freeze transfers the computation into a frame of

reference rotating with the base flow. However, for stability analysis, the evolution of

the perturbation field is still computed as if it were in an inertial reference frame.

Therefore, Coriolis and centrifugal accelerations due to the rotation are not included in

the computation.

The command rotate is used to correct for these additional acceleration terms. The

command rotate only has an effect on the perturbation field(s) of a two-dimensional

Cartesian (not asixymmetric) computation where freeze has been called.

The command rotate takes as input the <x> and <y> coordinates of the centre of

rotation of the computational domain, and the angular velocity of the rotation

 89

(<omega>, defined positive for anti-clockwise rotation, and expressed in radian per

unit time).

The command rotate makes the following corrections to the calculation of the

perturbation field:

1) The solid-body rotation of the reference frame is subtracted from the frozen

rotating base flow, U, supplied to the advection term for calculation of the

perturbation field evolution (this puts the base flow in the rotating frame of

reference consistent with the perturbation field).

2) The correction due to the Coriolis acceleration −2𝝎 × 𝐯𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔 is added to the

evolution equations of the perturbation field.

Note that no contribution due to centrifugal effects is required, as this affects the

evolution of the base flow.

See also: freeze.

Sample

Syntax: sample [-f <filename> -k <field> -x <x> <y> <z>]

Function: Get flow parameters at a physical location within the computational

domain.

Description:

This command outputs the time (𝑡), the velocity components (𝑢, 𝑣, 𝑤), velocity

gradients (𝑑𝑢/𝑑𝑥, etc.), kinematic static pressure (𝑝), and strain rate magnitude at a

physical point on the mesh. The sample command will interpolate the flow quantities

to the requested location, rather than just output the values at the nearest mesh node.

Furthermore, the points are calculated and outputted to file at the time that sample is

called. The command sample can only be called after init. This command will

append new data to the end of an existing file of the same name, if one exists.

The following options are available:
 -f <filename>

 Used to specify a filename <filename> (including extension) to save

the flow values to. If the -f option is not specified, the default filename

sample.dat is used.
 -k <field>

 Used to specify an integer perturbation field number (i.e., 1, 2, ... ,

Nfloq_modes, when Floquet analysis is active) to interpolate data

from. The default is <field> = 0, corresponding to the base flow.

 -x <x> <y> <z>

Used to specify the (x,y) or (x,y,z) coordinates of a point in the

computational domain at which to interpolate the flow values. Any

coordinates not explicitly specified are taken to be equal to zero. The z-

coordinate is used for hexahedral 3D runs, spectral element-Fourier 3D runs,

and 3D perturbation fields.

 90

Samplef

Syntax: samplef [-f <filename> -x <x> <y>]

Function: Return the Fourier coefficients of the velocity field at a point.

Description:

This command outputs the time (t), the supplied spatial coordinates, and the Fourier

coefficients of the velocity field at a physical point on the mesh samplef will

interpolate the flow quantities to the requested location, rather than just output the

values at the nearest mesh node. Furthermore, the points are calculated and output to

file at the time that samplef is called. The command samplef can only be called

after init. This command will append new data to the end of an existing file of the

same name, if one exists.

The following options are available:
 -f <filename>

 Used to specify a filename <filename> (including extension) to save

the flow values to. If the -f option is not specified, the default filename

samplef.dat is used.
-x <x> <y>

 Used to specify the spatial coordinates (in the 𝑥-𝑦 or 𝑧-𝑟 plane) of a

point in the computational domain at which the Fourier coefficients are

to be interpolated. Any coordinates not explicitly specified are taken to

be equal to zero.

Note: samplef can only be called during SE/Fourier computations.

See also: autocorrf, energyf, fourier.

Save

Syntax: save [-f <filename> -hugh -k <floq_mode> -m –s]

Function: Save flow field vectors to file.

Description:

Saves flow field vectors, as well as computation parameters t, dt, RKV, and mesh

parameters Nelem, Nglobal, Nqdpts to a user-specified file. The computation can

only be saved if the simulation has been initialised. The saved fields can then be

reloaded using the load command to re-start a computation.

Update 4/11/2006: This command now saves files containing flow fields at the three

previous time steps. This avoids the annoying perturbation that was added to flows

upon re-start.

The following options are available:
 -f <filename>

 Used to specify a filename <filename> (including extension) to save

the binary file to. If the -f option is not specified, the default filename

ff_out.dat is used.
 -hugh

Used to write out 𝑢, 𝑣, 𝑤 and 𝑝 fileds in ASCII format readable by

SEMTEX, Prof Hugh Blackburn''s spectral element code (2D and

perturbation fields only). Note: The -k option must be used to specify

which perturbation field is to be written to the file.

 91

 -k <floq_mode>

 Used to specify an integer perturbation field number (i.e., 1, 2, ...,

<Nfloq_modes>, when Floquet analysis is active) to load a saved

flow field into. The default is <floq_mode> = 0, corresponding to the

base flow.
 -m

 Specifies that you wish to save spatial coordinates to file also (this

feature is only required if you wish to load data onto a different macro-

element mesh.
 -s

 Used to include a number sequence in the filename. A 4-digit integer

(e.g., , , , etc.) is added to the default or user-specified

filename, just prior to the file extension, if one is specified. Numbering

begins at 1, and increments every time a save call is made with the -s

option.

See also: load.

Scalar

Syntax: scalar <operation>

Function: Used to invoke functions relating to transport of a scalar field.

Description:

Viper facilitates the transport of a passive scalar field (variable 𝑆) on a two- or three-

dimensional flow field. The transport is computed using the same backwards-multistep

time integration approach as used to solve the velocity field. If a scalar field is active

and pert is called, a scalar perturbation field is established. To activate advection-

diffusion transport of the scalar field S, the user must set boundary conditions for the

scalar field in the viper.cfg file.

The following scalar transport option can be invoked with <operation> values:

 scalar diff <coeff>

 Defines the coefficient of diffusion for the scalar field. By default, a

coefficient of diffusion of <coeff> = 1.0 is used. The value of this

coefficient can be set in the viper.cfg file (see help

gvar_scalar_diff for more information). A larger value will

result in more diffusion (smearing) of the scalar field. A value of zero

(pure advection) is not permitted due to numerical stability implications.

See also: gvar_scalar_diff, pert.

Set

Syntax: set <variable> [=] <param_1> [... <param_n>]

Function: Change the value of a configuration variable.

