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Chapter 1: Overview 
This Chapter provides an introduction to both the Viper package itself, as well as this 

manual.  In addition, the Getting Started guide describes what is required to begin using 

Viper. Background theory behind the numerical algorithms implemented by Viper is 

described in Chapter 2.  In Chapter 3, mesh generation and conversion is described.  In 

Chapter 4, the configuration of simulations is described, and Chapter 5 details the 

execution of simulations and the solution methods employed by the solver.  Chapter 6 

treats the visualization and post-processing of data, and Chapter 7 describes each of the 

commands available to use within Viper.  A bibliography for further reading is provided 

in Chapter 8. 

About Viper 

Viper is a Computational Fluid Dynamics (CFD) package that solves the time-

dependent incompressible Navier—Stokes equations in either two or three dimensions. 

Viper uses a spectral-element method to discretize the Navier—Stokes equations in 

space, and employs a third-order accurate backwards multistep method to evolve the 

solutions in time. Viper further includes the capability to solve the advection-diffusion 

transport of a scalar field in conjunction with the solution of an evolving fluid flow, and 

this field can be coupled with the momentum equations under the Boussinesq 

approximation to solve natural convection problems. It also has the ability to model 

some magnetohydrodynamic phenoma (quasi-2D and quasi-static problems). 

Furthermore, it is also able to perform linear stability and transient growth analysis. 

 

Audience for this Manual 

This manual is intended for users of the Viper software – it contains descriptions of the 

commands and functionality of the Viper package, as well as information on how to 

generate and convert meshes for simulation, and how to extract and process useful data 

from the computed solutions. Readers are assumed to have an Undergraduate-level 

background in fluid mechanics. This is not a Developer’s Manual – no information 

about the underlying source code is provided.  Readers will not find details about the 

subroutines, variables and modules behind the package, but they will find information 

about third-party source code contributions and libraries that Viper employs. 

 

Getting Started 

To run simulations, users will need the Viper executable (the latest executable files 

compiled for various platforms are available at http://sheardlab.org/.  By default, Viper 

searches for a configuration file viper.cfg, and if this file is not located in the 

current directory, the user is prompted to supply an alternative path/file name.  The 

contents of the configuration file are described in Chapter 4. Once the configuration 

file is found, Viper processes the commands given in the file to establish the conditions 

for the simulation.  The configuration file supplies the mesh file name, and it establishes 

parameter values, initial and boundary conditions for the simulation.  Once the 

configuration phase is complete, the user is prompted to supply input commands. 

http://sheardlab.org/
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An example of a simple list of commands to execute a simulation is as follows: 

 
init 

step 100 

save 

tecp 

stop 

 

These commands do the following: Initialise a simulation to allow time integration to 

proceed (init), integrate forward in time by 100 time steps (step 100), save the 

flow field solution to a default file ff_out.dat (save), output a binary file for post-

processing and plotting using the Tecplot visualization package (tecp), and exit Viper 

(stop).  A detailed description of all of the available commands recognised by Viper 

is given in Chapter 7. 

 

Rules for inputting text into Viper 

Viper employs text input and processing routines that allow for comments, and permit 

numerical values to be entered in any format recognised by FORTRAN.  The same 

rules apply for command line input as well as macro and configuration file input: 

 

 Commented lines:  If a line begins with a “#” followed by a space, it is regarded 

as a comment, and is ignored by Viper.  Note: The blank space following the hash 

is essential.  E.g., 
# This is a comment 

#This is not a comment 

 

 Comments within a line:  If the user wishes to add a comment within a line, then 

they can do so by enclosing text in round brackets: “(” and “)”.  E.g., the following 

text would be read as “Viper reads this, but not this.” 
Viper reads this, but (Viper ignores this) not 

this. 

 

 Numerical input:  If users wish to enter an integer, it can be entered with or without 

a negative sign, but can only contain numbers (no decimal points, alphabetical 

characters, etc.).  E.g., the following are valid integers: 
1 

34 

796954 

-343 

The following are invalid as integers: and may either be rounded by the code, or 

cause an error, so should be avoided.  If floating-point numbers were required, then 

the following are all valid (note that in some builds of Viper 1e-10 may not be 

valid, but 1.0e-10 always will be): 
.1 

3. 

-4.5 

4.1e-10 
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 Case sensitivity:  Linux systems are case sensitive, whereas Windows systems are 

not, allowing upper- and lower-case characters to be substituted at will.  Therefore, 

when processing input and output filenames, Viper preserves the capitalization 

specified by the user.  If a user wishes to load a file “Macro.txt” and enters 

“mACRO.TXT”, the file will not be found under Linux, resulting in an error, 

whereas under Windows the file will be located and input without an error.  

Internally, Viper converts all input variable names to lower case, so users should be 

aware that under Linux, Viper makes no distinction between variables with the same 

name, but different capitalisation: i.e., “DT” is treated as “dt”. 

 

 Verbatim text:  To input a string of characters as a single entry, the text should be 

enclosed by single quotes.  This is especially important to avoid brackets in 

mathematical expressions being confused with an in-line comment, or blanks being 

confused for the end of the function.  E.g. 1: Viper would misread sin(23*x) as 

sin, ignoring the bracketed component, whereas it would be input in full if 

expressed as ’sin(23*x)’.  E.g. 2: Viper would misread y*t + x^2 as y*t, 

ignoring the component after the blank, whereas it would be input in full if 

expressed as ’y*t + x^2’. 

 

Rules for inputting mathematical expressions into Viper 

A powerful feature of Viper is the ability to read mathematical expressions input by the 

user at run time, and evaluate them.  Viper employs this capability for the processing 

of user-defined boundary conditions, functions, initial conditions, integrands for L2 

norms, etc. 

Important: If a function is incorrectly structured, or is evaluated incorrectly (e.g., 

due to an incorrect variable name being supplied), it MAY NOT return an error, 

and the output will be incorrect.  Care must be taken to ensure that functions are 

input correctly. 

The following information outlines the allowable components of mathematical 

expressions: 

 

 

Mathematical operators: 

 

Operator Function 

+ 
Addition 

E.g., 11+24.5 

- 
Subtraction 

E.g., 58.5 – 1e3 

* 
Multiplication 

E.g., 7.5*t 

/ 
Division 

E.g., 23/4 

^ 
Power 

E.g., for x2, type x^2 
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Parentheses: 

Users may enclose parts of their expressions in pairs of round, square, or curly brackets:  

All opening brackets must have a corresponding closing pair.  E.g., (…), […], {…}. 

 

Mathematical functions: 

A large number of mathematical functions are available, which form a superset of the 

intrinsic mathematical functions available in Fortran. 

 

Class Function Syntax 

Trigonometric 

Sine of 𝑥 sin(x) 

Cosine of 𝑥 cos(x) 

Tangent of 𝑥 tan(x) 

Inverse sine of 𝑥, |𝑥| ≤  1 asin(x) 

Inverse cosine of 𝑥, |𝑥| ≤  1 acos(x) 

Inverse tangent of 𝑥 atan(x) 

Cardinal (un-normalized) sine function of 𝑥 sinc(x) 

Sine integral function of 𝑥 sini(x) 

Cosine integral function of 𝑥 cosi(X) 

Hyperbolic 

Hyperbolic sine of 𝑥 sinh(x) 

Hyperbolic cosine of 𝑥 cosh(x) 

Hyperbolic tangent of 𝑥 tanh(x) 

Hyperbolic cosecant (1/𝑠𝑖𝑛ℎ) of 𝑥 csch(x) 

Hyperbolic secant (1/𝑐𝑜𝑠ℎ) of 𝑥 sech(x) 

Hyperbolic cotangent (1/𝑡𝑎𝑛ℎ) of 𝑥 coth(x) 

Logarithms 

and 

exponentials 

Base 10 logarithm of 𝑥, where 𝑥 >  0 log10(x) 

Natural logarithm of 𝑥, where 𝑥 >  0 log(x) 

Logarithm of 𝑥  

(base 𝑛, where 𝑛 >  0 and 𝑥 >  0) 
logn(x,n) 

Exponential number raised to the power 𝑥 exp(x) 

Exponential integral function of 𝑥 expi(x) 

Logarithmic integral function of 𝑥  

(exponential integral of the natural logarithm of 

𝑥) 

logi(x) 

Bessel 

Functions 

Bessel function of the 1st kind, of 𝑥, order 0 besj0(x) 

Bessel function of the 1st kind, of 𝑥, order 1 besj1(x) 

Bessel function of the 1st kind, of 𝑥, order n,  

for integers 𝑛 ≥  0 
besjn(n,x) 

Bessel function of the 2nd  kind, of 𝑥, order 0 besy0(x) 

Bessel function of the 2nd  kind, of 𝑥, order 1 besy1(x) 

Bessel function of the 2nd  kind, of 𝑥, order n,  

for integers 𝑛 ≥  0 
besyn(n,x) 

Modified Bessel function of the 1st kind, of 𝑥, 

order 0 
besi0(x) 

Modified Bessel function of the 1st kind, of 𝑥, 

order 1 
besi1(x) 

Modified Bessel function of the 1st  kind, of 𝑥, 

order n, for integers 𝑛 ≥  0 
besin(n,x) 
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Modified Bessel function of the 2nd kind, of 𝑥, 

order 0 
besk0(x) 

Modified Bessel function of the 2nd  kind, of 𝑥, 

order 1 
besk1(x) 

Modified Bessel function of the 2nd  kind, of 𝑥, 

order n, for integers 𝑛 ≥  0 
beskn(n,x) 

Error 

Functions 

Error function of 𝑥 erf(x) 

Complimentary error function of 𝑥 erfc(x) 

Inverse error function of 𝑥 ierf(x) 

Inverse of the complimentary error function of 

𝑥, −1 < 𝑥 < 1 
ierfc(x) 

Fresnel 

Functions 

Sine Fresnel integral function of 𝑥 fress(x) 

Cosine Fresnel integral function of 𝑥 fresc(x) 

Elliptic 

Integral 

Functions 

Complete elliptic integral of the 1st  kind, K 

−1 < 𝑥 < 1 
ellk(x) 

Complete elliptic integral of the 2nd kind, E 

−1 < 𝑥 < 1 
elle(x) 

Incomplete elliptic integral of the 1st kind, F 

−1 < 𝑥 < 1, −
𝜋

2
< 𝜙 <

𝜋

2
 

iellf(x,𝝓) 

Incomplete elliptic integral of the 2nd kind, E 

−1 < 𝑥 < 1, −
𝜋

2
< 𝜙 <

𝜋

2
 

ielle(x,𝝓) 

Other 

Square root of 𝑥, 𝑥 ≥  0 sqrt(x) 

Cube root of 𝑥 cbrt(x) 

Absolute value of 𝑥 abs(x) 

Maximum value of 𝑥 or 𝑦 max(x,y) 

Minimum value of 𝑥 or 𝑦 min(x,y) 

Delta function (1 if 𝑥 =  0, 0 otherwise) delta(x) 

Step function (0 if 𝑥 <  0, 1 otherwise) step(x) 

Hat function (1 if |𝑥| ≤  0.5, 0 otherwise) hat(x) 

Smoothed hat function (1 if |𝑥| <  0.5(1 −
𝑥𝑠); 0  if |𝑥| >  0.5(1 + 𝑥𝑠); or 0.5(1 +

cos(𝜋(|𝑥| − 0.5)/𝑥𝑠)) otherwise 

hatsmth(x,xs) 

Sawtooth function of 𝑥,  

(𝑥 − 𝑓𝑙𝑜𝑜𝑟(𝑥) varying from 0 to 1) 
saw(x) 

Gaussian function of 𝑥 gauss(x) 

Round to nearest whole number 

(e.g. 3.7 becomes 4.0) 
anint(…) 

Truncate argument to nearest whole number 

(e.g. 3.45 becomes 3.0, -2.1 becomes -2.0) 
aint(…) 

Return greatest integer less than or equal to 

argument  

(e.g. 3.2 becomes 3.0, -2.1 becomes -3.0) 

floor() 

Return smallest integer greater than or equal to 

argument  

(e.g. 3.2 becomes 4.0, -2.1 becomes -2.0) 

ceiling() 

Gamma function of 𝑥 gamma(x) 

Logarithm of the gamma function of 𝑥, 𝑥 >  0 lgamma(x) 
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Random number in the range [0, 𝑥) 

Note: The result of this function is treated as 

always time- and space-varying 

rand(x) 

 

Finally, conditional statements can be input using the function 

 

if( condition, then, else ), 

 

which evaluates the conditional statement condition, and then evaluates the 

expression then or else, when the conditional statement is true or false, respectively.  

The conditional statement can be constructed using the following relations: 

 

Condition Symbol 

Less than (<) < 

Less than or equal to (≤) <= 

Greater than (>) > 

Greater than or equal to (≥) >= 

Equal to (=) = or == 

Not equal to (≠) != 

 

Implicit and user-defined variables 

A number of variable and parameter names are reserved by Viper.  These include the 

spatial coordinates x, y and z, time t and time step dt, velocity components u, v and 

w, the kinematic static pressure p, the scalar field s, the electric potential field e, the 

reciprocal kinematic viscosity RKV, and the shear rate SR.  These variables can be used 

in mathematical expressions input into Viper either on the command line (such as 

during the int or l2 commands), or in the configuration file (such as in btag 

statements).  Users should consult the specific entries for each command to see which 

of the implicit variables are allowed. 

In addition to the implicit variables, Viper also facilitates the creation of “user-

defined variables”.  User-defined variables are defined using the gvar_usrvar 

statement in the configuration file, and assign a user-specified name to a number or 

mathematical expression to be evaluated at run-time.  User-defined variables can appear 

in subsequent mathematical expressions, including within subsequent gvar_usrvar 

statements. 

 

Unresolved Bugs 

Function simplification by math parser: 
Platforms: All 

Symptoms: A mathematical expression, as part of a user defined variable or 

command input, may be read by Viper incorrectly. Simplifications such as performing 

addition, multiplication, removal of brackets etc. may lead to two operators being 

placed next to each other, such as ‘+-’ or ‘--’, which the parser may not be able to 
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simplify. An error message notifying that the function has not been simplified correctly 

will be provided. 

Workaround: Always check output.txt files for math parser error messages. 

Rearrange terms and add brackets as necessary such that the function can be read 

correctly. Particularly, rather than ‘𝐴 − 𝐵’ try ‘𝐴 + (−𝐵)’, where 𝐴 and 𝐵 are 

expressions which the math parser may also need to simplify. To observe the entire 

simplification process, use the verbose Viper executable, if available. 
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(1a) 

Chapter 2: Background 
This Chapter provides background theory for the fluid flow solvers and analysis tools 

implemented within Viper. 

 

The Navier—Stokes Equations 

The motion of all fluids is described by the Navier—Stokes equations.  Applying a 

conservation-of-momentum principle yields 

 

𝜌𝒈 − 𝛁𝑝 + 𝛁 ∙ 𝝉𝑖𝑗 = 𝜌
𝐷𝒖

𝐷𝑡
 

 

where 𝒈 is the gravity acceleration vector, p is a scalar pressure field, ∇ is the gradient 

operator, 𝝉𝑖𝑗 is the viscous stress tensor, 𝒖 is a velocity vector, and 𝑡 is time. 

The velocity time derivative is sometimes referred to as the substantial 

derivative, which is defined  

 
𝐷𝒖

𝐷𝑡
=

𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ 𝛁)𝒖 

 

The fluid must also satisfy a conservation-of-mass argument, which can be expressed 

as 

 
𝜕𝜌

𝜕𝑡
+ 𝛁 ∙ (𝜌𝒖) = 0 

Newtonian and non-Newtonian Fluids 

A significant simplification to the momentum equation of the general Navier—Stokes 

equations is possible, if viscous stresses are assumed proportional to strain rates and the 

coefficient of viscosity, 𝜇.  For a simple shear flow, this can be written 

 

𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
 

 

Fluids that satisfy this assumption are classified as Newtonian fluids, and a remarkably 

large number of fluids are well-described by this relationship, including air and water.  

Fluids that do not satisfy this relationship are classified as non-Newtonian, and include 

many polymers, emulsions and suspension fluids, including blood. 

 

Incompressible Flow 

If the flow has constant density in space and time, it can be regarded as incompressible.  

If there is no fluid interface (such as a free surface), the gravity term can be omitted, as 

its action is constant everywhere in the flow.  Combining this simplification with the 

incompressibility condition yields momentum and continuity for a Newtonian fluid 

 
𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ 𝛁)𝒖 = −

1

𝜌
𝛁𝑝 + 𝜈∇2𝒖 
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(1b) 𝛁 ∙ 𝒖 = 0 
 

 

where we introduce a kinematic viscosity 

 

𝜈 =
𝜇

𝜌
 . 

 

Finally, equation (1a) can be used to reveal the single most important parameter 

describing the viscous behaviour of Newtonian fluids, the Reynolds number. If the 

length, velocity, time and kinematic pressure are respectively scaled by 𝐷, 𝑈∞, 𝐷/𝑈∞ 

and 𝜌𝑈∞
2 , respectively, where 𝐷 is a reference length scale and 𝑈∞ is a reference speed, 

the momentum equation can be rewritten as 

 
𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ 𝛁)𝒖 = −𝛁𝑝 +

1

𝑅𝑒
∇2𝒖 

 

where all quantities are now non-dimensional, and where the Reynolds number is 

defined as 

 

 

𝑅𝑒 =
𝑈∞𝐷

𝜈
 . 

 

Equation (1a) comprises several terms, which from left to right are the velocity 

time derivative term, the advection term, the pressure term, and the viscous diffusion 

term.  Viper solves this equation using an operator-splitting technique (Karniadakis, 

Israeli & Orszag 1991), where the advection, pressure, and diffusion terms are solved 

individually at each time step.  This procedure will be described in more detail later. 

 

The Spectral-Element Method and Spatial Discretization 

The spectral-element method is a class of finite element methods, which is used to solve 

partial differential equations by discretizing a spatial domain into small regions 

(elements), over which a high-degree polynomial basis is employed.  This is an 

improvement over the traditional finite element method, which employs a piecewise 

linear basis. 

The partial differential equations being solved are recast in weak form by 

applying the Galerkin method (a form of the method of weighted residuals).  The 

Galerkin method replaces the continuous partial differential equation with an integral 

equation, which when approximated by numerical quadrature techniques, produces a 

set of ordinary differential equations which may be solved in a standard fashion. 

Integration is performed within each element using highly efficient Gaussian 

quadrature methods, and the global solution is coupled between elements by enforcing 

a continuous solution across element interfaces. 

The spectral-element method differs from the finite-element method in that 

higher-order functions are used as basis functions within each element, and efficient 

Gaussian quadrature rules can be employed within each element to approximate the 

integral contributions.  Viper employs a nodal formulation, in which Lagrangian tensor-

product polynomial basis functions are employed within each element.  These functions 
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are interpolated over a grid of points on each element, which correspond to the 

quadrature points for Gauss-Legendre-Lobatto (GLL) quadrature.  The GLL quadrature 

points include points fixed at the element edges/faces to facilitate a continuous solution 

between adjacent elements.  In one dimension, GLL quadrature is exact for polynomials 

of degree 2n-3, where n is the number of quadrature points.  Illustrations of the nodal 

polynomial expansion basis employed by Viper are shown below. 

 

 
One-dimensional nodal expansion modes for a polynomial of degree 6 (from Karniadakis & Sherwin 

2005). 
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Construction of a two-dimensional nodal expansion basis from the product of two one-dimensional 

expansions of degree 5 (from Karniadakis & Sherwin 2005). 

 

Viper accepts quadrilateral (four-sided) elements in two dimensions, and hexahedral 

(six-faced) elements in three dimensions.  General curvilinear elements are mapped 

onto a bi-unit square for implementation of the standard GLL quadrature rules, as 

illustrated below. 

 

 
Mapping of a bi-unit square onto a general curvilinear quadrilateral element (from Karniadakis & 

Sherwin 2005).  An analogous mapping onto a bi-unit cube is conducted for three dimensional 

hexahedral elements. 