Description:

Change the value of a variable - supported variables are:

 RKV Reciprocal kinematic viscosity

 dt Time step

 t Time

 92

The value of the variable and other parameters are input as <param> values as

required. If the time step is changed, the flow fields at previous time intervals will be

interpolated to the new times. Set dt should be used after all load calls and before

init. Note that if typing an equal signs, spaces must be placed on either side of the

equals sign. For example, to set the reciprocal kinematic viscosity to 173.5, type:

\> set RKV 173.5

or

\> set RKV = 173.5

but not

\> set RKV=173.5

Note that as an alternative usage, users may change variables RKV, dt, or t by omitting

the set command: i.e. to change the time step, users could type:

\> dt 0.004

or

\> dt = 0.004

Spreadscalar

Syntax: spreadscalar [-r <newrange> -p <pivotval>]

Function: Rescale the scalar field to spread the range of values.

Description:

In some heat transfer jobs, such as duct flows with periodic boundaries for

inflow/outflow, the scalar (temperature) boundary conditions might be set up to specify

a hot temperature on one wall, while the other boundaries are insulated. Over time, the

scalar field will diffuse towards a constant value equal to the hot wall temperature

throughout the domain. In these scenarios, the actual temperature values are arbitrary;

the focus is instead on the normalised wall heat transfer rates. This command combats

the tendency of temperatures to asymptote to a constant value in these situations by

rescaling the range of the field. It can be called at any time during time integration (i.e.

after init).

The following options are available:
 -r <newrange>

 Used to specify the range of the scalar field after rescaling. The

command will first record the difference between the maximum and

minimum values of the field. A scale factor is then calculated that when

applied to the scalar field will produce a difference between maximum

and minimum values equal to <newrange>. This must be a positive

value. If this option is not specified, no rescaling is performed.

 93

 -p <pivotval>

 Used to specify a value about which to rescale. For example, if a duct

wall has a specified hot temperature value of, say, 1.0, then setting

<pivotval> = 1.0 will scale around this value so the duct wall

temperature is unaffected. If this option is not provided, a default value

<pivotval> = 0.0 is used.

Note: spreadscalar requires a scalar field to be active. It also is yet to be

implemented in SE-Fourier 3D computations.

Stab

Syntax: stab [<filename>]

Function: Calculate Floquet multipliers for each linear instability mode.

Description:

If Floquet linear stability analysis is being performed (call pert prior to init), this

command calculates an estimate of the magnitude of the Floquet multiplier (|𝜇|) for

each mode, using the power method. The Floquet multiplier is a complex number

related to the growth rate 𝜎, and the base flow period 𝑇, by

𝜇 ≡ 𝑒𝜎𝑇 .

Viper estimates |𝜇| by comparing the change in the magnitude of each perturbation

field with their previous values, and evaluating growth rates based on the previous time

at which a stab command was called. Over a sufficient number of periods, all but the

fastest-growing mode wash out of the solution. If 𝑁(𝑡) is a perturbation field integral

evaluated at time 𝑡 (when stab was called), then

|𝜇| =
𝑁(𝑡 + 𝑇)

𝑁(𝑡)
 ,

providing the flow has evolved for a sufficient number of periods to isolate only the

fastest-growing mode at the given wavelength. The calculations can only be performed

if the solution has been initialised, in a simulation with active perturbation fields.

If users wish to resolve the complex components of an instability mode, or multiple

modes at a single wavelength, then they should employ arnoldi instead of stab,

which determines eigenvalues and eigenvectors using an Implicitly Restarted Arnoldi

Method.

The following options are available:
 <filename>

The period between stab calls and the resulting Floquet multiplier

estimates are written to a specified file <filename> (including

extension). If not specified, the default filename floq_mult.dat is

used.

See also: arnoldi, pert.

 94

Step

Syntax: step [<num_steps>]

Function: Performs <num_steps> time integration steps.

Description:

If <num_steps> is not specified, a single time step is completed, otherwise

<num_steps> steps are taken. If zero were specified no time integration is performed.

For backwards time integration using the adjoint of the linearised Navier-Stokes

equations, supply a negative value to <num_steps>, i.e. step -5 would evolve a

linearised perturbation field 5 steps backwards in time. Note that this will only work

with a frozen (see freeze) or a reconstructed (see reconload/reconstore) two-

dimensional or axisymmetric base flow. Note that time stepping is only performed if

the solution has been initialised. If time stepping has been halted by a stop criterion,

calling step again will restart the process. If particle tracking is in use, time stepping

will occur in increments of Ntracksteps.

See also: freeze, reconload, reconstore, stopcrit.

Stop

Syntax: stop

Function: Exits Viper.

Description:

Viper terminates immediately, and any unsaved work will be lost. This command

performs the same action as exit and quit.

See also: exit, quit.

Stopcrit

Syntax: stopcrit [<min_du>]

Function: Sets a stopping criterion on time stepping.

Description:

When evolving a solution to a time invariant (steady) state, the max du monitor,

which monitors the maximum change in velocity between each successive time steps,

reduces towards zero. It is sometimes desirable to compute only sufficient time steps

to reach a steady state.

To facilitate this, the stopcrit command can be called to specify a critical value of

max du, beyond which no further time stepping is conducted. By default, this function

establishes a stopping criterion of 1 × 10−12 (1e10-12). If this function is not called,

time integration will not be prematurely arrested, regardless of the value of max du.

Notes:

1) This criterion also ceases any particle tracking or scalar field evolution.

2) Subsequent calls to step (e.g., in a subsequent loop iteration, say) will

allow time stepping to resume, subject to the same stopping criterion.

3) The stopping criterion can be changed at any time. To avoid stopping a set

of timesteps early, set <min_du> to a negative value.

4) After a set of time steps are ceased subject to this criterion, control passes

to the next input command.

See also: step.

 95

Svd

Syntax: svd [–fields [u][v][w][s] -prefix <string> -nev

<integer> -ncv <integer> -Nsteps <integer> -save -tecp –

times <integer> <real> <real> -tol <integer> -vizmat]

Function: Find leading singular value and right singular vector of a linear time

integration operator.

Note: This is a driver routine. It automatically executes a loop, calls the Arnoldi

command, and conducts the required time integration. The solution must have

been initialised (init) and perturbation fields must be active (pert).