 

A result of the mapping procedure is a restriction on the allowable distortion of 

elements.  No element corner is permitted to have an inner angle equal to, or greater 

than, 180°.  Examples of valid and invalid quadrilateral elements are shown below.  
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Examples of (a) valid and (b) invalid quadrilateral elements (from Karniadakis & Sherwin 2005).  

 

The use of element mapping permits geometries of considerable complexity to be 

modelled using a spectral-element discretization, and the combination of a high-degree 

basis and the highly accurate Gauss-Legendre-Lobatto quadrature rules provides 

excellent spatial convergence properties.  Exponential convergence (an increasing rate 

of error reduction with increasing resolution) is often achieved in practical spectral-

element computations (Karniadakis, Israeli & Orszag 1991; Blackburn & Sherwin 

2004; Karniadakis & Sherwin 2005; Sheard & Ryan 2007). 

To illustrate the flexibility of curvilinear quadrilateral and hexahedral elements 

in discretizing sometimes complicated geometries, meshes are reproduced below from 

Sheard & Ryan (2007). 

 

 

 

 
Left: Meshes employed for two- (top) and three- (bottom) dimensional computations of the 

axisymmetric and three-dimensional pressure-driven flows past spheres moving through a tube, 

respectively (Sheard & Ryan 2007).  The upper half of the three-dimensional mesh has been removed 

to reveal the meshed surface of the sphere.  Right: An isosurface plot showing streamwise vorticity in 

the flow, which demonstrates the existence of non-axisymmetric flow. 

 

Time Integration 

The Navier—Stokes equations are integrated forward in time using an operator splitting 

scheme referred to as a stiffly-stable scheme when first proposed for high-order 

computation of incompressible fluid flows by Karniadakis, Israeli & Orszag (1991), 

and later recognised as a class of backwards-multistep schemes by Blackburn & 

Sherwin (2004). 
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(1d) 

(1e) 

(1c) 

Operator splitting schemes employ the basic idea that if some equation of the 

form 
𝜕𝒖

𝜕𝑡 
= 𝐿𝒖 

 

where 𝐿 is some operator that can be written as a sum of 𝑚 pieces,  

 

𝐿𝒖 = 𝐿1𝒖 + 𝐿2𝒖 + ⋯ + 𝐿𝑚𝒖 , 
 

then the solution that updates the variable 𝒖 from time step 𝑛 to 𝑛 +  1 can be 

calculated by summing the contribution of each operator on 𝒖 separately (Press et al. 

2002). 

Backwards-multistep methods are based on backwards differentiation: that is, the time 

derivative is evaluated at time 𝑛 +  1 (or approximated at time 𝑛 +  1 by a combination 

of sufficient values at previous times to achieve the desired order of accuracy), and the 

appropriate-order backwards difference scheme dictates the combination of 𝒖 values at 

previous times required to find 𝒖𝑛+1. 

For the incompressible Navier—Stokes equations, Karniadakis, Israeli & 

Orszag (1991) propose a three-step time splitting scheme 

 

𝒖̂ − ∑ 𝛼𝑞𝒖𝑛−𝑞𝐽−1
𝑞=0

Δ𝑡
= ∑ 𝛽𝑞𝐍(𝒖𝑛−𝑞)

𝐽−1

𝑞=0

+ 𝑭(𝒙, 𝑡) + 𝑮(𝒙, 𝑡)𝐓𝑰𝒖𝒏−𝒒 

 

𝒖̂̂ − 𝒖̂

Δ𝑡
= −𝛁𝑝𝑛+1 

 

      
𝛾𝒖𝑛+1 − 𝒖̂̂

Δ𝑡
=

1

𝑅𝑒
∇2𝒖𝑛+1 , 

where 𝑭(𝒙, 𝑡) and 𝑮(𝒙, 𝑡) are the coefficients for constant and linear forcing terms, 𝑰 is 

the identity matrix, 𝐍(𝒖) is the non-linear advection operator, and for third-order 

accuracy in time (𝐽 = 3), the required coefficients are: 

 

Coefficient Value 

𝛾 11/6 

𝛼0 3 

𝛼1 −3/2 

𝛼2 1/3 

𝛽0 3 

𝛽1 −3 

𝛽2 1 
Table: Third-order backwards-multistep scheme coefficients. 

 

The first substep involves solving the advection term explicitly.  The second substep 

first requires evaluation of the pressure, 𝑝.  We first take the divergence of both sides, 

and enforce the incompressibility constraint on the intermediate velocity field 𝒖̂̂ as 

 

𝛁 ∙ (
𝒖̂̂ − 𝒖̂

Δ𝑡
) = 𝛁 ∙ (−∇𝑃𝑛+1) 
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∴
𝛁 ∙ 𝒖̂̂ − 𝛁 ∙ 𝒖̂

Δ𝑡
= −∇2𝑃𝑛+1 

 

∴
−𝛁 ∙ 𝒖̂

Δ𝑡
= −∇2𝑃𝑛+1 . 

 

The intermediate velocity field 𝒖̂ is calculated during the first substep, so this equation 

can be solved as a Poisson equation for the pressure 𝑝, with appropriate high-order 

Neumann boundary conditions for pressure imposed on homogeneous boundaries, and 

Dirichlet pressure boundary conditions are imposed in the standard fashion.  This 

pressure field can then be used to find the second intermediate velocity field 𝒖̂̂ (Eq. 1d). 

The third substep involves solving a set of Helmholtz equations (Eq. 1e) for each of the 

velocity components, to determine the final velocity field 𝒖𝑛+1. Boundary conditions 

for the velocity field are imposed during this substep. 

 

Coordinate Systems 

The preceding equations are presented in vector form for generality.  The component 

forms of these equations vary depending on the coordinate system being employed.  

Viper has the capability to compute flows in either a Cartesian (x, y, z) or a cylindrical 

(z, r, θ) coordinate system.  These are illustrated below: 

 

 
http://en.wikipedia.org/wiki/Image:Rectangular_coordinates.svg,  http://en.wikipedia.org/wiki/Image:Cylindrical_coordinates2.svg  

 

In three dimensions, the derivative operators acting on a scalar field in Cartesian 

coordinates are written as 

 

𝛁 = 〈
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
〉 , ∇2 =

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+  

𝜕2

𝜕𝑧2
 , 

 

and divergence of a vector field is written as 

 

𝛁 ∙ ( ) =
𝜕

𝜕𝑥
( ) +

𝜕

𝜕𝑦
( ) +

𝜕

𝜕𝑧
( ) . 

 

In cylindrical coordinates, the derivative operators are written 

 

http://en.wikipedia.org/wiki/Image:Rectangular_coordinates.svg
http://en.wikipedia.org/wiki/Image:Cylindrical_coordinates2.svg
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𝛁 = 〈
𝜕

𝜕𝑧
,

𝜕

𝜕𝑟
,
1

𝑟

𝜕

𝜕𝜃
〉 , ∇2 =

𝜕2

𝜕𝑧2
+

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
) +

1

𝑟2

𝜕2

𝜕𝜃2
 , 

 

and the divergence operator is written 

 

𝛁 ∙ ( ) =
𝜕

𝜕𝑧
( ) +

1

𝑟

𝜕

𝜕𝑟
(𝑟( )) +

1

𝑟

𝜕

𝜕𝜃
( ) . 

 

 

Discrete forms of the Advection Operator 

The advection operator for the incompressible Navier—Stokes equations can be 

expressed in several forms by applying vector identities.  These include the convection 

form ((𝒖 ∙ ∇)𝒖), the rotation form ((∇ × 𝒖)𝒖), and the skew-symmetric form 

(
1

2
(𝒖 ∙ ∇)𝒖 +

1

2
∇(𝒖𝒖)).  These forms are exactly equivalent in a continuous sense, but 

are not precisely equivalent in a discrete sense.  Zang (1991) describes the implications 

of using each of these forms in numerical computations, and the following table 

summarises the conservation properties of, and the number of derivative operations 

required to compute, each of these terms. 

 

 

Form of advection 

operator 

Conserves (in 

inviscid limit) 

Number of derivative 

operations (2D / 3D) 

Convective Nothing 4 / 9 

Rotation 
Momentum and 

kinetic energy 
4 / 6 

Skew-symmetric 
Momentum and 

kinetic energy 
8 / 18 

 

 

Note that pre-March 2013 Viper used to employ each of 3 possible forms of the 

advection operator (previously chosen using the advect command): convective, 

rotational, and skew-symmetric (though the rotation form is replaced by the convection 

form in cylindrical coordinates). Blackburn & Sherwin (2004) showed that the 

convection form produced results that converged slightly more rapidly than the skew-

symmetric form with increasing spatial resolution. Furthermore, practice has 

demonstrated that similar convergence is achieved for each form, and the speed 

decrease for the rotational and skew-symmetric forms are therefore difficult to justify. 

Therefore, the convective form is used throughout the code from builds 12 March 2013 

onwards.  

 

Stability Analysis 

Broadly, stability analysis is the study of the state of systems, and their stability.  Many 

canonical fluid flows develop as a result of instabilities, which often emerge through 

the solution becoming dependent on an additional dimension.  For instance, below a 

Reynolds number 𝑅𝑒 ≈  46, the flow past a straight circular cylinder is two-

dimensional and time-independent.  As the Reynolds number is increased beyond this 

Reynolds number, the flow becomes unstable to temporal disturbances, and the wake 
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alters to the classical von Kármán vortex street, which is again two-dimensional, but is 

now time dependent (being periodic in time). 

A subsequent transition occurs at 𝑅𝑒 ≈  190, where the two-dimensional 

Kármán vortex street becomes unstable to three-dimensional sinuous disturbances in 

the spanwise direction along the cylinder.  The image below shows the various wake 

states through these transitions. 

 

 

 

 

 
   (a)    (b)             (c) 

       
Instabilities developing in the wake of a circular cylinder.  (a) The steady two-dimensional wake below 

Re = 46 (Van Dyke 1982), (b) the periodic two-dimensional Kármán vortex street above Re = 46, and 

(c) the three-dimensional “Mode A” wake above Re ≈ 190 (Thompson, Hourigan & Sheridan 1996). 

 

Absolute and Convective Instabilities 

Instabilities can be categorised as being either local or global, depending on whether 

the instability develops on a local velocity profile, or the whole flow field, respectively.  

The terms absolute and convective are then used to further describe the evolution 

behaviour of the instability.  An absolutely unstable disturbance will spread in all 

directions and contaminate the entire flow, whereas in a convectively unstable flow the 

disturbances are washed (convected) away from their point of origin. 

Given some control parameter 𝑅, and considering two critical values, 𝑅𝑐 

(transition from stable to convectively unstable flow), and 𝑅𝑡 (point at which the flow 

becomes absolutely unstable), the sketches in the subsequent figure outline the various 

responses of systems, depending on their stability. 
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(2a) 

(2b) 

 
Instability responses.  (a-c) Single travelling wave: (a) stable, (b) convectively unstable, (c) absolutely 

unstable.  (d-e) Stationary mode: (d) stable, (e) absolutely unstable.  (f-h) Conterpropagating travelling 

waves: (f) stable, (g) convectively unstable, (h) absolutely unstable.  Figure reproduced from Huerre & 

Monkewitz (1990). 

 

Global Stability Analysis 

Numerically, a global stability analysis inspects the evolution of a small disturbance to 

an underlying base flow.  The formulation of this technique begins by decomposing the 

velocity and pressure fields (𝒖, 𝑝) into a two-dimensional base flow (𝒖̅, 𝑝̅) and a three-

dimensional disturbance (𝒖′, 𝑝′), 
 

𝒖 = 𝒖̅ + 𝒖′, 
𝑝 = 𝑝̅ + 𝑝′. 

 

Substituting these into equation (1), cancelling the base flow terms, and neglecting 

products of the (small) perturbation field yields the linearised Navier—Stokes 

equations 

 
𝜕𝒖′

𝜕𝑡
+ (𝒖̅ ∙ 𝛁)𝒖 + (𝒖 ∙ 𝛁)𝒖̅ = −𝛁𝑝′ +

1

𝑅𝑒
∇2𝒖′ 

 

𝛁 ∙ 𝒖′ = 0 
 

Equation (2) differs from equation (1) only in the advection term, and thus an almost 

identical solution algorithm can be efficiently employed to integrate the disturbance 

field forward in time. 

A further simplification is possible by decomposing the disturbance field into a 

Fourier series expansion in the spanwise direction,  
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𝒖′(𝑥, 𝑦, 𝑧, 𝑡) = ∫ 𝒖̂
∞

−∞

(𝑥, 𝑦, 𝑡)𝑒𝑖𝛽𝑧𝑑𝛽 , 

 

which then allows us to decouple modes with a different spanwise mode number, 𝛽. 

 

𝒖′(𝑥, 𝑦, 𝑧, 𝑡) = ⟨

𝑢̂(𝑥, 𝑦, 𝑡)𝑒𝑖𝛽𝑧

𝑣(𝑥, 𝑦, 𝑡)𝑒𝑖𝛽𝑧

𝑤̂(𝑥, 𝑦, 𝑡)𝑒𝑖𝛽𝑧

⟩ , 

 

𝑝′(𝑥, 𝑦, 𝑧, 𝑡) = ⟨𝑝̂(𝑥, 𝑦, 𝑡)𝑒𝑖𝛽𝑧⟩ . 
 

 

The stability behaviour has then been reduced to a two-parameter problem in 𝑅𝑒 and 𝛽.  

An important note in terms of the numerical implementation, is that perturbation fields 

with different wavelengths only couple with the base flow, so each can be computed 

independently. 

Simplistically, the stability properties for a particular pair of values of 𝑅𝑒 and 

𝛽 is determined by integrating the perturbation field forward in time, and monitoring 

the growth or decay of the field.  Strictly, for 𝑇-periodic base flows (for steady base 

flows, the same technique applies, but the time period 𝑇 can be arbitrarily selected), the 

perturbation field evolves over one period subject to an operator 𝐀 as 

 

𝒖𝑛+1
′ = 𝐀(𝒖𝑛

′ ) . 
 

 

The eigenvalues of 𝐀 correspond to the Floquet multipliers of the system, 𝜇 = 𝑒𝜎𝑇, 

where 𝜎 is the growth rate of the instability.  The stability of the base flow (𝒖̅, 𝑝̅) is 

determined by the magnitude of the Floquet multiplier, |𝜇|.  If |𝜇| > 1, then the flow is 

unstable to perturbations of the chosen spanwise wavelength at the prescribed Reynolds 

number, and is stable if |𝜇| < 1. 

A number of methods are available to determine the eigenvalues (and 

corresponding eigenvectors) of 𝐀, though due to the size of the systems typically under 

investigation, 𝐀 is not constructed explicitly.  Instead, the base flow and perturbation 

field are integrated in time, and the perturbation field after successive periods is 

inspected to determine the eigenspectrum of the system.  Barkley & Henderson (1996) 

and others propose a block-power method based on modified Arnoldi iteration to 

determine the leading eigenvalue of the system, and Sheard, Thompson & Hourigan 

(2003) employed a power method to resolve the magnitude of the Floquet multiplier of 

the fastest-growing mode.  

Viper facilitates both Arnoldi and power methods to solve the large-scale 

eigenvalue problems presented by a global linear stability analysis.  An implicitly 

restarted Arnoldi method (Sorensen 1995; Lehoucq, Sorensen & Yang 1996) is 

implemented in the ARPACK package, which is called by Viper using the arnoldi 

command. 

The power method (used in Sheard, Thompson & Hourigan 2003; Sheard & 

Ryan 2007) isolates the fastest-growing mode, and subsequently computes the 

magnitude of the Floquet multiplier, by evolving the perturbation field over sufficient 

periods to allow the modes with smaller growth rates to wash out of the solution.  The 

perturbation field is normalised at each period (permitted due to the linearity of the 
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solution) to avoid the solution diverging as a result of its exponential behaviour. 

Ultimately, the perturbation field comprises only the fastest-growing mode, and the 

amplification factor applied to this mode from one period to the next corresponds to the 

magnitude of the Floquet multiplier, |𝜇|.  The main limitations of the power method are 

that it cannot resolve the complex components of the leading Floquet multiplier, and it 

can only find the eigenvalue corresponding to the fastest-growing mode. 

The linear Floquet stability analysis technique implemented by Viper is capable 

of determining the global stability of two-dimensional (or axisymmetric) flows to three-

dimensional (non-axisymmetric) linear disturbances that are spanwise (azimuthal)-

periodic.  This facility is implemented using the floq command, and calculations 

employing either an implicitly restarted Arnoldi method, or the power method, are 

invoked using the arnoldi or stab commands, (described in Chapter 7), 

respectively. 

 

Scalar Transport & the Boussinesq Approximation for 
Buoyancy-Driven Flows 

It is sometimes useful to follow the propagation of a scalar quantity through a transient 

or steady flow field, either for the purposes of flow visualization, or to simulate the 

transport of scalar quantities in a flow (such as the transport of oxygen in a bioreactor, 

for instance). 

Viper facilitates two mechanisms for scalar transport: one method introduces a 

scalar field, which is evolved subject to an advection-diffusion transport equation, and 

the other method seeds the flow with passive tracer particles, whose positions are 

updated along with the flow solution. 

The advection-diffusion approach is also employed by a facility for computing 

buoyancy-driven flows by means of a Boussinesq approximation (use command 

buoyancy).  For computations employing this facility, the scalar field acts as a 

normalised temperature field, and the diffusion coefficient represents a thermal 

diffusion coefficient. 

The Boussinesq approximation provides a means of coupling the momentum 

and scalar transport equations. An additional body force term is appended to the 

momentum equations. This term linearly relates the differences in relative temperatures 

to a buoyancy ratio, which appears as the buoyancy term 

 

𝒆𝒚𝑔
𝜌

𝜌0
, 

 

where g is the acceleration due to gravity (in the +𝒆𝒚 direction, which is specified using 

the buoyancy command), 𝜌 is the (local) fluid’s density, and 𝜌0 is a reference fluid 

density. This density ratio is related to the difference in relative temperatures via 

 
𝜌

𝜌0
= 1 − 𝛼(𝜃 − 𝜃0) 

 

where 𝛼 is the volumetric thermal expansion coefficient of the fluid, 𝜃 is a 

(dimensional) relative temperature, and 𝜃0 is a (dimensional) reference temperature. 

 The Boussinesq approximation provides an excellent means of adding 

additional accuracy to natural convection flows, by simulating the effects of buoyant 
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(3) 

rising due to lower density fluid (and the accompanying circulation this induces). 

However, as compressible solvers incur significantly higher computational costs, the 

density differences simulated must remain small (all other terms in the equations solved 

treat the fluid as incompressible). This directly requires small temperature gradients for 

the Boussinesq approximation to remain valid. For more information on the validity of 

the Boussinesq approximation see Gray and Giorgini (1976), with two other key 

assumptions being that all other fluid properties (such as viscosity) remain independent 

of temperature and that viscous dissipation is negligible. 

 Regardless of the use of the Boussinesq approximation, the scalar fields are 

always calculated using the extrapolated velocity and scalar fields, after the advection 

operation (first substep). Then the resulting scalar field at the future time (n+1; both 

substeps are performed for the scalar equation) is input into the gravity term in the 

momentum equation. 

Advection-Diffusion 

The transport of a passive scalar field s on an evolving flow field 𝒖 is described by 

 
𝐷𝜙

𝐷𝑡
=

𝜕𝜙

𝜕𝑡
+ (𝒖 ∙ 𝛁)𝜙 = 𝜈𝑠∇2𝜙 

 

where 𝜈𝑠 is the coefficient of diffusion for the scalar field. Physically, this equation 

describes the movement of the scalar field in time with the flow field, plus diffusion of 

the scalar field.  The numerical solution of this equation can be problematic, as the value 

of the scalar field at locations in the flow that do not necessarily correspond to grid 

points can be required.  