Description:

Linear stability analysis (activated using pert, and conducted using arnoldi)

returns the eigenmodes of a linear operator matrix [𝐴]. This command computes an

approximation of the leading singular value and corresponding right singular vector of

this matrix. These correspond to transient growth properties 𝐺(𝜏) and the corresponding

initial vector field producing this peak growth, where tau is the time interval used in the

time itegration of the perturbation field. The matrix [𝐴] is partially reconstructed using

eigenvectors and eigenvalues found using the Arnoldi method. The approximation

improves as the number nev of requested eigenvalues increases. If only one eigenmode

is requested, the result will correspond to the leading linear instability mode. The code

outputs a file "<prefix>eigenvalues.dat", containing the positive spectrum of

eigenvalues returned from the linear stability analysis (these are used to estimate the

transient growth of the system). The code also outputs a file

""<prefix>sqr_singular_values.dat", containing the squared singular

values at each requested time: the square of the singular value equates to 𝐺(𝜏), or the

amplification of the optimal initial condition for a given time interval.

The following options are available:
 -fields [u] [v] [w] [s]

Used to specify which fields are included in the energy norm to be

optimized. By default, the norm is a kinetic energy, featuring 𝑢2 + 𝑣2 +
𝑤2. If a scalar field is active, 𝑠2 is also included in the norm by default.

However, users might only want to optimize a norm containing energy

in the horizontal component of velocity, 𝐸 = 𝑢2, say (using -fields

u), or the scalar field only, 𝐸 = 𝑠2, say (using -fields s). This

option facilitates these capabilities.
 -prefix <string>

 Used to specify a string containing the filename prefix for eventual

output of the SVD solver. If the -prefix is not specified, the default

prefix svd_ is used.
 -nev <integer>

 Used to specify the number of leading eigenmodes (number of

eigenvalues) to be found by the Arnoldi solver prior to the SVD solution

phase. These eigenmodes are used to construct an aproximation to the

linear operator matrix A. The default value (and minimum allowable

value) is 1.
 -ncv <integer>

 Used to specify the length of the Arnoldi factorization used by the

Arnoldi solver prior to the SVD solution phase. The default value is 6,

and the minimum allowable value is (nev+2)].
 -Nsteps <integer>

 96

 Used to specify the number of time steps per Arnoldi iteration update.

The time interval 𝜏 is calculated as 𝑑𝑡 ∗ 𝑁𝑠𝑡𝑒𝑝𝑠. The default value is

1000, and the minimum allowable value is 1.
 -save

 If included, the solver will output Viper restart files of the right singular

vectors (optimal initial conditions) found for each requested 𝜏 value.
 -tecp

 If included, the solver will output Tecplot files of the right singular

vectors (optimal initial conditions) found for each requested 𝜏 value.
 -times <integer> <real> <real>

 Used to specify the spread of 𝜏 values at which 𝐺(𝜏) is to be

approximated. The first number is an integer: the magnitude specifies

the number of 𝜏 values, and the sign specifies the spread of values

(positive for linear intervals, negative for an exponential spread -

intervals increase at larger 𝜏 values). The next two floating point

numbers provide the start and end 𝜏 values for the spread of 𝜏 values to

be analysed.
 -tol <integer>

 Used to specify the exponent of the convergence criterion used for the

Arnoldi solver (i.e. 10^<integer>). The default value is −7,

corresponding to 10−7.
 -vizmat

 If included, images will be output in the .pgm format showing the

structure of the matrices formed in the calculation of the transient

growth.

Svv

Syntax: svv [-epsi <epsi> -p <Pcut> -f <filter>]

Function: Activate spectral vanishing viscosity (SVV) filtering of velocity /

scalar fields.
Description:

Spectral vanishing viscosity is an approach for stabilising high Reynolds/Rayleigh

number spectral element simulations by progressively applying a greater amount of

artificial viscosity to higher-wavenumber spatial modes of the solution to help dampen

spurious oscillations that can arise due to numerical instability or quadrature errors, etc.

For further details see Kirby & Sherwin (Comput. Methods Appl. Mech. Eng., 2006),

Malm et al. (J. Sci. Comput., 2013).

The following options are available:
 -epsi <epsi>

 Used to specify the value of <epsi>, which is a non-negative real

number that defines the strength of the filter. The default value is 0.0 (no

filter).
 -p <Pcut>

Used to specify the value of <Pcut>, which is a positive integer less

than the <number of quadrature points> – 2, and specifies the mode

numbers beyond which the filter is applied. For instance, if a simulation

has spectral elements with 15 x 15 quadrature points, and <Pcut> = 10,

the filter will only be applied to mode 11 and higher in either direction.

 97

Polynomials of order > 𝑂(𝑥<𝑷𝒄𝒖𝒕>+1) will be filtered. If this option is

not specified, by default <Pcut> is set equal to the order of the

elements so that no filter is applied.
 -f <filter>

 This option determines the selection of modes for filtering. If 𝑝 and 𝑞

express the orders of each tensor-product polynomial mode forming the

modal basis over each quadrilateral spectral element, then two

possibilities are available for application of the filter:

 <filter> = 1: The filter is applied if 𝑝 or 𝑞 are greater than <Pcut>.

 <filter> = 2: The filter is applied if 𝑝 + 𝑞 is greater than <Pcut>.

These correspond to equations (16) and (15), respectively, from Kirby

& Sherwin (2006). By default, <filter> = 1 if this option is not

specified. If a value other than 1 or 2, the value of <Pcut> will be set

to 0.

Note: svv must be called before init. Furthermore svv can only be employed

in two-dimensional simulations (not 3D or SE-Fourier 3D).

Tec_floq (Deleted)

Syntax: NA

Function: Generate 3D vorticity plot of Floquet mode for Tecplot.

Description:

This command has been deleted from Viper. The same effect (with more flexibility)

can be achieved by loading base flow and required perturbation fields (load -k) into

the appropriate Fourier modes of an SE-Fourier 3D simulation and use the regular

tecp output from there. The amplitude of the perturbation field can be scaled up or

down for visualization purposes using the options of the load command.

Tecp

Syntax: tecp [-buoyancy –cartesian –cylindrical -e -f

<filename> -k <Floquet_mode> -m <mode_num> -n

<plot_interp_pts> -nozero -rotate <deg> -s –t –u

<function> –vars [<varlist>]]

Function: Creates a Tecplot binary data file.

Description:

Creates a Tecplot .plt binary (or .dat ASCII) data file containing various flow

quantities specified by the user. If tecp is called before init, only the mesh (𝑥, 𝑦,

and 𝑧) coordinates are written to the Tecplot binary file, with the default file name

tec_mesh.plt. If tecp is called after init, the mesh information and other

requested variables are output, with the default filename tec_out.plt being used.

The following options are available:
 -buoyancy

 This option requires a Boussinesq buoyancy-driven flow simulation.

This option adds the base flow available potential energy density field

to the output variables.

 98

 -cartesian

 For SE/Fourier 3D computations in cylindrical coordinates, this option

causes the velocity components to be output in the Tecplot data file in a

Cartesian sense: i.e., (𝑢, 𝑣, 𝑤). This can be useful for vector plots in

Tecplot. This is option can be abbreviated to -ca.

 -cylindrical

 For SE/Fourier 3D computations in cylindrical coordinates, this option

causes the velocity components to be output in the Tecplot data file in a

cylindrical sense: i.e., (𝑢𝑧, 𝑢𝑟, 𝑢𝜃), or axial, radial and azimuthal

components, respectively.' This is the default behaviour. This option can

be abbreviated to -cy.

 -e

 If the –e option is specified when outputting a linearised perturbation

field, the various out-of-plane averaged perturbation kinetic energy

evolution equation terms are added.
 -f <filename>

 Used to specify a filename <filename> (including extension) to save

the Tecplot binary file to. If the -f option is not specified, the default

filenames tec_out.plt or tec_mesh.plt are used, for post- and

pre-initialization calls respectively.
 -k <Floquet_mode>

 Used to specify which velocity field is to be saved. <Floquet_mode>

can be an integer between 0 and the maximum number of Floquet modes

being computed. If this option is omitted, the default base flow field

(mode zero) is saved. If Floquet stability analysis is not being performed,

the base flow is output.
 -m <mode_num>

 In spectral-element/Fourier computations, this feature can be used to

extract a single Fourier mode from the solution. The parameter

<mode_num> is an integer, and expresses the number of the desired

Fourier mode. That is, if you are computing a solution with 10 Fourier

planes, this corresponds to 6 Fourier modes: the fundamental mode (0)

plus 5 modes. Therefore <mode_num> may take a value from 0 to 5.

If <mode_num> exceeds 5, it will default to 5, and if it is negative, this

feature is ignored.

 As well as providing the capability of isolating the contribution of a

single mode in a 3D SE/Fourier computation, this facility can be used to

delete modes from a plot of an SE/Fourier computation. i.e., The data

set in the Tecplot file generated using this option may be subtracted

within Tecplot from a file containing all Fourier modes generated the

same solution.
 -n <plot_interp_pts>

 a) For 2D quadrilateral or 3D hexahedral simulations:

 Used to specify a number of interpolation points along each element

dimension for plotting. If this option is omitted, the data is plotted on

the spectral element mesh interpolation points. Otherwise, an even

distribution of points is used. <plot_interp_pts> must be an

integer of at least 2. This option is helpful for improving the quality of

the resulting plots.'

 99

 b) For 3D spectral-element/Fourier simulations:

 Used to specify the plotting resolution in the spanwise/azimuthal

direction. If omitted, the number of Fourier planes is used by default,

but experience shows that to resolve detail in the highest mode of the

simulation, a value at least 4 times the number of planes should be

used.
 -nozero

 In spectral element-Fourier 3D computations, this removes the

fundamental (or zero-wavenumber mode from the solution when

generating the output. Note that the fundamental mode is removed

AFTER all fields have been calculated.
 -rotate <deg>

 Used to rotate the output (2D or 3D hexahedral only) by angle <deg>

clockwise around the x-y plane. E.g. "-rotate 35.0 " will cause

the Tecplot data file to display the mesh rotated clockwise by 35 degrees.
 -s

 Used to include a number sequence in the filename. A 4-digit integer

(e.g., , , , etc.) is added to the default or user-specified

filename, just prior to the file extension, if one is specified. Numbering

begins at 1, and increments every time a tecp call is made with the -s

option.
 -t

 Specifies that data is to be written to an ASCII data file (Tecplot .dat

file) rather than the default .plt file format.
 -u <function>

 Used to supply a user-specified function of 𝑡, 𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤, 𝑠, 𝑝, 𝑆𝑅 and

spatial derivatives of velocity and scalar fields to plot in the Tecplot

binary file.
 -vars <varlist>

 This option replaces the -o and -sr options (which have been deleted),

providing more control over which variables are included in Tecplot

files. This is most useful where file sizes are a problem. This option is

implemented for 2D, 3D, and SE/Fourier computations. The parameters

<varlist> is a list of space-separated variable names taken from the

following list:

 - vel: Velocity components,

 - p: Pressure,

 - vort: Vorticity components,'

 - ddx: Spatial velocity gradients (𝑑𝑢/𝑑𝑥, 𝑑𝑤/𝑑𝑦, 𝑑𝑣/𝑑𝑧, etc.),

 - sr: Strain rate magnitude (leading eigenvalue of strain

tensor),

 - lambda2: 2nd eigenvalue of tensor of velocity gradients suggested

by Jeong & Hussain (1995) to identify vortex structures,

 - psi: Streamfunction (2D simulations only).

By default vel, p and vort are provided without needing to specify a variable list.

The fields vel_mag and grad_u are no longer available, as they can be calculated

trivially within Tecplot from the vel or ddx fields, respectively. This is option can be

abbreviated to -v.

 100

Tg

Syntax: tg [-prefix <string> -nev <integer> -ncv

<integer> -tol <integer> -Nsteps <integer>]

Function: Driver routine for transient growth analysis.

Note: This is a driver routine. It automatically executes a loop, calls the Arnoldi

command, and conducts the required time integration. The solution must have

been initialised (init) and perturbation fields must be active (pert). The

computation must also be two-dimensional and either freeze or reconload

must be used with tg, else no computations can be performed.

Description:

Transient growth analysis is used to find the maximum possible amplification of energy

of' a linear mode over a specified time interval, 𝜏, and the corresponding optimal initial

condition.

The following options are available:
-prefix <string>

Used to specify a filename prefix for eventual output of the TG solver.

The default is tg_.

-nev <integer>

Used to specify the number of leading eigenmodes (number of

eigenvalues) to be found by the Arnoldi solver. The default value (and

minimum allowable value) is 1.
-ncv <integer>

Used to specify the length of the Arnoldi factorization used by the

Arnoldi solver. The default value is 6, and the minimum allowable value

is (nev+2)].

-tol <integer>

Used to specify the exponent of the convergence criterion used for the

Arnoldi solver (i.e. 10^<integer>). The default value is −7,

corresponding to 10−7.
 -Nsteps <integer>

Used to specify the number of time steps per Arnoldi iteration update.