 The same general form of time integration scheme is used (Karniadakis, Israeli 

& Orszag (1991)), however, as only advection and diffusion terms are present (there is 

no pressure field) a two-step scheme is employed. The velocity field after the first 

substep (of the momentum equations) is determined. Then the first substep of the scalar 

evolution equation is solved. This involves calculating both the scalar advection, and 

any 𝑢-velocity scalar forcing terms (due to gvar_scalar_uvel_forcing) 

 

𝜙̂ − ∑ 𝛼𝑞𝜙𝑛−𝑞𝐽−1
𝑞=0

Δ𝑡
= ∑ 𝛽𝑞(𝒖𝒏+𝟏 ∙ 𝛁)𝜙

𝐽−1

𝑞=0

+< 𝐜𝐨𝐞𝐟𝐟 > 𝒖𝒏+𝟏 , 

 

where <coeff> is the coefficient for scalar forcing (which is separate to the diffusion 

coefficient, and is defined with gvar_scalar_uvel_forcing). 

 

The second substep involves solving a Helmholtz equation for the diffusion term, 

 

𝛾𝜙𝑛+1 − 𝜙̂

Δ𝑡
= 𝜈∇2𝜙 , 

 

which is when boundary conditions on the scalar field are imposed. Once the scalar 

field has been determined, the appropriate term in the momentum equation(s) are 

updated, if present (due to simulating the Boussinesq approximation; see buoyancy). 

 

For second-order accuracy in time (𝐽 = 2), the required coefficients are: 
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Coefficient Value 

𝛾 3/2 

𝛼0 2 

𝛼1 −1/2 

𝛽0 2 

𝛽1 −1 
Table: Second-order backwards-multistep scheme coefficients. 

 

This method is best suited for problems involving continuously varying scalar fields 

present throughout the flow.  In Viper, advection-diffusion of a scalar field is initiated 

by specifying boundary conditions for a scalar field (see viper.cfg commands 

btag and gvar_scalar_diff), and the command scalar. 

The image sequence below demonstrates the capability of this scalar transport 

function.  Shown are contours of scalar field concentration, and the scalar field is 

advected on a periodic wake behind a square cylinder in a channel, with a low diffusion 

specified. 

 

 
Contours of scalar field concentration, demonstrating fluid mixing behind a square cylinder at 𝑅𝑒 =

 90 in a channel with blockage ratio 1/8.   

 

Passive Tracer Particle Tracking 

The simulated evolution of passive tracer particles is facilitated by means of a nearly-

4th-order Runge—Kutta technique proposed by Coppola, Sherwin & Peiró (2001).  

This tool is extremely adept at simulating the planar laser-induced fluorescence (PLIF) 

technique of dye visualization used to great effect by Williamson (1996); Leweke, 

Thompson & Hourigan (2004).  The image below compares experimental dye 
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visualization of an arresting sphere with a numerical simulation produced using Viper, 

and visualised using the Tecplot package. 

 

 

 
 

A time sequence (from left to right) comparing simulated particle tracking computations (top) and 

experimental dye visualization (bottom) for an arresting cylinder at 𝑅𝑒 =  500 with a translation 

distance of two cylinder diameters (Sheard, Leweke, Thompson & Hourigan 2007). 

 

The particle tracking algorithm updates particle positions within each element in 

parametric space using a 4th-order Runge—Kutta time integration scheme.  When a 

particle crosses an element boundary, a series of first-order sub-steps is employed to 

step to and across the element interface(s).  As the step size is typically small compared 

to the size of the elements, the technique nearly preserves the 4th-order temporal 

accuracy of the Runge—Kutta scheme. 

Particles can either be injected at a single point or at several points within the 

flow, or the entire flow field can be seeded with a uniform distribution of particles.  

Visualization of particles can be performed either by outputting the discrete particle 

locations in physical space to a text file, or by plotting the particle concentration using 

the Tecplot package as per the image reproduced here.  For Tecplot output, a particle 

concentration is calculated based on a localised summation of particles subject to a 

Gaussian mask about each data point.  The variance of the Gaussian mask used varies 

based on the local mesh refinement. 
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Forcing Terms 

The Navier-Stokes equations can be augmented with the addition of a variety of forcing 

terms, allowing for the modelling of various flows (these modifications are also able to 

be used in concert with other modifications, such as the use of the Boussinesq 

approximation). These can take the form of either constant forcing terms, defined with 

gvar_forcing_f[u,v,w,s], or linear forcing terms, defined with 

gvar_forcing_g[u,v,w,s], where the options represent the equation which will 

be modified (𝑢-, 𝑣- or 𝑤-velocity component momentum equation, or the scalar field 

equation). The linear forcing terms are always linear in the respective component for 

the equation (the 𝑢-momentum equation can have a term linear in 𝑢-velocity appended). 

The only exception is the hard coded gvar_scalar_uvel_forcing which 

appends a term to the scalar equation which is linear in the 𝑢-velocity component. In 

either case a coefficient for the term can be specified, which can be a function of all 

native or used defined variables in the viper.cfg file, and is zero by default. Some 

common examples follow: 

 

For periodic flows (infinite length ducts, channels or boundary layers), the pressure can 

be decomposed into a driving background pressure gradient, and a fluctuating 

component,  

 

𝑝 = −
2

𝑅𝑒
𝑥 + 𝑝′, 

 

where the coefficient (−2/𝑅𝑒) is unique to the boundary layer problem this example 

is from (and which is negative as the pressure gradient decrease in the direction of 

increasing flow velocity, which in this case is the positive 𝒆𝑥 direction). Hence, the 

momentum equation is rewritten as, 

 
𝜕𝒖

𝜕𝑡
= −(𝒖 ∙ 𝛁)𝒖 − ∇𝑝′ +

2

𝑅𝑒
𝒆𝑥 +

1

𝑅𝑒
∇2𝒖. 

 

The implementation within the configuration file is shown below, nothing that the 

forcing must be applied only to the 𝑢-velocity component equation, for a background 

pressure gradient in the positive 𝒆𝑥 direction: 

 
gvar_usrvar Re 200           (Reynolds number) 

gvar_rkv 'Re' 

gvar_forcing_fu '2/Re' 

 

Note that the Reynolds number only represents the reciprocal kinematic viscosity if the 

characteristic length and velocity scales are non-dimensionalized to a maximum of 1. 

This is highlighted here as the characteristic velocity will likely vary as the simulation 

evolves, particularly if shear and other diffusive effects act upon the velocity profile. 

Hence, although the original pressure gradient defined is constant, its effect on the flow 

will not allow it maintain a constant characteristic velocity. This effect can be quite 

large if the effects of buoyancy also modify the velocity field (natural convection). In 

such cases, the forceflow command may be preferable, as this adjusts the forcing 

such that the flowrate remains constant, and hence the characteristic (reference) velocity 

is held constant. If this disparity seems concerning, the flow fields which evolve (both 
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when varying with time, and when steady state) are very similar, it is just that in one 

case the forcing varies and the flow rate is held constant (forceflow) and in the other 

the forcing is held constant and the flow rate varies (gvar_forcing_fu). 

 

A common use for the linear (gradient) terms (gvar_forcing_g[u,v,w,s]) are 

to represent linear friction (Rayleigh friction) or Coriolis forces. This particular 

example refers to the simulation of a magnetohydrodynamic flow, discussed in the 

following section, where the effects of Hartmann braking are simulated by linear 

friction. 

 

The momentum equation for a quasi-2D magnetohydrodynamic flow (in which the 

pressure has not been decomposed, and hence which will be simulated using 

forceflow) is: 

 
𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ ∇)𝒖 = −∇𝑝 +

1

𝑅𝑒
∇2𝒖 −

𝐻

𝑅𝑒
𝒖 

 

The final term, with coefficient (−𝐻/𝑅𝑒) for a confined duct flow, represents the linear 

friction term. This will be implemented in the configuration file as, 

 
gvar_usrvar Re 200          (Reynolds number) 

gvar_usrvar H  100          (Hartmann friction parameter) 

gvar_rkv 'Re' 

gvar_forcing_Gu '-H/Re' 

gvar_forcing_Gv '-H/Re' 

 

In this case two forcing terms are needed (it is a two-dimensional simulation), as the 

friction term acts on both the 𝑢- and 𝑣-velocity components, as denoted by 𝒖 = (𝑢, 𝑣).  

Even though the reader may yet to be introduced to magnetohydrodynamics, the ease 

with which the forcing terms can be implemented shows how broad reaching their 

impact can be regarding flow modelling. 

 

A final example considers the additional, hard coded forcing term, 

gvar_scalar_uvel_forcing which allows for an additional advection term to 

be placed in the scalar advection-diffusion equation (although only in the 𝑥 direction). 

This is beneficial when simulating a heat flux distributed along the 𝑥-direction. Note 

that an energy balance over a control volume is required to determine the effect of the 

thermal gradient along the duct.  

 

The dimensional scalar advection-diffusion equation is written as: 

 

𝜕𝜃

𝜕𝑡̂
+ (𝒖̂ ∙ ∇̂)𝜃 = 𝜅∇̂2𝜃, 

 

where the temperature (similar to the pressure) is decomposed into periodic fluctuation 

and a background horizontal thermal gradient, 

  

𝜃 = 𝜃′ + 𝐴𝑥̂, 
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where the background gradient,  

𝐴 =
𝜅(d𝜃 d𝑦̂⁄ )

w

𝑄̂
, 

 

will need to be determined for the exact problem based on an energy balance, but should 

have a form similar to that provided above. On substitution into the advection term of 

the scalar transport equation, their will be two components, the conventional advection 

of the fluctuating temperature, 

 

(𝒖̂ ∙ ∇̂)𝜃′ 

 

and the advection of the thermal gradient 

 

(𝒖̂ ∙ ∇̂)𝐴𝑥̂ = 𝒖̂𝐴 

 

Hence, after non-dimensionalization, there will be a gradient in temperature which is 

advected, or forced, by the 𝑢-velocity component, which requires the use of 

gvar_scalar_uvel_forcing. This merely requires the coefficient to be 

specified in the configuration file.  

 

Hopefully, the breadth of the uses of the forcing terms has been appropriately described, 

as they allow for a wide variety of problems to be modelled. 

Magnetohydrodynamics (and the SM82 Model) 

The motion of an electrically conducting fluid in the presence of a magnetic field is 

considered to be a magnetohydrodynamic problem, which assumes that the velocity and 

magnetic fields are coupled. In general, the approximation of a low magnetic Reynolds 

number is used to decouple the velocity and magnetic fields, with the magnetic 

Reynolds number defined as:  

𝑅𝑒𝑚 = 𝜎𝜇𝑢𝐿 =
𝑢𝐿

𝜆
, 

 

where 𝜎 is the electrical conductivity of the fluid, 𝜇 the permissivity of free space, and 

𝜆 = (𝜎𝜇)−1 the magnetic diffusivity (𝑢 and 𝐿 are characteristic fluid length and velocity 

scales). The magnetic Reynolds number represents the rate of advection of the magnetic 

field (if it is frozen into the fluid) to the rate of diffusion of the magnetic field. The 

formation of the term, from an order of magnitude analysis of the advection-diffusion 

equation of the magnetic field, 𝑩, can be found in Davidson (2001). If the magnetic 

Reynolds number is low, the magnetic field is dominated by diffusion, and the velocity 

and magnetic field equations are decoupled (the magnetic field influences the velocity 

field, but the velocity field does not influence the imposed magnetic field). A full 

discussion of the electromagnetic MHD equations, and the full quasi-static 

approximation briefly discussed above, can be found in Davidson (2001). 

The magnetic field influences the velocity field through the Lorentz force, given 

by 𝒋 × 𝑩, where 𝒋 is the current density. This may be induced by the change in magnetic 

flux as a material surface of the fluid moves through the magnetic field (from Faraday’s 

law of induction), or if it is externally applied by a voltage difference (or both). 

Although there are significantly more complexities, the presence of the Lorentz force 

is the key difference between MHD and OHD flows. The effect of the Lorentz force is 
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to reduce velocity differentials (higher velocity fluids have larger current densities), and 

creates much thinner boundary layers. These scale based on the Hartmann number, 

which is the ratio of the square of the strength of electromagnetic to viscous forces,  

 

𝐻𝑎 = (
𝜎𝐵2𝐿2

𝜌𝜈
)

1/2

 

 

where 𝐵 represents the strength of the (imposed) magnetic field. An important 

component of the Hartmann number is the magnetic damping time 𝜏−1 = 𝜎𝐵2/𝜌 which 

represents the rate at which momentum diffuses along magnetic field lines (see, for 

example, Davidson (1995), Sommeria and Moreau (1982), Pothérat (2007)). The 

strength of the magnetic field also strongly defines the thickness of the boundary layers, 

which on walls perpendicular to the magnetic field scale as 𝐻𝑎−1 and on walls parallel 

to the field as 𝐻𝑎−1/2. When considering finite geometries the Hartmann friction 

parameter 𝐻 = 𝑛(𝐿2/𝑎2)𝐻𝑎 may be more appropriate, where 𝑛 is the number of walls 

perpendicular to the field, 𝑎 the distance between two Hartmann walls and 𝐿 the 

characteristic length scale (see Pothérat (2007)). 

Finally, an interaction parameter is defined, which represents the ratio of 

electromagnetic to inertial forces,  

𝑁 =
𝐻𝑎2

𝑅𝑒
. 

 

These three key parameters are of great importance to the validity of the SM82 model 

(Sommeria and Moreau (1982)). If diffusion of momentum (along magnetic field lines) 

occurs much more rapidly than transfer of momentum due to viscosity, then flow 

structures will be elongated along field lines. This requires electromagnetic forces 

which are much stronger than both inertia or viscosity, hence 𝑁 ≫ 1 and 𝐻𝑎 ≫ 1. A 

𝑅𝑒 ≫ 1 also helps supress velocity variations between transverse planes. Finally, under 

the quasi-static approximation (time steady magnetic fields, and 𝑅𝑒𝑚 ≪ 1) the flow 

can be assumed to be quasi two-dimensional (averaging the flow along the field lines). 

The flow simulated is truly two dimensional, hence to account for the difference (as the 

Hartmann boundary layers break the two-dimensionality) an additional linear Hartmann 

braking term must be appended to the momentum equation, which takes the form 

 

−
𝐻

𝑅𝑒
𝒖. 

 

This linear friction term (which is formally accurate to the first order in 𝑁) can easily 

be simulated using linear forcing terms defined in the viper.cfg file 

(gvar_forcing_gu and gvar_forcing_gv). 

Quasi-static MHD 

Unlike the SM82 model, the quasi-static solver computes the electric potential field, 

and hence requires electric potential boundary conditions to be specified. Note that 

commands that can output information on other fields (such as the scalar field), are not 

necessarily equipped to output information about the electric potential field (hence use 

the current command). Furthermore, the quasi-static MHD equations can only 

simulate an electric field in one dimension, as noted hereafter (see Appendix A for 

derivations, that indicate which magnetic field directions have been hard coded).  
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The quasi-static equations to be solved are:  

 
𝜕𝒖

𝜕𝑡
= 𝐍(𝒖) − 𝜵𝑝 +

1

𝑅𝑒
∇2𝒖 + 𝑁(𝒋 × 𝒆𝑩) 

 

𝛁 ∙ 𝒖 = 0 
 

where 𝐍(𝒖) = −(𝒖 ∙ 𝛁)𝒖 is the non-linear advection operator, 𝒋 is the induced current 

density, 𝑁 the interaction parameter and 𝒆𝑩 is a unit vector in the direction of the 

magnetic field. Ohm’s law defines the current density as 

 

𝒋 = −𝜵𝜙 + 𝒖 × 𝒆𝑩 
 

where 𝜙 represents the electric potential field. The MHD approximations (discussed in 

Davidson (2001)), require solenoidal (closed loop) currents, hence requiring  

 

𝛁 ∙ 𝒋 = 0 ∴ ∇2𝜙 = 𝛁 ∙ (𝒖 × 𝒆𝑩) ∴ ∇2𝜙 = 𝒆𝑩 ∙ (𝛁 × 𝒖) 

 

where the last modification uses a vector identity and requires a uniform magnetic field. 

 Following a similar approach to Karniadakis, Israeli & Orszag (1991), to 

integrate from time n to time n+1, the equations are cast at the future time, the time 

derivative term is replaced by a backwards differencing relation, and an appropriate-

order extrapolation of the non-linear term to the future time is used.  The momentum 

equation then becomes 

 

𝛾0𝒖𝑛+1 − ∑ 𝛼𝑞𝒖𝑛−𝑞𝐽𝑖−1
𝑞=0

Δ𝑡

=  ∑ 𝛽𝑞𝐍(𝒖𝑛−𝑞)
𝐽𝑒−1

𝑞=0
− 𝛁𝑝𝑛+1 +

1

𝑅𝑒
∇2𝒖𝑛+1 + 𝑁(𝒋𝑛+1 × 𝒆𝐵). 

 

The same coefficients are used for time integration as the velocity field. The solution 

of the momentum equation is divided into three sub-steps, almost identically to the 

integration of the velocity field, although with additional terms present: 

𝒖∗ − ∑ 𝛼𝑞𝒖𝑛−𝑞𝐽𝑖−1
𝑞=0

Δ𝑡
= ∑ 𝛽𝑞𝐍(𝒖𝑛−𝑞)

𝐽𝑒−1

𝑞=0
+ 𝑁(𝒋𝑛+1 × 𝒆𝐵), 

𝒖∗∗ − 𝒖∗

Δ𝑡
= −𝛁𝑝𝑛+1, 

𝛾0𝒖𝑛+1 − 𝒖∗∗

Δ𝑡
=

1

𝑅𝑒
∇2𝒖𝑛+1. 

Poisson equations are solved for the electric potential field and the pressure.  The 

sequence of calculations is therefore: 

1. Extrapolate velocity field to n+1 time: 

𝒖̃𝑛+1 = ∑ 𝛽𝑞𝒖𝑛−𝑞
𝐽𝑒−1

𝑞=0
, 
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2. Obtain electric potential field from solution of Poisson equation (note the 

electric potential field boundary conditions are imposed during this calculation): 

∇2𝜙̃𝑛+1 = 𝛁 ∙ (𝒖̃𝑛+1 × 𝒆𝐵), 

3. Calculate current density: 

𝒋̃𝑛+1 = − 𝛁𝜙̃𝑛+1 + 𝒖̃𝑛+1 × 𝒆𝐵, 

4. Evaluate first intermediate velocity field: 

𝒖∗ = ∑ 𝛼𝑞𝒖𝑛−𝑞
𝐽𝑖−1

𝑞=0
+ Δ𝑡(𝐍(𝒖̃𝑛+1) + 𝑁(𝒋̃𝑛+1 × 𝒆𝐵)), 

5. Obtain pressure from solution of Poisson equation (this is constructed by taking 

the divergence of the pressure sub-step, and enforcing the divergence-free 

constraint on the second intermediate velocity field; the pressure boundary 

conditions are imposed during this calculation): 

 ∇2𝑝𝑛+1 = (𝛁 ∙ 𝒖∗) Δ𝑡⁄ , 

6. Evaluate third intermediate velocity field: 

𝒖∗∗ = 𝒖∗ − Δ𝑡𝛁𝑝𝑛+1, 

7. Obtain the final velocity field from the Helmholtz equations (the velocity 

boundary conditions are imposed during this calculation): 

∇2𝒖𝑛+1 −
𝛾0𝑅𝑒

Δ𝑡
𝒖𝑛+1 = −

𝑅𝑒

Δ𝑡
𝒖∗∗. 

Viper Solvers 

Viper provides several solvers for computing a range of fluid flow problems.  To 

compute flow in two-dimensional domains (either in Cartesian or cylindrical coordinate 

systems, computations are performed on a two-dimensional mesh comprising 

quadrilateral (four-sided) spectral elements.  The stability of two-dimensional flows to 

three-dimensional instability modes can be determined by means of the global linear 

stability analysis capabilities of the code.  In these computations, the base flow, and 

individual Fourier modes of three-dimensional perturbation fields are each computed 

on a two-dimensional mesh. 

Three-dimensional computations may be performed either using hexahedral 

(six-faced) spectral elements for general geometries, or a Fourier expansion of a two-

dimensional domain for geometries which have a symmetry in the out-of-plane 

direction (either 𝑧 for Cartesian or 𝜃 for cylindrical coordinate system computations). 

Running Simulations in Parallel 

Viper is parallelized using the Message Passing Interface (MPI).  With MPI, separate 

copies of the program are run on each processor, with each being allocated its own 

block of memory.  MPI supplies routines that facilitate communication of data between 

each processor, synchronization, etc. 

Speedup is a measure of the benefit available from parallel computing, and is 

defined as a ratio of the time taken to run a simulation over a single processor to the 
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time taken to run the same simulation over multiple processors.  Optimal speedup would 

equal the number of available processors, though unfortunately there are practical 

limitations to how much speedup is available in real computations.  There is an 

increasing memory overhead due to duplication of data structures (mesh connectivity, 

derivative matrices, etc.) on each MPI process.  There is also time lost when processes 

sit idle waiting for others to reach a collective MPI communication routine, as well as 

for the communications between processes.  To gain a good benefit from parallel 

computing, the amount of work to be done in parallel must be significant to overcome 

the performance degradation due this overhead. 

To gain the most benefit from parallel computations, care is required to ensure 

that an appropriate number of MPI processes are used.  For instance, if a simulation 

contains 5 flow fields, and the user chooses to run the simulation over two MPI 

processes, then one process will compute two fields and sit idle while the other process 

carries out the necessary calculations for its third field.  In terms of speedup, this means 

that even if the computation was ideal (no overhead), the maximum available speedup 

would be 5/3 = 1.667, not 2 as may have been hoped.  Avoiding idle MPI processes is 

the only technique available for end-users to maximise their speedup and efficiency in 

parallel computations using Viper.  The sections below provide advice on how to best 

select the number of MPI processes for their computations. 

Parallel base flow simulations 

Viper is written to parallelize simulations by distributing multiple fields across multiple 

processes.  Single-field computations (i.e. two-dimensional quadrilateral and three-

dimensional hexahedral simulations) obtain no speedup if run across multiple 

processes; these simulations are most efficiently carried out on a single processor. 

Parallel linear stability and optimal growth analysis computations 

These simulations require the simultaneous computation of a two-dimensional base 

flow field and one or more perturbation fields.  Each individual perturbation field must 

be evolved iteratively over a specified time interval.  The total compute time required 

for a single field is problem and parameter dependent, but typically varies between tens 

to hundreds of hours.  There is a one-way coupling only in this algorithm, where the 

perturbation fields depend on the base flow velocity fields from previous time steps, 

but not vice versa. Hence, the master process evolving a base flow solution is required 

to communicate this solution via a single MPI_BCAST communication at every time 

step to the processes on which the perturbation fields are being evolved.  This algorithm 

therefore exhibits a strong parallel scalability. 

It is possible to acquire, in a single large parallel job, a comprehensive spectrum 

of instability growth rates as a function of perturbation wavenumber.  Further efficiency 

gains are possible where available RAM permits by clustering multiple perturbation 

fields onto each MPI process; this reduces the message-passing overhead and improves 

the efficiency of the project-wide utilisation of resources.  A short time integration test 

depicts the scalability of this algorithm.  The reference case involved time integration 

of a base flow and 1 or more perturbation fields evolved on a single processor, and the 

compute time was compared with that from a set of simulations where the job was 

distributed across multiple processors.  The figure below plots the resulting compute 

time, demonstrating a negligible increase in compute time in the distributed case from 

1 to 4 fields (processors), an approximately 30% increase in time between 4 and 16 

fields (processors), and constant compute time from 16 to beyond 1000 fields 

(processors).  To compare, the times from the 1-CPU reference case divided by the 
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number of fields (processors) are also plotted.  Memory restrictions limited this 

reference case to 64 fields. 

 

 
Time integration of a two-dimensional base flow on MPI process 0 plus nProcs-1 test cases over 

processes 1 to nProcs-1. The compute time for this test case is denoted by the blue unbroken line, while 

for reference the average time per field from 1-CPU simulations are plotted with the black dashed line. 

Therefore, a significant performance gain can be achieved by running these simulations 

in parallel, with the computation of the required fields being shared between available 

processors.  The total number of time integration solutions required at each time step is 

𝑁𝑝 +  1, where 𝑁𝑝 is the number of active perturbation fields (as we also need to evolve 

the base flow1).   

The maximum number of MPI processes that should be used when computing 

linear stability analysis computations is 𝑁𝑝 +  1.  To avoid idle MPI processes, users 

should compute with either this number of MPI processes, or whole factors of this 

number.  For example, if a linear stability analysis computation was analysing 7 

perturbation fields, then the total number of fields being computed is 8, and 

computations should employ 8, 4, 2, or 1 MPI process.  Less efficient speedup would 

be achieved for computations using 7, 6, 5, or 3 MPI processes. 

 

Parallel spectral-element/Fourier computations 

The spectral-element/Fourier algorithm computes a three-dimensional solution where a 

Fourier series represents the variation in the flow in the out-of-plane direction.  MPI is 

therefore useful for the efficient parallel computation of three-dimensional flows in 

domains with geometric homogeneity in one dimension. 

This algorithm predominantly evolves the flow in Fourier space (pressure and 

diffusion substeps), permitting much of the work at every time step to be conducted in 

isolation on Fourier modes distributed across MPI processes.  However, within each 

time step, the flow must be transformed back to physical space for calculation of a 

nonlinear advection term, before being transformed back to Fourier space.  This is 

accomplished via a pair of MPI_ALLTOALLV() calls bracketing inverse and forward 

Discrete Fourier transforms.  This erodes the scalability of the routine when compared 

to the more lightly coupled linearised solver.  

                                                 
1 Note that if users are performing stability analysis on a frozen base flow (using the freeze 

command), then there are effectively only 𝑁𝑝 fields to be computed to complete each time step. 
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A short time-evolution test of a representative 3D flow simulations containing 

between 2 and 256 Fourier modes distributed over the same number of processors.  

Figure 2 shows that the compute time increases 1.89 times from the 2-field/2-processor 

case to the 256-field/256-processor case.  The reference case computed on a single 

processor demonstrates a consistent average compute time up to the maximum 64 fields 

that could be accommodated in a single-CPU job.  The code facilitates further efficiency 

gains where RAM limitations permit by clustering multiple Fourier modes onto each 

MPI process, which further reduces the message-passing overhead. 

 

 
Time integration of a three-dimensional flow computed with between 2 and 256 Fourier modes 

distributed across the same number of processors. The compute time for this test case is denoted by the 

blue unbroken line, while for reference the average time per field from 1-CPU simulations are plotted 

with the black dashed line. 

Dividing the compute times for the distributed cases by the corresponding times 

for the 1-CPU cases provides a measure of the speedup obtained by parallelisation.  The 

figure below shows the measured speedups up to the available 64 processors for the 

aforementioned linearised solver and spectral element-Fourier 3D solver.  Power law 

fits to the data demonstrate that the speedups scale with the -0.873rd and -0.862nd power 

of the number of processors, respectively.  An ideal (linear) speedup would scale with 

the -1 power. 

 

 
Speedup plotted against number of processors for the linearised (blue) and Fourier 3D (red) solvers 

described earlier. Power law fits to the data are shown on the figure. 
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Spectral-element/Fourier computations are initialised using the fourier 

command, and the number of Fourier planes is specified at this time.  The number of 

Fourier planes corresponds to the number of sample points in the Discrete Fourier 

Transform.  Any number of planes greater than 2 is permitted.  Viper uses the Discrete 

Fourier Transform code supplied with the Intel Math Kernel Library, so users are not 

restricted to numbers of planes in powers of two.  Due to the conjugate symmetry 

property of discrete Fourier transforms of real data (no imaginary component), the 

negative frequency modes need not be explicitly computed.  With a number of planes 

Nf, the number of Fourier modes being computed is Nf /2 + 1, where integer division is 

used (round down to the nearest whole number).  For example, if a user wishes to 

compute a spectral-element/Fourier computation with 31 planes, this corresponds to 16 

modes, and therefore simulations would best be performed on 16, 8, 4, 2, or 1 MPI 

process.  As with linear stability analysis calculations, poorer performance will result if 

the number of MPI processes was not a factor of 16. 

 

Running Viper 

 

While the Viper executable can run on a single processor directly, to run an MPI job 

across multiple processors, users must use the command “mpirun”.  For example, to 

execute Viper over 4 processors, the following command would be called: 

 
mpirun –n 4 ../viper.x < macro.txt > output.txt 

 

Here mpirun is used to distribute the program viper.x (which here is located in 

the parent directory (../) over 4 processors (specified with the option –n 4), with 

input taken from the text file macro.txt, and output being written to output.txt. 

 

If the command mpirun is not recognized under your NCI login, you will need to load 

the relevant module.  Users should add a statement similar to the following statement 

to their .login file in their home directory: 

 
module load openmpi/1.8.8 

(or) 
module load openmpi/1.10.7-mlx 

 

The exact modules necessary for using Viper are detailed in the Login Setup section of 

Chapter 5, based on the system on which they are running Viper. Contact either A/Prof. 

Gregory Sheard, or the appropriate system administrators, for assistance in which 

current openMPI modules should be loaded.  Note that there is currently no Windows 

version of Viper available. 

Getting the most out of Viper 

 

The parallelization of Viper is implemented to scale up both the simulation of linearized 

perturbation fields (such as for linear stability analysis, Floquet stability analysis, and 

transient growth analysis), and the spectral element-Fourier 3D solver. In each case, 

perturbation fields or Fourier modes are distributed over the available processors. 
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Viper is designed to handle jobs where the number of fields or Fourier modes 

does not match the number of processors, but to get the most out of a parallel run, jobs 

would ideally have the same number of fields assigned to each processor (so each is 

doing a similar amount of work).  Therefore, the number of fields should be set to be 

an integer multiple of the number of processors.   

For linear stability analysis, the total number of fields is 1 + the number of 

perturbation fields (don’t forget the base flow!), while for spectral-element-Fourier 

3D runs, the number of fields is equal to the specified number of Fourier modes (set 

using the “-k” option in the fourier command). 

Be aware that there is a communication overhead in MPI jobs due to the time 

taken to communicate data between processors, which could be significant for high-

resolution Viper runs with a large number of fields.  Therefore, users may not 

necessarily find that the fastest execution time will occur when the maximum number 

of processors (i.e. equal to the number of fields) is employed.  Users are encouraged to 

experiment with the number of processors for their specific jobs to determine the most 

efficient setup.   

 



 35 

Chapter 3: Pre-Processing 
To conduct a CFD computation, some pre-processing is usually required.  For 

simulations performed using Viper, the pre-processing phase entails the construction of 

meshes using a mesh generation package, and if necessary, converting these meshes 

into a format accepted by Viper. 

 

Accepted Mesh Formats 

Viper currently accepts conforming meshes comprising quadrilateral (4-sided) or 

hexahedral (6-faced) elements.  Quadrilateral meshes are employed for two-

dimensional, axisymmetric, or three-dimensional spectral-element/Fourier 

computations.  Hexahedral meshes are employed for three-dimensional computations 

in general geometries.  Conforming meshes require that adjacent elements meet edge-

to-edge or face-to-face. 

The format for mesh files used by Viper is a text-based format which first lists 

the vertex coordinates, and then describes the elements, their connectivity, and the 

boundary numbers of each edge/face. The following outlines the required mesh format: 

 
Nvert 

x1, y1, [z1,] 1 

x2, y2, [z2,] 2 

: 

: 

xNvert, yNvert, [zNvert,] Nvert 

Nelem 

1, N1, N2, N3, N4, [N5, N6, N7, N8,] B1, B2, B3, B4, 

[B5, B6,] 1 

2, N1,...,N4/N8 (2D/3D), B1,...,B4/B6 (2D/3D), 1 

: 

: 

Nelem, <Vertex numbers of element corners>, <Boundary 

numbers of element edges>, Region 

 

The following definitions apply: 

 Nvert Number of mesh vertices 

 Nelem Number of mesh elements 

 Region Fluid region (currently not used) 

 xn, yn, zn Spatial (x, y, z) coordinates of mesh vertices 

 N1-N8 Ordered numbering of vertices at element corners 

 B1-B6 Ordered numbering of boundaries on element edges/faces 
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The numbering convention employed when constructing elements from mesh vertices 

is outlined below for quadrilateral (left) and hexahedral (right) elements.  The 

corresponding numbering of boundary edges/faces is also shown. 

 

 
An example mesh file is shown below: 

 

e.g. 

 

441 

 -5.000000000000000000E-01    4.000000000000000000E+00               1 

 -4.956479999999999775E-01    4.000000000000000000E+00               2 

 -4.885530000000000150E-01    4.000000000000000000E+00               3 

 -4.770739999999999981E-01    4.000000000000000000E+00               4 

 -4.587140000000000106E-01    4.000000000000000000E+00               5 

 -4.298960000000000004E-01    4.000000000000000000E+00               6 

......... 

  4.885530000000000150E-01    5.000000000000000000E+00             439 

  4.956479999999999775E-01    5.000000000000000000E+00             440 

  5.000000000000000000E-01    5.000000000000000000E+00             441 

400 

1    1    2    23    22    3    0    0    4    1 

2    2    3    24    23    3    0    0    0    1 

........ 

397    416    417    438    437    0    0    1    0    1 

398    417    418    439    438    0    0    1    0    1 

399    418    419    440    439    0    0    1    0    1 

400    419    420    441    440    0    2    1    0    1 
 

 
The first row defines how many nodes there are, in this case 441. Each row thereafter 

defines the x and y coordinates of each node, and its corresponding number. After the 

location of each of the 441 nodes has been defined, then define how many elements 

there are, in this case 400. The next rows then define the information about each element 

(although the element number is now in the first column, rather than the last column as 

for nodes). 
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The first number (1) is the element number, the second number is the bottom 

left corner of the element specified by node number (1), then the bottom right node (2), 

then the top right node (23), then the top left node (22). This counter-clockwise order 

must always be used. The next four numbers are used to specify the btag values 

interpreted by the viper.cfg file. Hence, for the element boundary between the 

bottom left and right nodes (1 and 2), a btag number of 3 is assigned. Then nothing 

for the right side and top sides of the element (specified by a zero number), then a btag 

number of 4 is assigned to the left hand side of the element (between nodes 22 and 1). 

This goes on for each element, where the last element (400), has a bottom left corner of 

node (419), a bottom right corner of node (420), a top right corner node of (441) and a 

top left corner node of (440). It also has a btag of 2 assigned to the right side (between 

nodes 420 and 441), and a btag of 1 assigned to the top side (between nodes 441 and 

440). The number in last column number is redundant (the 1 at the end of each row). 

However, it must still be specified (i.e. a 1 must be here for every element). 

Note that regardless if the mesh is converted from a Gambit file, it is likely that 

the mesh file will contain CRLF line headers. These will need to be removed using 

dos2unix <mesh_file> (including extension) on the mesh file, when operating 

on a linux system. 

Converting from Gambit 

The Gambit mesh generation package can be used to generate meshes for use in Viper.  

Conversion utilities available from The Sheard Lab website (http://sheardlab.org/) 

convert Gambit mesh files exported in the FIDAP format (.FDNEUT files) to the Viper 

text-based mesh format.  

From Gambit, the conversion process is as follows: 

1. Create a mesh comprising either quadrilateral (4-sided 2D) or hexahedral (6-

faced 3D brick) elements.  

2. Set the Solver type to FIDAP  

3. Define boundary conditions, using different names for each uniquely numbered 

boundary.  

4. Save mesh: Select FILE → EXPORT → MESH to save mesh with .FDNEUT 

extension.  

5. Exit Gambit.  

6. Rename file to default mesh_in.FDNEUT for conversion.  

7. Invoke the appropriate conversion tool (2D or 3D).  

8. A new text file is created containing mesh information readable by Viper. 
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Chapter 4: Configuring Simulations 
Prior to running a simulation, a configuration file must be created to provide Viper with 

the necessary information to establish and solve the flow correctly.  This information 

must be contained in a text file named viper.cfg, which should be located in the 

directory in which Viper is invoked (where the queue script is). 

The viper.cfg file contains the following information: 

 Location of the mesh file, 

 Values for simulation parameters (e.g., dt, RKV, N), 

 User-defined functions, 

 Initial and boundary conditions. 

The commands used to supply these details to Viper are described in the following 

section. 

 

Note that most commands in which a floating point value was specified are now capable 

of accepting either previously user defined variables, or a mathematical function, of 

either global or user variable type. If a command still only accepts floating point values, 

please contact Dr. Gregory Sheard such that this can be updated to the new convention. 

 

Commands recognised in the viper.cfg file 

btag 

Syntax: btag <tag_num> <var> <boundary_type_ID> 

[<param1> <param2> <param3>] 

Function: Defines the condition to be imposed on a particular boundary. 

Description: 

The btag command is used to link boundary tag numbers in the mesh file 

<tag_num> with a type of boundary (defined by an ID number 

<boundary_type_ID> recognised by Viper.  Currently, Viper accepts the 

following boundary ID numbers: 

1. Constant Dirichlet boundary (values of components of flow variables are given 

by <params>). 

2. Static user-defined Dirichlet boundary (components are expressed as 

mathematical expressions that are functions of spatial coordinates x, y, z, and 

the reciprocal kinematic viscosity, RKV). 

3. Transient user-defined Dirichlet boundary (components are again expressed as 

mathematical expressions, which here can also be functions of time, t). 

4. Periodic boundaries (x-direction only).  This boundary requires boundary 

edges/faces to be identical on a pair of periodic boundaries. 

5. Symmetry boundary (no velocity normal to the boundary, and zero shear stress 

along the boundary – this condition is inexactly imposed at the conclusion of 

each time step). 

Viper permits the separate prescription of velocity, pressure, scalar and electric 

potential field boundary conditions on a boundary through the <var> string, which can 

be set to “vel”, “p”  “s” or “e” (case insensitive), for velocity, pressure, the scalar 

field (often temperature) and the electric potential field, respectively. 
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In addition, if <var> takes the value “s”, then a scalar field will automatically be 

initialized, which will then be computed using a backwards-differentiation advection-

diffusion scheme similar to that used for the velocity field. Users should also then 

specify the coefficient of scalar diffusion using gvar_scalar_diff. 

Note that velocity boundary conditions can alternatively be specified per component, 

by setting <var> to u, v, or w. This is useful for prescribing exact stress-free boundary 

conditions on horizontal or vertical boundaries (by setting the normal velocity 

component to a zero Dirichlet condition, and the tangential component(s) to zero 

Neumann condition(s); a zero Neumann condition is the natural default if no explicit 

boundary condition is specified. 

Note that a positive value specified for a Neumann boundary conditions refers to 

an outward normal vector. 

The following are examples of the use of btag: 

e.g. 1: 

 
\> btag 5 vel 3 ‘x*cos(t)’ ‘2.0’ ‘3.0’ 

 

Specifies that boundary number 5 (in the mesh file) will be prescribed a transient user-

defined Dirichlet velocity condition with velocity components 𝑢 =  𝑥 𝑐𝑜𝑠(𝑡), 

𝑣 =  2.0, and 𝑤 =  3.0. 

 

e.g. 2: 

 
\> btag 4 p 1 0.5 

 

Specifies that boundary number 4 will be prescribed a fixed Dirichlet pressure condition 

with 𝑝 =  0.5 on the boundary. 

 

e.g. 3: 

 
\> btag 5 u 1 ‘0.0’ 

 

Specifies that boundary number 5 will be prescribed a fixed Dirichlet velocity condition 

with 𝑢 = 0.0 on the boundary. 

 

e.g. 4: 

 
\> btag 3 w 2 ‘0.0’ 

 

Specifies that the out-of-plane velocity component on boundary number 3 will be 

prescribed a Neumann velocity condition with a gradient value of 0.0. 

 

e.g. 5: 

 
\> btag 4 p 2 0.5 

 

Specifies that boundary number 4 will be prescribed a Neumann condition with an 

outward normal gradient of the pressure field, having a value of 𝑑𝑝/𝑑𝑛 = 0.5 at the 

boundary. 
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e.g. 6: 

 
\> btag 2 s 4 

 

Specifies that boundary number 2 will be prescribed a periodic condition, whereby the 

values of the scalar field at this boundary will be equal to values at a corresponding 

boundary with identical element distribution in y (and z if 3D). 