The time interval 𝜏 is calculated as 𝑑𝑡 ∗ 𝑁𝑠𝑡𝑒𝑝𝑠. The default value is

1000, and the minimum allowable value is 1.

See also: freeze, init, pert, reconload, transgrowth.

Tic

Syntax: tic

Function: Start stopwatch timer.

Description:

tic starts the stopwatch timer. The internal system time is recorded, and elapsed time

can be displayed by calling the toc command.

See also: toc.

 101

Timeavg

Syntax: timeavg [-save <filename> -tecp <filename> -u

<function> -vars [<varlist>]]

Function: Driver routine for time averaging of flow solution.

Note: This is a driver routine. The solution must have been initialised (init).

Description:

This command facilitates the recording of a time average of the flow solution. This

command must be called after init. When it is first called, memory is allocated to

store the time average of the flow solution, and the current field is stored (being the

"time average" of a single field). Every subsequent call to this command updates the

estimate of the time average, by scaling down the stored previous time average estimate

by 𝑁/(𝑁 + 1), where 𝑁 is the number of fields already stored, then adding the new

field scaled down by 1/(𝑁 + 1).

Note on usage: The time average is estimated by sum(𝑢𝑖)/𝑁, where 𝑁 is the number

of stored fields, and 𝑢𝑖 is the 𝑖′𝑡ℎ stored field. It is therefore a discrete mean estimate,

and will be closer to the theoretical exact mean for smaller time intervals between each

timeavg call, and for larger 𝑁.

Example of usage - in this example the time-average estimate is updated every 10 time

steps, but to save overall computation time, the time-averaged fields are output to file

once every 500 calls (i.e. once every 5000 time steps). This is achieved using nested

loops in a macro file or from the Viper command line:

\> loop 100

\> loop 500

\> step 10

\> timeavg

\> endl

\> timeavg –save tavg_save.dat –tecp tavg_tecp.plt …

 -vars vel p vort ddx

\> endl

The following options are available:
-save <filename>

Save the current estimate of the time-averaged flow fields to a Viper

binary restart file with specified <filename> (preferred extension

.dat).
-tecp <filename>

Save the current estimate of the time-averaged flow fields to a Tecplot

file with specified <filename> (preferred extension .plt).
 -u <function>

 Used to supply a user-specified function of 𝑡, 𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤, 𝑠, 𝑝, 𝑆𝑅 and

spatial derivatives of velocity and scalar fields to plot in the Tecplot

binary file.
 -vars <varlist>

 This option replaces the -o and -sr options (which have been deleted),

providing more control over which variables are included in Tecplot

files. This is most useful where file sizes are a problem. This option is

implemented for 2D, 3D, and SE/Fourier computations. The parameters

 102

<varlist> is a list of space-separated variable names taken from the

following list:

 - vel: Velocity components,

 - p: Pressure,

 - vort: Vorticity components,'

 - ddx: Spatial velocity gradients (𝑑𝑢/𝑑𝑥, 𝑑𝑤/𝑑𝑦, 𝑑𝑣/𝑑𝑧, etc.),

 - sr: Strain rate magnitude (leading eigenvalue of strain

tensor),

 - lambda2: 2nd eigenvalue of tensor of velocity gradients suggested

by Jeong & Hussain (1995) to identify vortex structures,

 - psi: Streamfunction (2D simulations only).

By default vel, p and vort are provided without needing to specify a variable list.

This option can be abbreviated to -v.

Toc

Syntax: toc

Function: Display elapsed time from stopwatch.

Description:

When toc is called, the elapsed time in seconds since tic was last called is output to

screen. If tic has not been called, toc has no effect. Multiple toc calls may follow

a single call to tic.

See also: tic.

Tony_psi

Syntax: tony_psi [-f <filename> -n <points> -r <r_min>

<r_max> -w <omega> -z <z_val>]

Function: Output streamfunction in a rotating frame from an SE-Fourier 3D

run.

Description:

This routine calculates the 2D streamfunction on a plane of constant z from an SE-

Fourier 3D simulation in cylindrical coordinates. The streamfunction is computed

relative to a rotating reference frame. This computation can only be performed if the

solution has been initialised. It can only be employed in SE-Fourier 3D simulations in

cylindrical (axi) coordinates.

The following options are available:
 -f <filename>

 Used to specify a filename <filename> (including extension) to save

the binary file to. If the -f option is not specified, the default filename

tony_psi.dat is used.
-n <points>

Used to specify the number of discrete points in the radial direction over

which the interpolation of data for evaluation of the streamfunction is to

take place. More points will improve the accuracy of the answer, but will

incur a higher cost. <points> must be an integer >= 2. The default

value is <points> = 100.
-r <r_min> <r_max>

 103

Used to specify the minimum and maximum radial coordinates between

which the streamfunction is evaluated. By default, <r_min> = 0.0 and

<r_max> = the maximum radial coordinate in the mesh (which may or

may not be within the domain at the chosen z-value, so this option should

not be omitted). <r_max> must be greater than <r_min> and both

must lie within the domain.
-w <omega>

Used to specify any real value for the angular velocity of a rotating

reference frame (taken relative to the reference frame of the simulation)

upon which to compute the streamfunction. The azimuthal velocity will

be altered by 𝑢𝜃 = 𝑢𝜃,𝑜𝑙𝑑 − <omega> ∙ 𝑟. By default, <omega> = 0

(i.e. no adjustment for a rotating reference frame).
-z <z_val>

Used to specify the z-coordinate of the 𝑟-𝜃 plane on which the

streamfunction is to be specified. By default, the mid-point of the range

of 𝑧-values in the mesh is chosen.

Track

Syntax: track <operation>

Function: Used to invoke functions relating to passive tracer particle tracking.

Description:

Viper facilitates an accurate and flexible particle tracking facility. A (nearly) fourth-

order accurate time integration scheme is used to advance the positions of passive

virtual particles in the flow. This scheme employs a 4th-order Runge—Kutta method

to advance particles within elements, and a series of linear increments to step to and

across element boundaries (see Coppola, Sherwin & Peiró, J. Comput. Phys. 172, 356,

2001). Particles can either be injected from one or many spatial positions in the flow,

or the flow can be seeded with a uniform concentration of particles.