 

gvar_curve 

Syntax: gvar_curve <bndry> 

Function: Specifies a boundary number on which to apply automated 

boundary curvature. 

Description: 

The domain boundary number <bndry> corresponds to the boundary number as 

defined in the btag statements in the viper.cfg file.  Continuous blended curves 

comprising circular arcs are constructed along edges corresponding to boundary 

number <bndry>.  Continuous curvature is not enforced for adjacent edges on a single 

element to avoid illegal element mappings.  In 3D, an edge-curvature-preserving 

interpolation is applied to generate the curved surface on each boundary face. 

 

gvar_dt 

Syntax: gvar_dt <value> 

Function: Sets the time step Δt. 

Description: 

The time step Δ𝑡 is set to <value>, where <value> must be greater than 0.0, 

otherwise the default value 𝛥𝑡 =  0.005 is used instead. 

 

gvar_forcing_fu 

Syntax: gvar_forcing_fu <function> 

Function: Add a forcing term to the u-velocity momentum equation. 

Description: 

This command adds a forcing term of the form +𝐹 to the u-component of the Navier-

Stokes momentum equations. The forcing term 𝐹 (<function>) may be a constant, 

a function of time only, a spatially varying steady-state function, or a time-dependent 

spatially varying function, and in each case may be expressed in terms of user-defined 

variables (gvar_usrvar) in addition to t, x, y, z and RKV. 

Note: By default, the forcing term is zero.  
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e.g.: 

 
\> gvar_forcing_fu ‘x-y+t-3.47’ 

 

gvar_forcing_fv 

Syntax: gvar_forcing_fv <function> 

Function: Add a forcing term to the v-velocity momentum equation. 

Description: 

This command adds a forcing term of the form +𝐹 to the v-component of the Navier-

Stokes momentum equations. The forcing term 𝐹 (<function>) may be a constant, 

a function of time only, a spatially varying steady-state function, or a time-dependent 

spatially varying function, and in each case may be expressed in terms of user-defined 

variables (gvar_usrvar) in addition to t, x, y, z and RKV. 

Note: By default, the forcing term is zero.  
e.g.: 

 
\> gvar_forcing_fv ‘x-y+t-3.47’ 

gvar_forcing_fw 

Syntax: gvar_forcing_fw <function> 

Function: Add a forcing term to the w-velocity momentum equation. 

Description: 

This command adds a forcing term of the form +𝐹 to the w-component of the Navier-

Stokes momentum equations. The forcing term 𝐹 (<function>) may be a constant, 

a function of time only, a spatially varying steady-state function, or a time-dependent 

spatially varying function, and in each case may be expressed in terms of user-defined 

variables (gvar_usrvar) in addition to t, x, y, z and RKV. 

Note: By default, the forcing term is zero.  
e.g.: 

 
\> gvar_forcing_fw ‘x-y+t-3.47’ 

 

gvar_forcing_fs 

Syntax: gvar_forcing_fs <function> 

Function: Add a forcing term to the scalar advection-diffusion equation. 

Description: 

This command adds a forcing term of the form +𝐹 to the u-component of the scalar 

advection-diffusion equation. The forcing term 𝐹 (<function>) may be a constant, 

a function of time only, a spatially varying steady-state function, or a time-dependent 

spatially varying function, and in each case may be expressed in terms of user-defined 

variables (gvar_usrvar) in addition to t, x, y, z and RKV. 

Note: By default, the forcing term is zero.  
e.g.: 

 
\> gvar_forcing_fs ‘x-y+t-3.47’ 
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gvar_forcing_gu 

Syntax: gvar_forcing_gu <function> 

Function: Add a linear forcing term to the u-velocity momentum equation. 

Description: 

This command adds a forcing term of the form +𝐺𝑢 to the solver, where 𝐺 is a function 

defined using this command, and 𝑢 is the u-velocity component to the u-component of 

the Navier-Stokes momentum equations (e.g. 
𝑑𝑢

𝑑𝑡
= ⋯ + 𝐺𝑢). The forcing term 𝐺 

(<function>) may be a constant, a function of time only, a spatially varying steady-

state function, or a time-dependent spatially varying function, and in each case may be 

expressed in terms of user-defined variables (gvar_usrvar) in addition to t, x, y, z 

and RKV. 

Note: By default, the forcing term is zero.  
e.g.: 

 
\> gvar_forcing_gu ‘x-y+t-3.47’ 

    

gvar_forcing_gv 

Syntax: gvar_forcing_gv <function> 

Function: Add a linear forcing term to the u-velocity momentum equation. 

Description: 

This command adds a forcing term of the form +𝐺𝑣 to the solver, where 𝐺 is a function 

defined using this command, and 𝑣 is the v-velocity component, to the v-component of 

the Navier-Stokes momentum equations (e.g. 
𝑑𝑣

𝑑𝑡
= ⋯ + 𝐺𝑣). The forcing term 𝐺 

(<function>) may be a constant, a function of time only, a spatially varying steady-

state function, or a time-dependent spatially varying function, and in each case may be 

expressed in terms of user-defined variables (gvar_usrvar) in addition to t, x, y, z 

and RKV. 

Note: By default, the forcing term is zero.  
e.g.: 

 
\> gvar_forcing_gv ‘x-y+t-3.47’ 

  

gvar_forcing_gw 

Syntax: gvar_forcing_gw <function> 

Function: Add a linear forcing term to the u-velocity momentum equation. 

Description: 

This command adds a forcing term of the form +𝐺𝑤 to the solver, where 𝐺 is a function 

defined using this command, and 𝑤 is the w-velocity component, to the w-component 

of the Navier-Stokes momentum equations (e.g. 
𝑑𝑤

𝑑𝑡
= ⋯ + 𝐺𝑤). The forcing term 𝐺 

(<function>) may be a constant, a function of time only, a spatially varying steady-

state function, or a time-dependent spatially varying function, and in each case may be 

expressed in terms of user-defined variables (gvar_usrvar) in addition to t, x, y, z 

and RKV. 

Note: By default, the forcing term is zero.  
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e.g.: 

 
\> gvar_forcing_gw ‘x-y+t-3.47’ 

 

gvar_forcing_gs 

Syntax: gvar_forcing_gs <function> 

Function: Add a linear forcing term to the u-velocity momentum equation. 

Description: 

This command adds a forcing term of the form +𝐺𝑠 to the solver, where 𝐺 is a function 

defined using this command, and 𝑠 is the scalar variable, to the scalar advection-

diffusion equation (e.g. 
𝑑𝑠

𝑑𝑡
= ⋯ + 𝐺𝑠). The forcing term 𝐺 (<function>) may be a 

constant, a function of time only, a spatially varying steady-state function, or a time-

dependent spatially varying function, and in each case may be expressed in terms of 

user-defined variables (gvar_usrvar) in addition to t, x, y, z and RKV. 

Note: By default, the forcing term is zero.  
e.g.: 

 
\> gvar_forcing_gs ‘x-y+t-3.47’ 

 

gvar_init_field 

Syntax: gvar_init_field <u_fn> <v_fn> <w_fn> <p_fn> 

Function: Sets an initial velocity/pressure field for a simulation. 

Description: 

Viper solves the time-dependent Navier—Stokes equations forward in time from some 

initial condition, subject to imposed boundary conditions.  If no initial velocity field is 

set, Viper begins computing from a zero interior velocity field.  This facility allows 

user-specified functions for the velocity fields to be specified, which can, in some cases, 

make simulations more stable or more efficient, by permitting an improved “first guess” 

of the velocity field to be used. 

If the user subsequently calls load to load a velocity field from a saved file, then that 

velocity field is used to begin the computation, rather than what is specified by 

gvar_init_field. 

Functions <u_fn>, <v_fn>, <w_fn> and <p_fn> are input for each of the 

velocity components u, v and w, and the kinematic static pressure p. These functions 

accept variables time t, spatial coordinates x, y, and z, and the reciprocal kinematic 

viscosity RKV.  In two dimensions, z is assumed to be zero. 

 

gvar_init_scalar_field 

Syntax: gvar_init_scalar_field <s_fn> 

Function: Sets an initial scalar field for a simulation 

Description: 

If the user subsequently calls load to load a velocity field from a saved file, then that 

velocity field is used to begin the computation, rather than what is specified by 

gvar_init_field. 
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A function <s_fn> is input for the initial scalar field distribution at the 

beginning of the computation. This functions accept variables time t, spatial 

coordinates x, y, and z, and the reciprocal kinematic viscosity RKV.  In two dimensions, 

z is assumed to be zero. 

 

gvar_kink 

Syntax: gvar_kink <elem> <vertex> 

Function: Specifies a node at which to allow a curvature discontinuity on a 

boundary in 2D. 
Description 

A kink, or a discontinuity in curvature, is permitted at the mesh node corresponding to 

element <elem> and vertex <vertex> in 2D.  <elem> must be a positive integer, 

which is set to the largest element number if <elem> is greater than the number of 

elements, and <vertex> is a positive integer between 1 and 4.  This feature is used to 

avoid attempts by the automated curvature algorithm in Viper to create unrealistic 

curvature, such as a rounded curve or around a sharp corner.  An example of this is the 

sharp trailing edge of an aerofoil. 

 

gvar_mhd_coeff 

Syntax: gvar_mhd_coeff <coeff> 

Function: Sets the prefactor for the quasi-static MHD term in the momentum 

equation. 
Description 

The coefficient <coeff> must be a real non-negative value. For more information on 

the quasi-static solver, refer to Chaper 2: Quasi-Static MHD, or the command mhd. 

 

gvar_movref 

Syntax: gvar_movref <u> [<v> <w>] 

Function: Specifies time-varying functions for the velocity of a moving 

reference frame. 

Description: 

The user inputs time-varying functions for the velocity of a moving reference frame.  

Functions can include variables time t, reciprocal kinematic viscosity RKV, and any 

previously defined user-specified functions. At least one function (for the u-velocity) 

must be supplied.  Functions for v and w components are optional. 

If this command is included in the viper.cfg file, this facility adjusts the velocity 

fields at each time step to accommodate a time-varying moving reference frame.  The 

sign convention is such that if the user wishes for the velocities within the 

computational domain to be adjusted to match a time-varying boundary condition, both 

should be specified with the same sign. 
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gvar_n 

Syntax: gvar_n <value> 

Function: Sets the element polynomial degree 𝑵 (p-resolution). 

Description: 

The element polynomial degree 𝑁 is set to an integer <value>, where <value> must 

be equal to, or greater than, 𝑁 = 2. The default value is 𝑁 = 4.  In 2D and 3D, the 

number of nodes per element is 𝑁2 and 𝑁3, respectively. The maximum allowable 

polynomial degree is restricted only by system resources.  Increasing this value 

improves spatial resolution of computations on a mesh, though users should note that 

this incurs costs due to larger and slower calculations, and less stable calculations, 

requiring a smaller time step. However, discontinuities will not necessarily be more 

accurately modelled by higher polynomial orders. Furthermore, very high polynomial 

orders (say greater than 20) may cause issues with modelling the advection operator, 

which is effectively of order 𝑁(𝑁 − 1). Increasing the spatial resolution, or the use of 

a controlling factor, such as spectral vanishing viscosity (see svv) may be needed if 

divergence in simulations is noticed at very high polynomial orders. 

 

gvar_rkv 

Syntax: gvar_rkv <value> 

Function: Sets the reciprocal kinematic viscosity RKV. 

Description: 

The reciprocal kinematic viscosity parameter RKV is set to <value>.  If the simulation 

imposes a unit reference velocity, and employs a mesh with a unit reference length, then 

the Reynolds number of the simulation is equal to the value of the RKV parameter. The 

default value is 10.0. 

 

gvar_scalar_diff 

Syntax: gvar_scalar_diff <coeff> 

Function: Sets the diffusion coefficient for transport of a scalar field. 

Description: 

The parameter <coeff>  specifies the coefficient of diffusion for the advective-

diffusive transport of a passive scalar field on a fluid flow.  The scalar field S is 

integrated using an auxiliary semi-Lagrangian advection-diffusion algorithm (e.g., see 

Maday, Patera & Rønquist, J. Sci. Comp., 5(4), 263-292, 1990). 

 

gvar_scalar_uvel_forcing 

Syntax: gvar_scalar_uvel_forcing <coeff> 

Function: Sets a scalar forcing multiplied by the u-velocity. 

Description: 

This command adds a forcing term to the scalar advection- diffusion equation, 

multiplied by the x-direction (Cartesian) / axial z-direction (cylindrical) velocity 

component. The forcing term takes the form −<coeff>  ∗ 𝑢, which is appended to the 

scalar advection- diffusion equation (e.g. 
𝑑𝑠

𝑑𝑡
= ⋯ −<coeff>  ∗ 𝑢). The real parameter 

<coeff> (which can be specified as a function of user-defined variables) is the 
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prefactor of this term. Its sign is such that a positive (left-to-right) u-velocity and a 

positive-valued coefficient will lead to a decrease in the scalar field. 

Note: This function is currently only implemented in 2D. 

 

gvar_usrvar 

Syntax: gvar_usrvar <var_name> <var_function> 

Function: Defines a user-defined variable as a function. 

Description: 

The function is a mathematical expression, which can be a function of time t, spatial 

coordinates x, y, z, the reciprocal kinematic viscosity RKV, plus any previously created 

user-defined variables. A character string is required for each of the <var_name> and 

<var_function> parameters. <var_name> is the name of the new variable, which 

cannot be the same as an existing or previously defined user-specified variable, and 

<var_function> is a string specifying the function evaluated when <var_name>  

appears in subsequent functions, that appear in either viper.cfg or  macro.txt 

files. 

 

mesh_file 

Syntax: mesh_file <filename> 

Function: Defines the macro-element distribution. 

Description:  

The mesh_file contains the node coordinates and macro-element information, 

before the interpolating polynomials are applied. It should be a data file (.msh) which 

is commonly converted from an .FDNEUT file. The macro-elements can be observed 

using tecplot by calling tecp with a polynomial order of 𝑁 = 2. Any other polynomial 

order will then display the locations of the interpolating nodes. The format of the mesh 

file is described in Chapter 3, Accepted Mesh Formats, noting that all nodes and 

elements should be unique. 
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Chapter 5: Running Simulations 
Once a suitable configuration file is established to define the problem to be solved, 

Viper is relatively easy to use.  Instructions can either be input interactively by the user, 

or supplied to the code in a macro file.  While Viper executables exist for use under a 

Windows operating system as well as Linux platforms, it is a command-line 

application: there is no Graphical User Interface (GUI). 

When invoked, Viper automatically seeks the configuration file viper.cfg, 

and if not found, it prompts the user for a file containing appropriate configuration 

instructions.  Once a suitable file is located, Viper then proceeds to process the contents 

of the configuration file, during which the mesh data is input, boundary and initial 

conditions are established, and various mapping and indexing arrays are generated. 

These processes are accompanied by output printed to the screen, which should 

be checked carefully if the process fails, or the subsequent simulation produces 

undesirable or unexpected results. 

Finally, the user is instructed on how to activate the help utility, which can be 

used to find out what commands are available, and give detailed instructions on their 

usage.  An example of screen output upon launching Viper is shown below. 

 

 
An example of the screen output after Viper is launched: the configuration file viper.cfg has 

successfully been located and processed, and Viper awaits input from the user. 
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This chapter describes a number the tasks and features that can be employed when using 

Viper. 

Saving and Loading flow field data using restart files 

Sometimes a simulation has not finished before a user needs to end their session at a 

terminal, and sometimes hardware faults or divergence within a computation can cause 

a simulation to fail, potentially losing hours of valuable work.  Viper facilitates a buffer 

against these potential calamities by allowing the user to save the computed flow fields 

at instants in time to restart files.  This is implemented with the save and load 

commands. 

The save command can be used at the end of, or many times during, a 

simulation, to store the velocity fields for a possible restart of the computation in a later 

session.  At the beginning of a subsequent Viper session, the load command can be 

used to read in the saved velocity fields, allowing the simulation to proceed from where 

it was saved. 

Restart files are also useful in allowing the user to initiate a computation from 

a saved solution, but run it at a different parameter (such as the Reynolds number).   

Using Macros and Loops 

The macro facility provides an alternative to manually (interactively) entering 

commands during a Viper session.  This is especially useful if the user wishes to run 

jobs remotely (such as on high-performance computing facilities), or if there is a 

lengthy list of complex commands the user may wish to execute several times.  Macros 

are simply text files containing a list of commands recognisable by Viper.  Each 

command must appear on its own line, and spaces and tabs are treated the same.  The 

macro file can have any name or extension the user wishes. 

Input control can be passed to a macro file either from within Viper, or when 

launching Viper.  Within Viper, the macro command is used to open and execute 

commands within a supplied macro file.  From the Linux shell / Windows command 

prompt, the user can execute Viper with instruction to take input from the macro file, 

rather than the keyboard, by using the left angled bracket feature of both operating 

systems, i.e.: 

 
\> viper.x < macro  

 

launches the Viper executable viper.x, and input is piped from the file named 

macro. 

Macro files can be nested – it is possible to include the command macro within a 

macro file. 

For repetitive tasks, Viper has the ability to execute a sequence of commands in 

a loop.  This is facilitated using the loop command, which permits the user to specify 

their required number of iterations.  Additional loops can be nested within parent loops, 

and macro files can also be called from within loops.  Therefore, powerful and 

complicated sets of instructions can be executed with very few user-input keystrokes. 

For example, a macro file could be established, named macro1.txt, containing the 

following: 
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axi 

init 

step 1000 

save –f save.dat 

tecp –f tecplot.plt 

stop  

 

The user could then invoke Viper, and use the macro command to read from the macro 

file, by typing 

 
macro macro1.txt 

 

Macros can be combined with loops for some considerable flexibility.  Imagine two 

macro files, macro2.txt and macro3.txt, containing: 

 
macro2.txt commands: macro3.txt commands: 

init 

loop 3 

macro macro3.txt 

endl 

stop 

 

step 100 

save –s –f save.dat 

tecp –s –f tecplot.plt 

flowrate 

forces 2 

forces_bndry2.dat 

 

From within Viper, if the command 

 
macro macro2.txt 

 

is called, the macros and loop command make this equivalent to typing the following 

list of commands:  

 
init 

loop 3 

step 100 

save –s –f save.dat 

tecp –s –f tecplot.plt 

flowrate 

forces 2 forces_bndry2.dat 

step 100 

save –s –f save.dat 

tecp –s –f tecplot.plt 

flowrate 

forces 2 forces_bndry2.dat 

step 100 

save –s –f save.dat 

tecp –s –f tecplot.plt 

flowrate 

forces 2 forces_bndry2.dat endl 

stop 
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Chapter 6: Post-Processing 
Once a simulation has been completed, the output usually requires some form of post-

processing to be converted into useful results.  Viper outputs data in two primary 

formats: ASCII files and Tecplot binary files.   

Text-based (ASCII) files typically contain time history data of various 

quantities, with each line in the file containing data at time increments through the 

computation.  For instance, the command flowrate is used to output the flow rate 

through each boundary on a mesh, and the example below shows the content of such an 

output file for a mesh with four boundaries, two of which (boundaries 3 and 4) are 

impermeable (no flow through them): 

 

 
The contents of the ASCII output file created after a number of calls to flowrate. 

 

Notice that results are stored in these files at a very high precision (approximately 17 

significant figures) to ensure that all the precision of the double-precision arithmetic of 

the code is preserved in the output. 

Commands which can be used to create ASCII data files include (see their 

entries in the subsequent Command List for more information): 

 
autocorrf nu_horiz_2d 

arnoldi nu_xsect_2d 

avg_one_dir pert_ke_evol 

current reconload 

energies reconstore 

energyf sample 

flowrate samplef 

flux save 

forceflow stab 

forces svd 

get_min_max tecp 

int tg 

intf time_avg 

L2 tony_psi 

line track 

moments womersley 

 



 54 

For visualization of the computed flow fields, Viper generates binary data files 

suitable for plotting using the Tecplot package (see www.tecplot.com for more 

information).  These files should carry the default extension.plt, though files with 

extension .dat can also be opened with Tecplot.  To generate a Tecplot binary file, 

use the command tecp, but note that specialist Tecplot plotting files are also 

generated when computing a global linear stability analysis using either tec_floq or 

arnoldi. 

Visualizing Flow Fields with Tecplot 

Flow fields visualised using Tecplot contain the spatial coordinate and connectivity data 

defining the mesh, plus data fields corresponding to various quantities.  Users have 

some control over which variables are stored – see the tecp command description for 

more information. 

The images below show examples of visualization of data in Tecplot.  Shown is 

a portion of a larger two-dimensional computational domain, and plotted are the mesh, 

flooded contours of velocity magnitude (one of the numerous quantities available), 

velocity vectors, and streamlines. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Visualization of a portion of the computational domain of a two-dimensional simulation.  (a) The mesh, 

(b) flooded contours of instantaneous velocity magnitude, (c) velocity vectors, and (d) velocity 

streamlines. 

 

Users are encouraged to experiment with Tecplot, as there are many possibilities for 

plotting available, and with some practice, first-class figures can be generated.   

http://www.tecplot.com/
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Plotting ASCII Data Files 

The Tecplot package can also be used for plotting the data contained in the ASCII data 

files, as by default, Tecplot can read the columnar data format presented in these files.   

From a Windows desktop, users can right-click on an ASCII data file (with the .dat 

extension), and can select Open With  Tecplot. Alternatively (and on Linux systems), 

these files can be loaded from within Tecplot in the standard fashion. 

 

(a) 

 

(b) 

 
Graphing data with Tecplot: (a) A screenshot showing a time-dependent data set loaded into Tecplot 

with default plotting options.  (b) A plot from Sheard & Ryan (2007) generated using Tecplot. 

 

In the above figure, both the default appearance of plotted data in Tecplot, and an 

example of a published plot, are shown to illustrate that a substantial flexibility in 

appearance and style can be obtained using features of the plotting software. 
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Chapter 7: Command List 
Viper recognises a number of commands which are used to initialise, run, and obtain 

output from, a simulation.  A description of each command similar to those given here 

can be obtained while running Viper by invoking the Help facility, i.e.: 

 
\> help <command_name> 

 

where <command_name> is the name of the command for which a description is 

required.  A list of available commands can be generated simply by typing: 

 
\> help 

 

The full list of commands are provided below, sorted alphabetically.  Each entry 

contains the following information: 

Syntax: The command, plus any [optional] <parameters> or -

options that can be supplied. 

Function: A brief description of the action performed by the command. 

Description: A more detailed description of the functionality of the command. 

 

Note that anywhere a floating point value  could be specified in a command, a 

mathematical function or previously user defined variables should also be able to be 

input (so long as it evaluates to a floating point value). If a command still only accepts 

floating point values (and provides an error if a variable is provided instead), please 

contact Dr. Gregory Sheard such that this can be updated to the new convention. 

 

 

Advect 

Syntax: advect <option> 

Function: Toggle advection substep on/off during time integration. 

Description: 

The advection term of the Navier—Stokes equations can be written in a number of 

forms which are equivalent in a continuous sense, though not in a discrete sense.  Viper 

currently implements only the convective form of the advection term. The advect 

command can be used to switch the advection term off (or back on again) during 

computations of the base flow (does not apply to perturbation fields during Floquet 

stability analysis. The default setting of this feature is ON.   

Toggling is performed as followed: 
 advect on 

 Turn on computation of the advection term. 
 advect off 

 Turn off computation of the advection term. 

Note that switching off the advection term reduces the equations being solved to 

the creeping flow equations. 

See also: diff, pres. 
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Arnoldi 

Syntax: arnoldi <Neigs> <Nits> [<file_prefix>] 

Function: Perform an Arnoldi iteration of global linear three-dimensional 

stability analysis. 

Description: 

If Floquet stability analysis is being performed (call floq prior to init), this 

command performs an iteration of the Implicitly Restarted Arnoldi Method, which is 

used to compute several of the leading complex eigenvalues (Floquet multipliers) and 

the corresponding eigenvectors (perturbation velocity fields for the Floquet modes) of 

the linear operator A, which describes the effect of integrating the perturbation field 

forward in time by one period, T. 

 The <Neigs> parameter is an integer specifying the number of leading eigenvalues 

that are to be computed (typically only a handful are desired). 

 The <Nits> parameter is an integer specifying the number of Arnoldi vectors that 

are generated at each iteration.  The relation <Nits> ≥ 2 + <Neigs> must be 

satisfied, but otherwise <Nits> should be kept reasonably small to reduce the 

storage cost of the method. 

 The optional string <file_prefix> is added to the beginning of the output files 

created upon convergence of the eigenvalues.  This is essential to avoid files 

accidentally being overwritten if multiple jobs are being run in the same directory. 

Presently, this facility can only be employed on a single spanwise/azimuthal 

wavelength.  This approach is far more powerful than the stability analysis capability 

provided by the stab command, which only returns the magnitude of the leading 

Floquet multiplier.  The arnoldi command returns the complex components of 

several of the leading modes. 

Once the arnoldi routine converges on the requested number of eigenvalues, the 

eigenvector fields are saved to Viper restart files 

<file_prefix>save_floq_eigXXXX.dat, and to Tecplot binary files 

<file_prefix>tecp_floq_eigXXXX.plt.  The converged Floquet 

multipliers are printed to screen (or STDOUT), and to a file named 

<file_prefix>floq_mult_eigs.dat. 

On the first occasion that this command is called in a Viper session, an Arnoldi restart 

file <file_prefix>saved_arnoldi_eigs.dat is searched for.  If it exists, the 

state of a previously saved Arnoldi iteration is loaded, and the computation continues 

from that position. 

At the conclusion of every arnoldi call, the current state of the Implicitly Restarted 

Arnoldi Iteration is saved in <file_prefix>saved_arnoldi_eigs.dat.  

This feature allows the user to perform an Arnoldi stability analysis over several Viper 

sessions.  Users should note that if a file of the same name exists in the working 

directory, it will be overwritten without prompting the user. 

See also: floq, stab. 
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Autocorrf 

Syntax: autocorrf [-f <filename> -x <x> <y>]

Function: Return the autocorrelation of each SE/Fourier velocity component 

at a point. 

Description: 

This command outputs the time (𝑡), the supplied spatial coordinates, and the 

autocorrelation of each velocity component along the span at a physical point on the 

mesh. 

Notes: 

 Unlike the monitor command, autocorrf interpolates the flow quantities to 

the requested location, rather than just output the values at the nearest mesh node. 

 Furthermore, the points are calculated and output to file at the time that 

autocorrf is called.   

 autocorrf can only be called after init. 

Given a discrete Fourier transform of the spanwise variation of a velocity component 

Fu, the autocorrelation s calculated first by taking the product of Fu and its complex 

conjugate, and then by finding the inverse discrete Fourier transform of this product. 

The following options are available: 
 -f <filename> 

 Used to specify a filename <filename> (including extension) to save 

the flow values to.  If omitted, the default filename is samplef.dat. 
 -x <x> <y> 

 Used to specify the (𝑥, 𝑦) coordinates of a point in the computational 

domain at which the Fourier coefficients are to be determined. 

See also: energyf, samplef. 

 

Avg_one_dir 

Syntax: avg_one_dir [-k <field> -dir <dir> -var <var>]

Function: Average a specified field along a specified direction. 

Description: 

This routine averages a single variable, along a single specified direction over the field 

given by option "-k". This routine works best if the mesh has mesh lines parallel to the 

direction to be used for averaging.          

The following options are available: 
-k <field> 

Used to specify an integer perturbation field number. A legitimate value 

must be specified, hence the field number must be less than or equal to 

the number of floquet modes present (k <= Nfloq_modes). To 

average all fields, set "-k" value to a negative number. 
-dir <dir> 

Used to specify a single direction to average along, either 𝑥 or 𝑦 (e.g. to 

average along the x direction: –dir x), but not 𝑧 (see the comment 

below). 
-var <var> 

Used to specify a single variable to average along, either one of the 

velocity components, 𝑢, 𝑣, or 𝑤, or the scalar field, 𝑠. (e.g. for the scalar 

field: –var s) . 
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This function requires the solution to be initialised, and cannot be used unless the 

simulation is two-dimensional. It cannot be invoked in a spectral-element-Fourier 

3D simulation. 

See also: init. 
 

 

Axi 

Syntax: axi 

Function: Toggles between cylindrical and Cartesian coordinate systems (2D 

only). 

Description: 

Two-dimensional computations may be carried out in either a Cartesian (the default; 𝑥-

𝑦-𝑧) or a cylindrical (𝑧-𝑟-𝜃) coordinate system.  This command is used to toggle 

between the two modes. 

If cylindrical coordinates are switched on, then the computations are performed in an 

axisymmetric sense, where 𝑦 =  0.0 is taken to be the symmetry axis 𝑟 =  0.0.  

Therefore, the user should ensure that no mesh vertices include a negative 𝑦-coordinate, 

as this will produce unpredictable, incorrect, and non-physical results. 

Notes: 

 axi has no effect on three-dimensional computations, which are currently restricted 

to Cartesian coordinates only, 

 axi can be toggled at any time, though the computation will need to be re-

initialized prior to further time stepping.  Care should be taken to ensure that post-

processing commands (e.g., forces, flowrate, tecp, etc.) are called with the 

appropriate axi setting. 

See also: wvel. 

 

Axirotate 

Syntax: axirotate <omega> 

Function: Computes cylindrical coordinates computations in a frame rotating 

about the axis. 

Description: 

This command activates extra terms required to compute flows in a rotating reference 

frame if using cylindrical coordinates (i.e. 𝑧-𝑟-𝜃, see axi). These include Coriolis 

corrections to the base flow and perturbation fields, and centripetal corrections to the 

base flow. The user must supply an angular velocity for the rotating frame, <omega>. 

Notes: 

A positive-signed <omega> equates to rotation out of the page above the symmetry 

axis. 

This feature only makes sense when swirling flow (wvel) is activated. Therefore 

calling this command also activates wvel. All boundary conditions must be expressed 

relative to the rotating frame. i.e., if a wall is rotating with the flow, it should be 

expressed as a Dirichlet velocity boundary with zero velocity (i.e. no movement relative 

to the rotating frame). 

This function requires the simulation be two-dimensional, but will activate axi to 

toggle to the appropriate co-ordinate system for any two-dimensional simulation. 
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See also: axi, wvel. 

 

Buoyancy 

Syntax: buoyancy [-g <gx> <gy> -a <exp_coeff> -c 

<froude>]

Function: Activate Boussinesq buoyancy term. 

Description: 

This command implements density-driven convection by means of a Boussinesq 

approximation. The Boussinesq approximation is valid for small density variations, as 

under these conditions the density difference enters only through the gravity term.          

Use the -g option to supply 𝑥- and 𝑦-components of a gravity vector. These will be 

automatically rescaled into a unit vector. The momentum equations are modified by 

adding a gravity term: 

−𝜌′𝒈 
 

where 𝒈 is a unit vector in the direction of gravity, the direction of which is set using 

the -g option. The -g option takes vector components in 𝑥 and 𝑦 (specified with <gx> 

and <gy>, respectively), which are rescaled by Viper into a unit vector. A 𝑧 component 

cannot be specified, and is zero by default. 𝜌′ is the fluctuating component of density 

due to temperature variations, and is expressed as: 

 

𝜌′ =< 𝐞𝐱𝐩_𝐜𝐨𝐞𝐟𝐟 >∗  S 
 

The coefficient in front of the temperature, S, i.e. <exp_coeff>, is supplied by the 

user with the -a option, which may be expressed as a function including user-specified 

variables/functions. The direction of buoyancy is such that a positive <exp_coeff>  

will cause colder fluid to fall in the direction of gravity, and hotter fluid to rise opposite 

to the direction of gravity. While this implementation is designed to implement a 

temperature-based density-driven convection, in fact any density-driven convection can 

be incorporated in this fashion (e.g. density variation due to solute concentration, etc.) 

provided that the basis can be transported as a scalar field. 

The -c option specifies a Froude number (which represents the ratio of inertia to 

gravity, e.g. 𝐹𝑟 = 𝐿𝜔2/𝑔 or 𝐹𝑟 = 𝑉2/𝐿𝑔). If this option is specified, this Froude 

number is multiplied by the -a coefficient, and the resulting coefficient is used to 

modify the advection terms to account for centrifugal buoyancy effects in the flow. To 

consider only centrifugal buoyancy effects, set the gravity vector to zero. 

Examples of use of the buoyancy command: 

HOT (high-𝑆) fluid will RISE (left, negative 𝑥); buoyancy coefficient is 100.0: 
> buoyancy -g 1.0 0.0 -a 100.0   

HOT (high-𝑆) fluid will RISE (upward, positive 𝑦); buoyancy coefficient is 

30.0: 
            > buoyancy -g 0.0 -2.3 -a ‘3*10’ 

HOT (high-𝑆) fluid will move radially inward due to centrifugal effect: 
> buoyancy -g 0.0 0.0 -a ‘3*10’ -c 100            

HOT (high-𝑆) fluid will move radially inward and rise due to centrifugal and 

gravity effects 
  > buoyancy -g 1.0 0.0 -a ‘3*10’ -c 100  

Notes: 
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This command requires that the scalar advection-diffusion field is active, as this 

field represents the temperature field. 

The scalar diffusion coefficient must be set appropriate to the diffusion properties 

of whatever medium is being evolved (e.g. thermal diffusion coefficient for 

temperature, etc.). 

The centrifugal buoyancy term will only be activated if a positive Froude number 

is specified.  

 

Current 

Syntax: current [-f <filename> -k <field>] 

Function: Reports on divergence of electric current in quasi-steady MHD 

simulations. 

Description: 

Calculates the divergence of the electric current field in a quasi-static MHD simulation, 

and outputs to a text file the integral of the square of the divergence over the 

computational domain. These calculations can only be performed if the solution has 

been initialised. 

Notes: 

For spectral element-Fourier domains, the integral is evaluated over the domain 

volume. For Cartesian 2D base flows and perturbaion fields having zero spanwise 

wavenumber, the result is computed on the 2D plane (i.e. a value expressed per unit 

span). For axisymmetric base flows and perturbation fields having zero azimuthal 

wavenumber, the integral result is calculated over the full 2*pi radian azimuthal domain 

size. For linearised perturbation fields having non-zero wavenumber, the integral is 

calculated using the corresponding azimuthal/spanwise span of the domain. 

The following options are available: 
 -f <filename> 

 Used to specify a filename <filename> (including extension) to write 

the computed integral to.  If omitted, the default filename is 

int_sqr_div_and_mag_current.dat. 
-k <field> 

Used to specify an integer perturbation field number, when a linearised 

perturbation field is active, to calculate the integral on. A legitimate 

value must be specified, hence the field number must be less than or 

equal to the number of floquet modes present (k <= Nfloq_modes). 

The default is 𝑘 = 0, corresponding to the base flow. 

Note: The current requires the quasi-static MHD solver be active. To activate 

the electric potential field, define the appropriate electric potential field 

boundaries in the viper.cfg file (see btag). 

Diff 

Syntax: diff 

Function: Toggle diffusion substep on/off during time integration. 

Description: 

Time integration is carried out by solving each of the advection, pressure and viscous 

diffusion terms consecutively.  This function is used to switch off computation of the 

diffusion term.  The default setting of this feature is ON.  This facility is primarily 

provided as a debugging tool. 
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Note that switching off the diffusion term alters the equations being solved by 

Viper. 

See also: pres, advect. 

 

Energies 

Syntax: energies [-f <filename>] 

Function: Output volume-integrated kinetic and potential energies. 

Description: 

In a simulation with buoyancy, this command computes and outputs to a file the total 

kinetic energy, the total vertical buoyancy flux, and the background and available 

potential energies. This routine can be used in an SE-Fourier 3D simulation, but the 

results will be the total energies calculated on only the fundamental (zero-wavenumber) 

mode of the 3D solution. These computations can only be performed if the solution has 

been initialized 

The following options are available: 
 -f <filename> 

 Used to specify a filename <filename> (including extension) to write 

the computed integral to.  If omitted, the default filename is 

energies_2d_plane.dat. 

Note: The energies command can only be employed in 2D or SE-Fourier 3D 

simulations. It must also have a temperature field, buoyancy activated, and a non-

zero gravity vector. 

See also: buoyancy,energyf. 

 

Energyf 

Syntax: energyf [-f <filename>] 

Function: Compute norms of energy in each Fourier mode in an SE/Fourier 

3D simulation. 

Description: 

An energy norm is computed for each Fourier mode of a three-dimensional spectral-

element/Fourier computation.  For each Fourier mode (𝑘), the energy norm is given by 

the integral 

 

∮ ‖𝒖̂𝒌‖2

Ω

𝑑Ω ,  

 

 

 

where the 𝑘𝑡ℎ Fourier mode coefficients of the velocity field are given by 𝒖̂𝒌, and Ω is 

the computational domain in the spectral-element plane (either x-y or z-r). This 

computation can only be performed if the solution has been initialised. 

The following options are available: 
 -f <filename> 

 Used to specify a filename <filename> (including extension) to write 

the computed integral to.  If omitted, the default filename is 

energyf.dat. 
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See also: autocorrf, energies,samplef. 

 

Exit 

Syntax: exit 

Function: Exits Viper. 

Description: 

Viper terminates immediately, and any unsaved work will be lost.  This command 

performs the same action as stop and quit. 

See also: quit, stop. 

 

Filt_s_adv 

Syntax: filt_s_adv [-u <function>] 

Function: Activate a filter for the advection of a scalar field. 

Description: 

Used to establish a filter kernel that multiplies the RHS of the scalar advection 

calculation. When <function> evaluates to 0, no advection occurs, when 

<function> evaluates to 1, the advection is unchanged.  The following options are 

available: 
 -u <function> 

 Used to specify a filename <function> of 𝑥, 𝑦, or 𝑡 (this is currently 

only implemented in two-dimensional simulations, but is evaluated at 

each timestep). The default is <function> = 1. 

Flowrate 

Syntax: flowrate [<filename>] 

Function: Output flow rate through each boundary. 

Description: 

The flow rates through each boundary are calculated. This calculation can only be 

performed if the solution has been initialised.  

The following options are available: 
 <filename> 

 Used to specify a filename <filename> (including extension) to write 

the flowrate through each boundary to.  If omitted, the default filename 

is flowrate.dat. 

 

Fixscalar 

Syntax: fixscalar [<value>] 

Function: Constrain a domain integral of the scalar field to a specified value. 

Description: 

Adds a constant correction during every time step to shift the domain integral of the 

scalar field to a value specified by <value>. An example of where this is useful is 

when the scalar field represents temperature, and only flux boundary conditions are 

imposed, leading to a perpetual heating or cooling in the enclosure. Subsequent calls to 

fixscalar toggle it on or off. 

The following options are available: 
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 <value> 

 Used to specify a filename <value> to define the integral of the scalar 

field. If omitted a default of <value> = 0 is used. 

Flux 

Syntax: flux [-s] [–vel] [–f <filename>] 

Function: Output the flux through each boundary. 

Description: 

The flux through each boundary is integrated from the component of the dot product of 

the gradient of the specified field and the outward normal vector along each boundary. 

This command also calculates the integrated absolute value of the flux through each 

boundary. These are output in a second set of data columns after the flux data columns. 

The following options are available: 
 -s 

 Used to request that the output flux is that of the scalar field. This option 

cannot be requested while –vel is. 
 -vel 

 Used to request that the output flux is that of the velocity field. Currently 

this is not yet implemented, please contact Dr. Gregory Sheard if you 

would like this feature to be implemented. This option cannot be 

requested while –s is. 

 -f <filename> 

 Used to specify a filename <filename> (including extension) to write 

the flowrate through each boundary to.  If omitted, the default filename 

is flux_scalar.dat. 

See also: flowrate. 

Forceflow 

Syntax: forceflow [-b <bnum> -q <flowrate> -o <filename>] 

Function: Specify a flowrate to be achieved through a specific boundary. 