Several particle tracking options can be invoked with the following <operation>

values:
 track diff <Sc>

 By default, particles transport with no diffusion, precisely following the

flow. This command activates diffusion by means of a Gaussian-

distributed random walk, whereby particle positions are adjusted by a

Gaussian-distributed random number at each time step. The variance of

the random number relates to the Schmidt number (supplied as <Sc>)

through 𝜎2 = 2𝜈 ∙ 𝑑𝑡/𝑆𝑐 where 𝜎2 is the variance, and 𝜈 the kinematic

viscosity. Smaller Schmidt numbers therefore represent more diffusion.

If no Schmidt number is supplied no diffusion will be added to particle

transport.
 track inject

 Tracer injection points are loaded from a text file named track_pts,

which first gives the number of injection points, then lists the 𝑥,𝑦, 𝑧-

coordinates of each point (only two spatial coordinates per line are

searched for in two-dimensional computations). One injection point is

given per line, and a large number of points may be established

concurrently. Particles are injected at each of these points every time

 104

particle positions are updated (during time integration). Then particle

tracking is initialized.
 track inject_off

 Ceases tracer injection and erases stored injector information from

memory. Further injection can be initiated by calling track inject.

 track inject_steps <Ninject_steps>

 Sets the number of particle time integration steps per particle injection.

The default value is <Ntrack_steps> = 5.
 track load [-f <filename>]

 Loads a binary restart file to a file <filename> (including extension)

if the -f option is specified, or a default file restart_ptcls.dat

if not. Note that to restart a particle transport simulation, the user also

needs to save the velocity field using the save command, and then must

use both load for the velocity field, the same track commands to

initialize particle tracking, and then finally track load after init

is called in the restarted simulation.
 track sample [<filename>]

 Saves velocity field information at each particle location to a text file

<filename> (including extension). If not supplied, the default

filename is track_sample.dat. Particle information is output line

by line, with each line containing:𝑡, 𝑥, 𝑦, [𝑧] coordinates, 𝑢, 𝑣, [𝑤]-

velocities, velocity gradients, shear rate, and pressure. This command

will append new data to the end of an existing file of the same name. If

particle tracking has not been initialised (see track seed or track

load) then no action is taken.
 track save [-f <filename> -s]

 Saves a binary restart file to a file <filename> (including extension)

if the -f option is specified, or a default file restart_ptcls.dat

if not. The -s option is used to create a numbered sequence of files

instead of overwriting a single file. A 4-digit integer (e.g., , ,

, etc.) is added to the default or user-specified filename, just prior

to the file extension, if one is specified. Numbering begins at 1, and

increments every time a track save call is made with the -s option.

 Note that to restart a particle transport simulation, the user also needs to

save the velocity field using the save command, and then must use both

load for the velocity field, the same track commands to initialize

particle tracking, and then finally track load after init is called in

the restarted simulation. If particle tracking has not been initialised (see

track seed or track load) then no action is taken.

 track saveold [<filename>]

 Saves information (invoking the old ASCII particle output) about

particles to a text file <filename> (including extension). If no

filename is given, a default file track_out.dat is created. Particle

information is output line by line, with each line containing:

<particle_number>, 𝑥, 𝑦, [𝑧] coordinates, and 𝑢, 𝑣, [𝑤]-velocities. If

particle tracking has not been initialised (see track seed or track

load) then no action is taken.

 track seed [<density>]

 105

 The flow is seeded with an even distribution of tracer particles.

Throughout the domain, particles are placed <density> units apart in

the 𝑥, 𝑦 (and 𝑧) directions. If <density> is omitted, a particle spacing

of 0.1 is employed. For flows with inlets, the user may wish to maintain

particle density by also including a call to track inject,

incorporating a rake of injection points.
 track steps [<Ntrack_steps>]

 Defines the number of computation time steps (∆𝑡) per particle tracking

time steps, where <Ntrack_steps> is an integer. If

<Ntrack_steps> is omitted, the simulation will default to a value

<Ntrack_steps> = 10.
 track tecp [-f <filename> -ascii -s]

 Outputs particle data in Tecplot binary format (use extension .plt) by

default, or in ASCII text format if the -ascii option is specified (use

extension .dat). By default a filename tecp_ptcls.plt (or

tecp_ptcls.dat for ASCII output) is used, or the user can specify

their own filename using the -f option. Use the -s option to append a

sequence number to the filename to store a sequence of files rather than

overwriting the same file if multiple track tecp calls are made in a

loop. track tecp will only create an output file if the both the

computation and particle tracking have been initialised (see init and

track seed or track load). The -s option is used to create a

numbered sequence of files instead of overwriting a single file. A 4-digit

integer (e.g., , , , etc.) is added to the default or user-

specified filename, just prior to the file extension, if one is specified.

Numbering begins at 1, and increments every time a track tecp call

is made with the -s option.

Transgrowth

Syntax: transgrowth <numsteps>

Function: Perform forward and adjoint time integration for transient growth

stability analysis.

Description:

This command time integrates a linearised perturbation field, forward in time by a given

number of steps, and then backward in time using the adjoint of the linearised equations.

The user must call either stab or arnoldi (after each call to transgrowth), to

respectively invoke either a simple power iteration method or the implicitly restarted

Arnoldi method for finding the leading eigenvalue magnitude (transient growth

amplification factor) and eigenvector (initial disturbance). This forms part of a manual

version of the tg command. Its only practical utility is to use the simple power iteration

method (stab), if the Arnoldi method consistently fails. It gives less information,

providing only the magnitude of the leading eigenvalue rather than the full complex

form of possibly several leading eigenvalues; though for transient growth, only the

leading eigenvalue is of interest (as it must be positive and have only a real component).

Note: transgrowth can only be employ

 106

Note: The solution must have been initialised (init) and perturbation fields must

be active (pert). The computation must also be two-dimensional and either

freeze or reconload must be used with transgrowth, else no computations

can be performed.

See also: freeze, init, pert, reconload, tg.

Vismat

Syntax: vismat

Function: Toggles output images showing the structure of the global matrices

being solved.

Description:

The sparse matrices used to solve the global boundary system for the pressure and

viscous diffusion substeps can be visualized using this command. Image files

p_laplace_matrix.pgm and X_helmholtz_matrix.pgm are created,

showing the structure of the matrices. Many of the matrices built by Viper are

symmetrical so in these cases only the upper or lower diagonal may be visible. 𝑋 are

velocity components 𝑢, 𝑣, 𝑤 (if active) and scalar field 𝑠 (if active), and 𝑌 is either

pre_fact or post_fact. Images are written both before and after factorization. Please

inform the developer if you would find a binary image file format preferable for output.