Description: 

This command is used to specify a volume flowrate (per unit span) in a 2D simulation 

that is to be imposed through a specified boundary. This routine currently only works 

in 2D simulations, and is hard-coded to manipulate the 𝑢-velocity only. Hence, it finds 

application in duct or channel flow problems, typically with periodic boundaries, as an 

alternative to driving the flow with a constant forcing equivalent to an imposed 

horizontal pressure gradient. In those cases time-varying flow features can produce a 

time-dependent flow rate, making control of the Reynolds number more difficult. This 

routine works by checking the flow rate through the requested boundary each time step, 

and applying whatever forcing is required to the horizontal (𝑢-) velocity field to 

preserve the target flow rate. 

This command may be called before or after init, and multiple calls are permitted 

(e.g. for facilitating abrupt changes in flowrate, or switching off the flowrate forcing 

mid-simulation). The option -o is used to specify an output filename to output the 

current applied forcing. If the -o option is called, parameters supplied with the -b and 

–q options are ignored, and provided the solution is already initialized, the routine 

outputs to a text file named <filename> the most recently applied forcing.  

Hence a typical usage of this command is to: 
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1) Call forceflow with -b and –q options specified (either before or after 

init.  

2) Repeatedly call forceflow with only the -o option specified to output a 

forcing time history. The simulation must be initialised to use the -o option. 

The following options are available: 
 -o <filename> 

 Used to specify a filename <filename> (including extension) to write 

the flowrate through each boundary to.  If omitted, the default filename 

is forceflow_forcing.dat. 

-b 

 Used to specify a boundary through which the desired flowrate should 

be kept constant (which should intersect the 𝑥-axis). The -b value must 

be a positive integer between 1 and the maximum number of boundaries. 
-q 

 Used to specify the desired flowrate. A function of user defined 

variables can be specified. 

See also: flowrate. 

  

                  

Forces 

Syntax: forces <boundary> [<filename>] 

Function: Calculate global forces imparted on a specific boundary. 

Description: 

Calculates the global forces (pressure, viscous and total), in 𝑥, 𝑦 (and 𝑧) imparted on a 

single boundary. If no boundary number is specified, or if the simulation has not been 

initialised, no calculations or output is performed. 

The following options are available: 
 <boundary> 

 Used to specify a single boundary <boundary> that has been defined 

in the viper.cfg file. If multiple calculations on different boundaries 

are needed, a separate call to forces must be used for each. They will all 

be appended to the same file unless a different optional <filename> 

specifier is used for each. 
 <filename> 

 Used to specify a filename <filename> (including extension) to write 

the forcing acting on the boundary to, which will be appended at each 

timestep, or with each call to forces that uses the same <filename>.  

If omitted, the default filename is forces.dat. 
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Fourier 

Syntax: fourier [-f <filter_dist> -n <Nplanes> -k 

<Nmodes> -mode <mode_number> -span <span> -

alias] 

Function: Initialise a spectral-element/Fourier 3D computation. 

Description: 

Three-dimensional computations can be performed on a two-dimensional mesh 

provided that the geometry is homogeneous in the out-of-plane direction (z in Cartesian, 

θ in cylindrical coordinates).  This is achieved by expanding the flow variables in the 

out-of-plane direction using a Fourier expansion. 

The following options are available: 
 -f <filter_dist> 

 In cylindrical coordinates (use axi), the vanishinly small grid spacing 

near the axis can lead to an amplified stability constraint on the time 

step. By default, no filter is applied, but if required, a ramp filter can be 

extablished varying from 100% at 𝑟 = 0 to 0% at 𝑟 = 

<filter_dist>. 
 -n <Nplanes> 

 A positive integer is supplied to specify the number of Fourier planes 

employed in the computations.  After Fourier transformation, this 

corresponds to <Nplanes>/2 Fourier modes in the out-of-plane 

direction, hence <Nplanes> must be at least 2.  A default of 4 planes 

is used. Alternately using the –k option may be simpler. 

 Note: For best efficiency from parallel simulations, computations should 

be run on <Nplanes>/2 + 1 MPI processes, or factors thereof.  For 

example, if a user wishes to compute with 30 Fourier planes, this 

corresponds to 15 complex Fourier modes, resulting in 16 separate fields 

to be computed (including the fundamental mode).  Thus simulations 

would best be run on 16, 8, 4, 2, or 1 MPI process. 
 -k <Nmodes> 

A positive integer is supplied to specify the number of non-zero Fourier 

modes employed in the computations. This option can be used in place 

of the clunky -n option. The number of Fourier modes should be a 

whole factor of the number of MPI processes available in a simulation. 

i.e., If <Nmodes>> = 16, this could be efficiently distributed over 1, 2, 

4, 8 or 16 MPI processes in a parallel computation. If the -alias 

option is also used, there will be 50% additional modes used to compute 

the advection term, and if it is not used, then one extra mode is employed 

for advection (this provides a minimal level of antialiasing by default). 
 -mode <mode_number> 

 The positive floating point value supplied as <mode_number> 

specifies the out-of-plane wavenumber describing the extent of the 

computational domain in the out-of-plane direction.  The mode number 

relates to the span by <span> = 2𝜋/<mode_number>.  If no span or 

mode number is supplied, the computation defaults to a span of 2𝜋, 

corresponding to an out-of-plane mode number 𝑚 =  1.  If both are 

given, the computation will employ the most recently given value. 
 -span <span> 
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 The positive floating point value supplied as <span> specifies the out-

of-plane extent of the computational domain.  Users can either specify 

an out-of-plane span using this option, or they can use the -mode option 

to specify this parameter as an out-of-plane wavenumber (useful for 

computations in cylindrical coordinates).  The span is taken as being in 

length units for Cartesian computations, and in radian for computations 

using cylindrical coordinates. 
 -alias 

 Apply two-thirds rule for anti-aliasing in Fourier space. Note that this 

will   increase the compute time as 50% more Fourier modes are 

included in calculations of the advection term. 

Note: The init command must be called after fourier, to prepare for time 

integration. Furthermore, you cannot call fourier if Floquet analysis is active 

(do not call pert if using fourier). Furthermore, if a load command is called 

prior to this routine, the two-dimensional solution input during load is mapped 

to the three-dimensional velocity field.   

See also: axi,pert,rand. 

 

Freeze 

Syntax: freeze 

Function: Toggles a freeze on time integration of the base flow. 

Description: 

The default condition is OFF, which provides for normal time integration of the base 

flow velocity field when the step command is used. Sometimes, though, it is useful 

to freeze the base flow, while continuing as normal to carry out time integration of 

perturbation fields in Floquet analysis, or simulated particle tracking.  This could either 

be as a result of the base flow being time-independent (in which case freeze could 

be used to save time by not evolving the steady-state flow), or in specific cases where 

the user may wish to interrogate a frozen snapshot of a normally time-varying flow 

field. 

See also: track, pert,rotate 

 

Getminmax 

Syntax: getminmax [-f <filename> -k <field> -p <function> 

-c <cutoff> -x <level> <tol> -e] 

Function: Find location and values of minima and maxima of a user-specified 

scalar field. 

Description: 

A user-specified function <function> is input (using the same mathematical 

functions available during configuration), and the positions (𝑥, 𝑦, 𝑧) of maxima and 

minima, and values of the scalar function at those locations are returned. 
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Available variables are: 

t  Current time, 

x, y, z  Spatial coordinates, 

u, v, w, p Velocity components (𝑢, 𝑣, 𝑤) and kinematic static pressure (𝑝), 

RKV  Reciprocal kinematic viscosity (1/𝜈), 

dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz (spatial 

velocity gradients 
𝑑𝑢

𝑑𝑥
,

𝑑𝑢

𝑑𝑦
,

𝑑𝑢

𝑑𝑧
,

𝑑v

𝑑𝑥
,

𝑑v

𝑑𝑦
,  

𝑑v

dz
,

𝑑𝑤

𝑑𝑥
,

𝑑𝑤

𝑑𝑦
,

𝑑𝑤

𝑑𝑧
), 

and any user-specified variables defined during configuration. 

Local minima and maxima are located where the gradient vector of the scalar field is 

zero. The values of all variables are determined at the current time, and the evaluated 

locations are output to either the default minmax.dat, or the optional user-specified 

<filename>. 

The following options are available: 
 -f <filename> 

 Used to specify a filename <filename> (including extension) to save 

the minima/maxima data to.  If omitted, the default filename is 

minmax.dat. 
 -k <field> 

 Used to specify an integer perturbation field number (i.e., 1, 2, ... , 

<Nfloq_modes>, when Floquet analysis is active) to search for 

maxima/minima. The default is <field> = 0, corresponding to the 

base flow. 
 -p <function> 

 A user-specified function <function> is provided to the routine.  If 

omitted, the default is vorticity in the x-y plane (
𝑑v

𝑑𝑥
−

𝑑𝑢

𝑑𝑦
): “dvdx-

dudy”. 

 -c <cutoff> 

 A cutoff value for the square of the magnitude of curvature at turning 

points.  Turning points below this cutoff threshold are ignored.  The 

square of the magnitude of the curvature for each located turning point 

is output to screen, so users will be able to tune their minima/maxima 

identification to isolate only those they wish to find on a simulation-

specific basis.  The default value is |𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒|2 =  0.0.
 -x <level> <tol> 

 A cutoff for turning points whose scalar value lies within a certain 

tolerance <tol> of a specified value <level> can be employed with 

this option.  Any turning point with a maximum/minimum scalar field 

value lying between <level> - <tol> and <level> + <tol> 

will be ignored.  The defaults are <level> =  0.0 and <tol> =  0.0, 

(i.e., no turning points are ignored).
 -e 

 If specified, the magnitude of the rate of strain is computed at the 

locations found, and this is also output.
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Help 

Syntax: help [<command name>]

Function: Gives assistance to user. 

Description: 

If no <command name> input, a list of available commands is given. 

If <command name> is provided, a detailed description of the command follows. 

 

Init 

Syntax: init 

Function: Initialize job for time integration. 

Description: 

This routine builds all the necessary matrices for time-integration of the flow solution.  

If init is called multiple times in a Viper session, all matrices and storage are re-

created afresh. This routine will also initialise particle tracking if required. 

 

Int 

Syntax: int [-f <filename> -k <field> -u <function>] 

Function: Integrates a user-specified function over the computational domain. 

Description: 

A user-specified function <function> is input (using the same mathematical 

functions available during configuration), and the value of this function is integrated 

over the computational domain.  Additional available variables are: 

t  Current time, 

x, y, z  Spatial coordinates, 

u, v, w, p Velocity components (𝑢, 𝑣, 𝑤) and kinematic static pressure (𝑝), 

RKV  Reciprocal kinematic viscosity (1/𝜈), 

dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz (spatial 

velocity gradients 
𝑑𝑢

𝑑𝑥
,

𝑑𝑢

𝑑𝑦
,

𝑑𝑢

𝑑𝑧
,

𝑑v

𝑑𝑥
,

𝑑v

𝑑𝑦
,  

𝑑v

dz
,

𝑑𝑤

𝑑𝑥
,

𝑑𝑤

𝑑𝑦
,

𝑑𝑤

𝑑𝑧
), 

and any user-specified variables defined during configuration. 

The values of all variables are determined at the current time, and the evaluated integral 

is output to either the default text file integral.dat, or the optional user-specified 

<filename>.  The solution must be initialized for the integral to be computed. 

Note that for 3D hexahedral spectral element and spectral element-Fourier domains, the 

integral is evaluated over the domain volume. For Cartesian 2D base flows and 

perturbation fields having zero spanwise wavenumber, the integral result is computed 

on the 2D plane (i.e. a value expressed per unit span). For axisymmetric base flows and 

perturbation fields having zero azimuthal wavenumber, the integral result is calculated 

over the full 2*pi radian azimuthal domain size. For linearised perturbation fields 

having non-zero wavenumber, the integral is calculated using the corresponding 

azimuthal/spanwise span of the domain. 

The following options are available: 
 -k <field> 

 Used to specify an integer perturbation field number (i.e., 1, 2, ... , 

Nfloq_modes, when Floquet analysis is active) to calculate the 
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integral on. The default is <field> = 0, corresponding to the base 

flow. 
 -f <filename> 

 Used to specify a filename <filename> (including extension) to write 

the computed integral to.  If omitted, the default filename is 

integral.dat. 
 -u <function> 

 Used to specify the function to be integrated. The default is 

<function> = 0. 

See also: intf,l2. 

 

Intf 

Syntax: intf [-f <filename> -u <function>] 

Function: Integrates a user-specified function over Fourier modes in an SE-F 

3D computation. 

Description: 

A user-specified function <function> is input (using the same mathematical 

functions available during configuration), and the value of this function is integrated 

separately on each mode of a spectral element-Fourier 3D computation. The output is 

similar to that of the <energyf> command.  Additional available variables are: 

t  Current time, 

x, y, z  Spatial coordinates, 

u, v, w, p Velocity components (𝑢, 𝑣, 𝑤) and kinematic static pressure (𝑝), 

RKV  Reciprocal kinematic viscosity (1/𝜈), 

dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz (spatial 

velocity gradients 
𝑑𝑢

𝑑𝑥
,

𝑑𝑢

𝑑𝑦
,

𝑑𝑢

𝑑𝑧
,

𝑑v

𝑑𝑥
,

𝑑v

𝑑𝑦
,  

𝑑v

dz
,

𝑑𝑤

𝑑𝑥
,

𝑑𝑤

𝑑𝑦
,

𝑑𝑤

𝑑𝑧
), 

and any user-specified variables defined during configuration. 

The values of all variables are determined at the current time, and the evaluated integral 

is output to either the default text file integral.dat, or the optional user-specified 

<filename>.  The solution must be initialized for the integral to be computed. 

Note that for 3D hexahedral spectral element and spectral element-Fourier domains, the 

integral is evaluated over the domain volume. For Cartesian 2D base flows and 

perturbation fields having zero spanwise wavenumber, the integral result is computed 

on the 2D plane (i.e. a value expressed per unit span). For axisymmetric base flows and 

perturbation fields having zero azimuthal wavenumber, the integral result is calculated 

over the full 2*pi radian azimuthal domain size. For linearised perturbation fields 

having non-zero wavenumber, the integral is calculated using the corresponding 

azimuthal/spanwise span of the domain. 

The following options are available: 
 -f <filename> 

 Used to specify a filename <filename> (including extension) to write 

the computed integral to.  If omitted, the default filename is 

integralf.dat. 
 -u <function> 

 Used to specify the function to be integrated. The default is 

<function> = 0. 

See also: int,l2. 
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Iterate 

Syntax: iterate [-tol <tol> -n <max_its>] 

Function: Set up multiple iterations of base flow solution within each time step. 

Description: 

By default, only one cycle through advection/pressure/diffusion is conducted each time 

step. However, in theory an improvement in accuracy (and possibly stability might be 

gained if the solution was iterated to improve the accuracy of the extrapolated estimate 

of the solution projected to the next time step which is required for the calculation of 

the non-linear (advection) term. To invoke this iteration procedure, this command must 

be called. 

The following options are available: 
 -tol <tol> 

 Used to specify the convergence threshold for the simulations. The 

quantity monitored for convergence is the average change in the solution 

vectors each iteration. If iterate is and this option is not specified, 

the default is 1e-20. If a negative threshold is specified, iteration will 

always proceed until <max_its> has been reached. 
 -n <max_its> 

 Used to specify the maximum number of iterations performed per time 

step. If iterate is invoked and this option is not specified, the default 

is 5. If a <max_its> value of less than 1 is specified, the <max_its> 

value will be adjusted to 1. 

See also: step. 

 

L2 

Syntax: L2 [-f <filename> -k <field>] 

Function: Compute the L2 norm (integral of velocity magnitude throughout 

domain). 

Description: 

An L2 norm is computed by integrating the square of the magnitude of velocity in 

physical space, over the entire computational domain, consistent with the definition of 

Barkley, Blackburn & Sherwin (Int. J. Numer. Meth. Fluids 2008; 57:1435-1458). The 

integrand is thus defined as (for a three-dimensional computation): 

 

‖𝒖‖2 = 𝑢2 + 𝑣2 + 𝑤2 
 

Note that for 3D hexahedral spectral element and spectral element-Fourier domains, the 

integral is evaluated over the domain volume. For Cartesian 2D base flows and 

perturbaion fields having zero spanwise wavenumber, the integral result is computed 

on the 2D plane (i.e. a value expressed per unit span). For axisymmetric base flows and 

perturbation fields having zero azimuthal wavenumber, the integral result is calculated 

over the full 2𝜋 radian azimuthal domain size. For linearised perturbation fields having 

non-zero wavenumber, the integral is calculated using the corresponding 

azimuthal/spanwise span of the domain. The solution must be initialised for any 

computation to be performed. 

The following options are available: 
 -f <filename> 
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 Used to specify a filename <filename> (including extension) to write 

the  L2 norm to.  If omitted, the default filename is l2norm.dat. 

 -k <field> 

 Used to specify an integer perturbation field number (i.e., 1, 2, ... , 

Nfloq_modes, when Floquet analysis is active) to search for 

maxima/minima. The default is <field> = 0, corresponding to the 

base flow. 

See also: int,intf. 

 

Line 

Syntax: line –p1 <x1> <y1> -p2 <x2> <y2> [-f <filename> 

-n <points> -u <fn_str> -avg] 

Function: Extract flow field data along a line between specified points. 

Description: 

The line command extracts flow field values, or gradients along a line between two 

specified points, once the solution has been initialised. The line command can 

typically only be used in 2D simulations (as the line is specified on the 2D spectral-

element plane). The exception is that if the -avg option is specified, line can also be 

used in spectral element-Fourier 3D simulations, where the average along the line and 

into the page is evaluated. The averaged value in SE-Fourier 3D simulations is 

evaluated using values from the fundamental Fourier mode only. It therefore only works 

for linear functions of the flow field variables (when using the -u option), i.e. 

specifying “line –u ‘u+v’ -avg" is okay, but " line –u ‘u^2+v^2’ -

avg " is not. 

The following options are available: 
–p1 <x1> <y1>  

Specifies the start point of the line for data extraction. This parameter 

must be specified for this command to function. 
–p2 <x2> <y2>  

Specifies the end point of the line for data extraction. This parameter 

must be specified for this command to function. 
-f <filename> 

Used to specify a filename <filename> (including extension) to load 

the flow fields from. If the -f option is not specified, the default 

line.dat is used. 

-n <points> 

Used to specify the number of points (<points>) along the line at 

which the data is interpolated. If the -n option is not specified, the 

default is 10 points. 
-u <fn_str> 

Used to supply a user-specified function of variables t, x, y, u, v, w, 

scalar field (if active) and their gradients. If this option is used, only the 

value of this function is output for each point on the line, rather than all 

flow variables/gradients. Hence, this can be useful for reducing the 

output file size, if you want the value of only a single variable. 

E.g. If the user wishes to interpolate the v-velocity only along a line, 

they could call: 
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\> line –u ‘v’ 

-avg 

If this option is specified, only the average of the interpolated values 

along the line is output instead of at each interpolated point. This is 

useful for calculating and quickly outputting average values along 

boundaries or across cuts through the domain. 

 

Load 

Syntax: load [-a <scale_factor> -f <filename> -k 

<floq_mode> -m] 

Function: Load flow field vectors from file. 

Description: 

Loads flow field vectors, as well as computation time t, from a user-specified file.  This 

command loads flow field data from files created with the command save, and is used 

to resume a computation from a previously computed solution. 

Note that load can be used after the solution has been initialised. Although uncommon, 

this allows for the user to replace static Dirichlet boundary conditions with whatever 

the velocities were in the restart file. 

Update 03/06/2013: load no longer over-writes the RKV parameter value, or the time 

step dt value, with the values stored in the restart file. These must be set in the 

viper.cfg configuration file. 

Update 12/05/2008: This command now no longer recognises the pre-04/11/2006 file 

format. For Spectral-element/Fourier simulations, either 2D or 3D SE/Fourier data may 

be input. 

Update 04/11/2006: This command can now read files containing flow fields at the 

three previous time steps, while also being capable of reading the old current-time saved 

fields.  The new files avoid the annoying perturbation that was added to flows upon re-

start. 