Note: This command must be called before init, otherwise no images will be

produced.

Womersley

Syntax: womersley [-f <filename> -d <diameter> -u –w

<omega>]

Function: Initialise the Womersley velocity profile.

Description:

This command is called to impose a Womersley profile on a simulation. It is assumed

that the profile will be imposed on the axial component of velocity (x-direction on a 2D

mesh), and the profile is formulated for cylindrical coordinates (therefore the axi

command should also be used). The user must supply a file containing Fourier

coefficients of either a time-varying axial kinematic pressure gradient or an area-

averaged velocity. The Womersley profile is computed using the analytical solution for

flow in a pipe driven by a time-varying pressure gradient derived by J. R. Womersley

(J. Physiol., vol. 127, 553-563, 1955). Once activated, the Womersley profile will be

written onto any Dirichlet velocity boundary with a radial distance within the specified

diameter of the pipe.

The following options are available:
 -f <filename>

 Used to specify the file from which the Fourier coefficient data is input

from. The first line must contain an integer specifying the number of

Fourier modes contained in the file (N). This must be followed by N

rows, each containing two numbers (the real and imaginary components

of each Fourier mode). It is assumed that the fundamental mode is the

 107

first row, and positive frequency contributions follow in ascending

order. Note that only positive frequency contributions may be included

in this sequence. If this option is not specified, the default filename is

womersley_pgrad_coeffs.dat.
 -d <diameter>

 Used to specify the diameter of the pipe in which the Womersley profile

is being employed. If this option is not specified, the default diameter is

1 unit.
-u

The supplied Fourier coefficient data can represent either kinematic

pressure gradient data (the default), or area-averaged velocity data. If

this option is supplied, the profile will be calculated based on area-

averaged velocity coefficients.
-w <omega>

Used to specify the angular velocity of the pressure gradient driving the

Womersley profile. If this option is not specified, the default angular

frequency is 1.

Wvel

Syntax: wvel

Function: Toggles 𝒛/𝜽-component of velocity on or off in two-dimensional

computations (default is OFF).
Description:

By default, Viper only evolves in-plane velocity components in two-dimensional

simulations (i.e., only 𝑢 and 𝑣, but not 𝑤-velocity components in two-dimensional

Cartesian coordinates). However, sometimes it is necessary to include the out-of-plane

velocity component (i.e., the 𝜃-velocity component in swirling flows in a cylindrical

coordinate system), or the 𝑤-velocity component in the interaction of vortices with a

non-zero axial velocity along their cores. A call to wvel prior to calling init will

activate the out-of-plane velocity component for two-dimensional computations.

Note that the computations will still be two-dimensional – that is, there is still no

variation (zero spatial gradients) in the third dimension. Furthermore, it can only

be invoked for two-dimensional simulations. In addition, if axirotate has been

specified wvel cannot be turned off (it will always remain active, as axirotate

turns wvel on).

See also: axi, axirotate.

 108

Chapter 8: References

Barkley, D. & Henderson, R.D. (1996) Three-dimensional Floquet stability analysis

of the wake of a circular cylinder. J. Fluid Mech. 322, 215-241.

Blackburn, H.M. & Sherwin, S.J. (2004) Formulation of a Galerkin spectral element-

Fourier method for three-dimensional incompressible flows in cylindrical geometries.

J. Comput. Phys. 179(2), 759–778.

Blackburn, H.M., Barkley, D. & Sherwin, S.J. (2008) Convective instability and

transient growth in flow over a backward-facing step. Under consideration for

publication in J. Fluid Mech.

Coppola, G., Sherwin, S.J. & Peiró (2001) Nonlinear particle tracking for high-order

elements. J. Comput. Phys. 172(1), 356-386

Davidson, P. A. (1995) Magnetic damping of jets and vortices. J. Fluid Mech. 299, 153-

186

Davidson, P. A. (2001) An Introduction to Magnetohydrodynamics. Cambridge

University Press

Gray, D. D. & Giorgini, A. (1976) The validity of the Boussinesq approximation for

liquids and gases. Int. J. Heat & Mass Tran. 19(5), 545-551

Huerre, P. & Monkewitz, P.A. (1985) Absolute and convective instabilities in free

shear layers. J. Fluid Mech. 159, 151-168.

Huerre, P. & Monkewitz, P.A. (1990) Local and global instabilities in spatially

developing flows. Annu. Rev. Fluid Mech. 22, 473-537.

Jeong, J. & Hussain, F. (1995) On the identification of a vortex. J. Fluid Mech. 285,

69-94.

Karniadakis, G.E. (1990) Spectral element-Fourier methods for incompressible

turbulent flows. Comp. Meth. Appl. Mech. & Engng. 80, 367-380.

Karniadakis, G.E., Israeli, M. & Orszag, S.A. (1991) High-order splitting methods for

the incompressible Navier—Stokes equations. J. Comput. Phys. 97(2), 414-443.

Karniadakis, G.E. & Sherwin, S.J. (2005) Spectral/hp Element Methods for

Computational Fluid Dynamics (2nd Edition). Oxford University Press.

Kirby, R.M. & Sherwin, S.J. (2006) Stabilisation of spectral/hp element methods

through spectral vanishing viscosity: Application to fluid mechanics modelling.

Comput. Methods Appl. Mech. Eng. 195(23), 3128-3144

Lehoucq, R.B., Sorensen, D.C. & Yang, C. (1996) ARPACK users’ guide: Solution

of large scale eigenvalue problems by implicitly restarted Arnoldi methods. Tech.

Report from http://www.caam.rice.edu/software/ARPACK/.

http://www.caam.rice.edu/software/ARPACK/

 109

Leweke, T., Thompson, M.C. & Hourigan, K. (2004) Touchdown of a sphere. Phys.

Fluids, 16(9), Gallery of Fluid Motion.

Maday, Y., Patera, A.T. & Rønquist, E.M. (1990) An operator-integration-factor

splitting method for time-dependent problems: application to incompressible fluid flow.

J. Sci. Comp. 5(4), 263-292.

Malm, J., Schlatter, P., Fischer, P.F. & Henningson, D.S. (2013) Stabilization of the

spectral element method in convection dominated flows by recovery of skew-

symmetry. J. Sci. Comput. 57(2), 1-24

Patera, A.T. (1984) A spectral-element method for fluid dynamics: laminar flow in a

channel expansion. J. Comput. Phys. 54, 468-488.

Pothérat, A. (2007) Quasi-two-dimensional perturbations in duct flows under transverse

magnetic field. Phys. Fluids, 19(7), 074104

Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. (2002) Numerical

recipes in C++: The art of scientific computing. Cambridge University Press.

Schmid, P.J., & Henningson, D.S. (2001) Stability and Transition in Shear Flows.

Springer-Verlag New York.

Sheard, G.J., Leweke, T., Thompson, M.C. & Hourigan, K. (2007) Flow around an

impulsively arrested circular cylinder. Phys. Fluids 19(8), 083601.

Sheard, G.J., Thompson, M.C. & Hourigan, K. (2003) From spheres to circular

cylinders: The stability and flow structures of bluff ring wakes. J. Fluid Mech. 492,

147-180.

Sheard, G.J. & Ryan, K. (2007) Pressure-driven flow past spheres moving in a circular

tube. J. Fluid Mech. 592, 233-262.

Sommeria J. & Moreau R. (1982) Why, how, and when, MHD turbulence becomes

two-dimensional. J. Fluid Mech. 118, 507-518

Sorensen, D.C. (1995) Implicitly restarted Arnoldi/Lanczos methods for large scale

eigenvalue calculations. Tech. Report TR-96-40. In: Keys, D.E., Sameh, A.,

Venkatakrishnan, V. (Eds.), Parallel numerical algorithms. Dordrecht, Kluwer.

Thompson, M.C., Hourigan, K. & Sheridan, J. (1996) Three-dimensional instabilities

in the wake of a circular cylinder. Exp. Therm. Fluid Sci. 12(2), 190-196.

Van Dyke, M. (1982) An Album of Fluid Motion. The Parabolic Press.

Williamson, C.H.K. (1996) Three-dimensional wake transition. J. Fluid Mech. 328,

345-407.

Womersley, J.R. (1955) Method for the calculation of velocity, rate of flow and viscous

drag in arteries when the pressure gradient is known. J. Physiol. 127(3), 553-563

 110

Zang, T.A. (1991) On the rotation and skew-symmetric forms for incompressible flow

simulations. Appl. Numer. Math. 7, 27-40.

 111

Appendix A

Derivation of the quasi-static MHD equations

The relevant equations are Ohm’s law, and the divergence of Ohm’s law under the

assumption of solenoidal currents, noting also that the current density appears in the

𝑁(𝒋 × 𝑒𝑩) term in the momentum equation:

𝒋 = −𝜵𝜙 + 𝒖 × 𝒆𝑩

∇2𝜙 = 𝛁 ∙ (𝒖 × 𝒆𝑩)

The Poisson equation for the electric potential with a magnetic field in the +y direction

(Cartesian coordinate system):

∇2𝜙 = 𝛁 ∙ (𝒖 × 𝒆𝑩)

∇2𝜙 = 𝛁 ∙ ((𝑢𝒆𝒙 + 𝑣𝒆𝒚 + 𝑤𝒆𝒛) × (𝒆𝒚))

∇2𝜙 = 𝛁 ∙ (−𝑤𝒆𝒙 + 𝑢𝒆𝒛)

∇2𝜙 = −
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧

𝒋 = −𝛁𝜙 + (𝒖 × 𝒆𝐵)

𝒋 = − (
𝜕𝜙

𝜕𝑥
𝒆𝒙 +

𝜕𝜙

𝜕𝑦
𝒆𝒚 +

𝜕𝜙

𝜕𝑧
𝒆𝒛) + (−𝑤𝒆𝒙 + 𝑢𝒆𝒛)

= (−
𝜕𝜙

𝜕𝑥
− 𝑤) 𝒆𝒙 −

𝜕𝜙

𝜕𝑦
𝒆𝒚 + (−

𝜕𝜙

𝜕𝑧
+ 𝑢) 𝒆𝒛

𝑁(𝒋 × 𝒆𝐵) = 𝑁 [(−
𝜕𝜙

𝜕𝑥
− 𝑤) 𝒆𝒙 −

𝜕𝜙

𝜕𝑦
𝒆𝒚 + (−

𝜕𝜙

𝜕𝑧
+ 𝑢) 𝒆𝒛] × 𝒆𝒚

= 𝑁 [(
𝜕𝜙

𝜕𝑧
− 𝑢) 𝒆𝒙 + (−

𝜕𝜙

𝜕𝑥
− 𝑤) 𝒆𝒛]

The Poisson equation for the electric potential with a magnetic field in the axial +z

direction (Cylindrical coordinate system):

∇2𝜙 = 𝛁 ∙ (𝒖 × 𝒆𝐵)

∇2𝜙 = 𝛁 ∙ ((𝑢𝑟𝒆𝒓 + 𝑢𝜑𝒆𝝋 + 𝑢𝑧𝒆𝒛) × (𝒆𝒛))

∇2𝜙 = 𝛁 ∙ (𝑢𝜑𝒆𝒓 − 𝑢𝑟𝒆𝝋)

 112

∇2𝜙 =
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝜑) −

1

𝑟

𝜕𝑢𝑟

𝜕𝜑

𝒋 = −𝛁𝜙 + (𝒖 × 𝒆𝐵)

𝒋 = − (
𝜕𝜙

𝜕𝑟
𝒆𝒓 +

1

𝑟

𝜕𝜙

𝜕𝜑
𝒆𝝋 +

𝜕𝜙

𝜕𝑧
𝒆𝒛) + (𝑢𝜑𝒆𝒓 − 𝑢𝑟𝒆𝝋)

= (−
𝜕𝜙

𝜕𝑟
+ 𝑢𝜑) 𝒆𝒓 + (−

1

𝑟

𝜕𝜙

𝜕𝜑
− 𝑢𝑟) 𝒆𝝋 −

𝜕𝜙

𝜕𝑧
𝒆𝒛

𝑁(𝒋 × 𝒆𝐵) = 𝑁 [(−
𝜕𝜙

𝜕𝑟
+ 𝑢𝜑) 𝒆𝒓 + (−

1

𝑟

𝜕𝜙

𝜕𝜑
− 𝑢𝑟) 𝒆𝝋 −

𝜕𝜙

𝜕𝑧
𝒆𝒛] × 𝒆𝒛

= 𝑁 [(−
1

𝑟

𝜕𝜙

𝜕𝜑
− 𝑢𝑟) 𝒆𝒓 + (

𝜕𝜙

𝜕𝑟
− 𝑢𝜑) 𝒆𝝋]