The following options are available: 
-a <scale_factor> 

Used to specify a scaling factor to apply to the field being loaded (default 

= 1.0). This is most useful when loading perturbation fields onto Fourier 

modes of a spectral element-Fourier 3D simulation. 
-k <floq_mode> 

Used to specify an integer perturbation field number to load the saved 

file into. For linear stability analysis, perturbation fields range over (i.e., 

1, 2, ... , Nfloq_modes). The default is <floq_mode> = 0, 

corresponding to the base flow. For SE-Fourier 3D jobs, individual 

Fourier modes are numbered 0 (fundamental 2D mode), and [1, 2, ... , 

Nfourier_planes/2]. 
-f <filename> 

Used to specify a filename <filename> (including extension) to load 

the flow fields from. If the -f option is not specified, the default 

filename ff_in.dat is used. 

-m 

Specifies that you wish to load spatial coordinates from the file also. 

This feature is only required if you wish to load data onto a different 

macro-element mesh. 
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-r 

Used to control whether the loaded field replaces whatever is in the flow 

field vectors (the default behaviour), or if the loaded field is added to the 

base flow (the behaviour if the option is used). 

Note: The init command must be called before the use of the -k load option 

when loading saved perturbation fields.   

See also: save. 

 

 

Loop 

Syntax: loop <num_iterations> 

Function: Executes a list of commands <num_iterations> times. 

Description: 

Following a call to loop <num_iterations>, the user inputs a list of commands 

to be executed within a loop.  The command list is terminated by entering endl (for 

“end loop”).  Multiple loops can be nested within one another.  The looping begins after 

the final endl command is supplied.   

The commands are stored in a temporary “scratch” file (visible on Linux systems, 

invisible on Windows systems), which may not be deleted if Viper is terminated while 

looped commands are being executed.  These files are typically named fortXXXXX, 

and are safe to delete if Viper is not running in that directory.  

See also: macro. 

 

 

Lsa 

Syntax: lsa [-prefix <string> -nev <integer> -ncv 

<integer> -tol <integer> -Nsteps <integer> -adjoint] 

Function: Find leading eigenmodes of a linear time integration operator. 

Note: This is a driver routine. It automatically executes a loop, calls the Arnoldi 

command, and conducts the required time integration. The solution must have 

been initialised (init) and perturbation fields must be active (pert). 

Description: 

Linear stability analysis is used to find the amplification factors (Floquet multipliers) 

and corresponding perturbation fields (the eigenvalues and eigenvectors, respectively) 

of the operator describing the evolution of the perturbation field over a time interval, T. 

The following options are available: 
-prefix <string>  

Used to specify a filename prefix for eventual output of the LSA solver. 

The default is lsa_. 
-nev <integer> 

Used to specify the number of leading eigenmodes to be found by the 

Arnoldi solver. The default value (and minimum allowable value) is 1. 
-ncv <integer> 

Used to specify the length of the Arnoldi factorization used by the 

Arnoldi solver. The default value is 6, and the minimum allowable value 

is (nev+2)]. 
-tol <integer> 
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Used to specify the exponent of the convergence criterion used for the 

Arnoldi solver (i.e. 10^<integer>). The default value is −7, 

corresponding to 10−7. 
  -Nsteps <integer> 

Used to specify the number of time steps per Arnoldi iteration update. 

The time interval 𝜏 is calculated as 𝑑𝑡 ∗ 𝑁𝑠𝑡𝑒𝑝𝑠. The default value is 

1000, and the minimum allowable value is 1. 
-adjoint 

If specified, the adjoint of the linearised equations will be integrated 

backwards in time rather than the default forward time integration of the 

linearised equations. The resulting computation is thus no longer a linear 

stability analysis, per se. Instead it becomes a calculation of the 

eigenmodes of the adjoint of the linearised evolution operator, which is 

useful in sensitivity analysis, etc. 

See also: init,pert. 

 

Macro 

Syntax: macro <filename> 

Function: Read commands from a file. 

Description: 

Specifies a file from which commands are to be input from.  The file <filename> is 

opened, and commands in the file are executed as if they were entered at the command 

line.  A number of macro files may be nested (i.e., the macro command can be called 

from macro files) to improve the flexibility of this function. 

See also: loop. 

 

Mask 

Syntax: mask [-u <u_fn> -v <v_fn> -w <w_fn> -s <s_fn> -k 

<field>] 

Function: Applies a user-defined mask function to a specified field. 

Description: 

This command can be used to filter, amplify, or in some way modify the u, v (and w) 

velocity components of a velocity field, or a scalar field.  Each field is applied a mask 

with a separate function, as: 

 

𝒇𝒊𝒆𝒍𝒅𝑚𝑎𝑠𝑘𝑒𝑑 =< 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 >∗ 𝒇𝒊𝒆𝒍𝒅𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 . 

 

If no mask function is specified, the default mask is 1.0 (no change to the field). 

Furthermore the mask will only be applied if the solution has been initialised. 

This command is especially useful for filtering perturbation fields used in stability 

analysis.  For instance, if the stability of a flow is being computed in a rotating frame, 

then the velocities far from the centre of rotation can be very large.  This can lead to 

instability when random noise introduced at startup is being advected by high rotational 

velocities in the base flow.  In this case a Gaussian mask could be used to filter towards 

zero the perturbation field velocity far from the centre of rotation, e.g. 
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\> mask –k 1 -u 'exp(-(x^2+y^2))' -v 'exp(-(x^2+y^2))' -w 

'exp(-(x^2+y^2))' 

 

The following options are available: 
-u <u_fn>  

Used to specify a mask function for the u velocity field. The function 

can use intrinsic and user-specified variables, such as x, y, t, RKV, etc 
-v <v_fn>  

Used to specify a mask function for the v velocity field. The function 

can use intrinsic and user-specified variables, such as x, y, t, RKV, etc. 
-w <w_fn>  

Used to specify a mask function for the w velocity field. The function 

can use intrinsic and user-specified variables, such as x, y, t, RKV, etc. 

-s <s_fn>  

Used to specify a mask function for the scalar field. The function can 

use intrinsic and user-specified variables, such as x, y, t, RKV, etc. 
-k <field> 

Used to specify field the mask is applied to. By default, the mask is 

applied to the base flow (k =  0).  Linearized perturbation fields are 

referenced using numbers 1, 2, 3, etc. To mask all fields, set the -k 

parameter to a negative value. 

 

Meshpts 

Syntax: meshpts [-f <filename>] 

Function: Save mesh coordinates to a text file. 

Description: 

This outputs the (𝑥, 𝑦, 𝑧) coordinates and global node number (𝑛) of every coordinate 

in a mesh, including interpolation points within each element.  If no filename is 

specified, the default meshpts.dat is used. The data is stored in text format at a high 

precision, so for large meshes these files can be very large. 

 

Mhd 

Syntax: mhd coeff <value> 

Function: Used to invoke functions relating to the quasi-static MHD solver. 

Description: 

Viper facilitates magnetohydrodynamic (MHD) simulations based on the quasi-static 

approximation. The quasi-static approximation is asymptotically exact for flows with 

magnetic Reynolds number 𝑅𝑒𝑚 ≪ 1, and achieves high accuracy for 𝑅𝑒𝑚 < 𝑂(1). 

Under the quasi-static model, the momentum equation is augmented by an additional 

term 

𝑁(−𝛁𝜙 + 𝒖 × 𝒆𝑩) × 𝒆𝑩, 
where 𝑁 is an MHD prefactor, 𝜙 is the electric potential field, 𝒖 is the velocity vector 

field, × denotes a vector cross product, and 𝒆𝑩 is a unit vector in the direction of the 

magnetic field. From the requirement that the current density is divergence free, Ohm’s 

law yields a Poisson equation for the electric potential field 

∇2𝜙 = 𝛁 ∙ (𝒖 × 𝒆𝑩) 

where ∇2 is the Laplacian operation, and 𝛁 ∙ () denotes the divergence operator. 
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This command is currently a duplicate of gvar_mhd_coeff and will overwrite the 

prefactor 𝑁 set with gvar_mhd_coeff. By default the prefactor takes a zero value. 

The electric potential filed must be active for the coefficient to have any effect. 

See also: gvar_mhd_coeff. 

 

Moments 

Syntax: moments [-f <filename> -x <x> <y> -b <bndry_num>] 

Function: Calculate moments about a boundary. 

Description: 

This calculates the moments about a boundary with respect to a specified origin. 

Moments are calculated from the cross product 𝒓 × 𝒅𝑭, where 𝒓 is a moment arm vector 

from the user-specified centre about which the moment is calculated (<x>, <y>) to 

the boundary surface. 𝒅𝑭 is the integral contribution to the body force used by the  

forces command to calculate lift and drag. The resulting moments are counter-

clockwise positive. The calculations are only performed if the solution has been 

initialised. 

The following options are available: 
 -f <filename> 

 Used to specify a filename <filename> (including extension) to write 

(append) the data to.  If omitted, the default filename is moments.dat. 
-x <x> <y>  

Used to specify the coordinates about which to calculate the moment. 

The moment arm 𝒓 extends from coordinate (<x>, <y>) to the 

boundary surface. The default is the origin (0, 0).  
-b <bndry_num> 

Used to specify the boundary number (as defined in the viper.cfg 

file) over which the moment is to be calculated. Typically the boundary 

number would correspond to a closed boundary such as the surface of a 

cylinder. The default is 0, corresponding to no specified boundary, 

which does not provide a useful output, but merely avoids the simulation 

crashing. 

Note: The moments command can only be employed in 2D simulations (it does 

not work in 3D or SE-Fourier 3D simulations). 

See also: forces. 

 

Nu_horiz_2d 

Syntax: nu_horiz_2d -x <x1> <x2> [<x2> <x3> <x3> … <xn>] 

–y <y1> <y2> [-scheme <scheme> -k <order> -m –f <filename> 

-tol <tolerance> -m <depth>] 

Function: Calculate the bulk temperature Nusselt number (2D channel flow, 

heated bottom wall). 
Description: 

The Nusselt number is calcuated along the bottom edge of a rectangular region defined 

by the coordinates entered with the -x and –y options. The -x flag accepts a space-

separated list of between 2 and 20 x-coordinates in ascending order, which define 

between 1 to 19 integration regions for Nusselt number. The –y  flag specifies the lower 
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and upper y-coordinates for the vertical integration. These should span from a heated 

bottom boundary to the upper boundary. The Nusselt number is calculated as 

𝑁𝑢 =
1

𝐿
∫ 𝑁𝑢𝑤𝑑𝑥

𝑥𝑛

𝑥1
= (

1

𝑥2−𝑥1
∫ 𝑁𝑢𝑤𝑑𝑥

𝑥2

𝑥1
+

1

𝑥3−𝑥2
∫ 𝑁𝑢𝑤𝑑𝑥

𝑥3

𝑥2
+

⋯
1

𝑥𝑛−𝑥𝑛−1
∫ 𝑁𝑢𝑤𝑑𝑥

𝑥𝑛

𝑥𝑥𝑛−1 
),  

where 𝐿 is the horizontal length of' the heated plate. The local Nusselt number is defined 

as 

𝑁𝑢𝑤 =
ℎ

𝑇𝑏𝑢𝑙𝑘 − 𝑇𝑤𝑎𝑙𝑙

𝑑𝑇

𝑑𝑦
|

𝑤𝑎𝑙𝑙

,  

 where 𝑇𝑤𝑎𝑙𝑙 is the local temperature of the heated (bottom) wall, ℎ is a characteristic 

length, 
𝑑𝑇

𝑑𝑦
|

𝑤𝑎𝑙𝑙
  is the vertical temperature gradient at the heated (bottom) wall, and 

𝑇𝑏𝑢𝑙𝑘 is the bulk temperature of the fluid. The bulk temperature is calculated as 

 

𝑇𝑏𝑢𝑙𝑘 =
∫ 𝑢𝑇

𝑦2

𝑦1
𝑑𝑦

∫ 𝑢
𝑦2

𝑦1
𝑑𝑦

. 

The integrations are performed using one of several schemes, the default being the 

adaptive Simpson’s rule. The calculations are only performed if the solution has been 

initialised. 

The following options are available: 
-x <x1> <x2> [<x2> <x3> <x3> … <xn>] 

Used to specify at least two x-locations for spatial averaging between. 

Additional points can be specified (up to 20, any more will be ignored), 

and must be in ascending order. If the pairs do not share a point, 

integration will be performed between them (e.g. if the pairs were listed 

<x1> <x2> <x3> … <xn> instead). Furthermore, the maximum 

length of a line in a configuration file is unlikely to permit 20 points 

being specified by one nu_horiz_2d call, particularly if they are 

quoted to many decimal places (which will give a line not terminated 

with a (’) symbol error). Multiple nu_horiz_2d calls are recommend, 

which will append the same file if needed (or contact Dr. Gregory 

Sheard).  
–y <y1> <y2>  

Used to specify the lower and upper y-coordinates for vertical 

Integration. These must be specified for the command to function.  
-scheme <scheme> 

An integer flag between 1 and 4 is used to specify the quadrature scheme 

to be employed, which choices of:  

1: Adaptive trapezoidal scheme (this scheme tends to be slower than the 

adaptive Simpson's rule, but may be less erroneous at lower tolerances) 

2: Adaptive Simpson's rule (this tends to perform well, and is the default 

scheme) 

3:Adaptive Gauss-Kronrod scheme (this tends to be slower than the 

adaptive Simpson''s rule for a given accuracy) 

4: Automatic Simpson's rule (this scheme subdivides all intervals at each 

iteration and involves redundant function evaluations, and therefore 

tends to be slower than the adaptive Simpson's rule) 

If the <scheme> number does not equal 3, the –k option is ignored. 
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-k <order> 

An integer flag between 1 and 6 is used to specify the order of the Gauss-

Kronrod scheme to be used. The corresponding numbers of quadrature 

points are:  

1: 7 Gauss points, 15 Gauss-Kronrod points 

2: 10 Gauss points, 21 Gauss-Kronrod points 

3: 15 Gauss points, 31 Gauss-Kronrod points 

4: 20 Gauss points, 41 Gauss-Kronrod points 

5: 25 Gauss points, 51 Gauss-Kronrod points 

6: 30 Gauss points, 61 Gauss-Kronrod points 

The default is 3: 15 Gauss points, 31 Gauss-Kronrod points. If the 

<scheme> number does not equal 3, the –k option is ignored. 

-n 

If included, this option switches on the outputting of local wall Nusselt 

number to a file named nu_horiz_2d.dat. Output includes 𝑡, 𝑥, 

wall temperature, bulk temperature, temperature gradient at wall, and 

the calculated 𝑁𝑢𝑥. Note that the data will likely not be ordered in 𝑥, 

and will only include data at points evaluated by the quadrature routine. 
-f <filename> 

Used to specify a filename <filename> (including extension) to write 

the data to. If the -f option is not specified, the default filename 

nu_horiz_2d.dat is used.   

-tol <tolerance> 

Used to specify the convergence threshold for both the bulk temperate 

and spatial averaging integrations required to evaluate the Nusselt 

number. The default is 1e-3. If a negative tolerance is specified, the 

default will be used instead. 
-m <depth> 

The is <depth> an integer parameter used to specify the maximum 

recursion depth for adaptive schemes. The defines a lower limit on the 

smallest size a single division of the x-domain (from 𝑥1 to 𝑥2) can 

becombe. Integration will halt if the division would be smaller than 

2^<depth>. The default is arbitrarily large. In practice, a <depth> of 

10 is sufficient for the calculation to not be limited by the <depth>  for 

a complex heat flux distribution (although it could be a lot lower for 

simple functions, in which case it is unnecessary to use). The main 

reason for specifying a recursion depth is that in rare circumstances a 

heat flux distribution may be of the wrong shape to ever allow the 

requested tolerance to be reached. If this occurred, the simulation would 

integrate indefinitely until the walltime limit kills the task, which is a 

waste of computational resources. Sadly, no integration scheme is 

perfect. 

Note: The nu_horiz_2d command can only be employed in 2D Cartesian 

simulations. It will not work in 2D cylindrical, 3D, or SE-Fourier 3D simulations. 

It also requires an active scalar field (see btag). 

See also: line. 
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Nu_xsect_2d 

Syntax: nu_xsect_2d -b <boundary number> [–f <filename>] 

Function: Calculate the bulk temperature Nusselt number for a 2D channel 

flow, heated bottom wall. 
Description: 

Calculate the bulk temperature Nusselt number. The Nusselt number is integrated over 

the entire domain, with the heated boundary, which must be specified using the -b 

option. This routine is useful for calculating heat transfer for channel flows into the 

page. Integration of the bulk temperature is over a cross-section that is normal to the 

streamwise direction, and averaging is applied over the entire wall. Note that the 𝑥-

direction is the streamwise direction (into the page), and the 𝑦-direction is normal to 

the bottom wall. 

The Nusselt number is calculated as (this may or may not be divided by 𝐿) 

𝑁𝑢 = ∫ 𝑁𝑢𝑤𝑑𝑥
𝑥2

𝑥1
 . 

The local Nusselt number is defined as 

𝑁𝑢𝑤 =
𝐿

𝑇𝑏𝑢𝑙𝑘 − 𝑇𝑤𝑎𝑙𝑙

𝑑𝑇

𝑑𝑦
|

𝑤𝑎𝑙𝑙

 , 

where 𝑇𝑤𝑎𝑙𝑙 is the local temperature of the heated (bottom) wall, 𝐿 is the vertical length 

of' the heated plate (𝐿 = 𝑥2 − 𝑥1), 
𝑑𝑇

𝑑𝑦
|

𝑤𝑎𝑙𝑙
  is the vertical temperature gradient at the 

heated (bottom) wall, and 𝑇𝑏𝑢𝑙𝑘 is the bulk temperature of the fluid. The bulk 

temperature is calculated as 

 

𝑇𝑏𝑢𝑙𝑘 =
∫ ∫ 𝑢𝑇

𝑥2

𝑥1
𝑑𝑥𝑑𝑦

𝑦2

𝑦1

∫ ∫ 𝑢
𝑥2

𝑥1
𝑑𝑥𝑑𝑦

𝑦2

𝑦1

 

The integration is performed directly using Gauss-Legendre-Lobatto quadrature on the 

spectral elements (an iterative scheme is not used, unlike nu_horiz_2d). The 

calculations are only performed if the solution has been initialised. 
-b <boundary number> 

Used to specify the boundary that corresponds to the heated bottom wall. A 

positive integer boundary number must be entered. 
-f <filename> 

Used to specify a filename <filename> (including extension) to write 

the data to. If the -f option is not specified, the default filename 

nu_xsect_2d.dat is used. 

Note: The nu_xsect_2d command can only be employed in 2D Cartesian 

simulations. It will not work in 2D cylindrical, 3D, or SE-Fourier 3D simulations. 

It also requires an active scalar field (see btag). 

See also: line, nu_horiz_2d. 
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Onlyw 

Syntax: onlyw 

Function: Toggles computation of w-velocity-only / all velocity components 

on/off. 

Description: 

This command is implemented only in the 2D Cartesian and axisymmetric cylindrical 

solvers. During each time step, 𝑢- and 𝑣-velocity fields are reset to zero, forcing the 

solution to evolve only in the 𝑧- (𝜃-) direction, and suppressing any instabilities in the 

𝑥-𝑦 (𝑧-𝑟) plane. By default all velocity components are computed. 

 

Order 

Syntax: order [-vel <n>] [-s <n>] 

Function: Change the order of time integration. 

Description: 

By default, the velocity field (and the scalar field, if active) is computed to third order 

accuracy in time. This command allows the user to alter the order of time integration. 

In general, a higher order requires a smaller time step. See Chapter 2; Time Integration, 

for more information. 

The following options are available: 
-vel <n> 

Used to specify the order of the velocity field (valid options 1 to 3). 
-s <n> 

Used to specify the order of the scalar field (valid options 1 to 3). 

 

Overint 

Syntax: overint [-n <n>] 

Function: Calculate the advection/convection operators at higher resolution. 

Description: 

This routine is used to integrate the advection terms in the momentum equation and the 

convection term in the scalar advection-diffusion equation (if active) at a higher 

resolution. This is currently only implemented in the 2D solver, and must be called 

before init. 

The advection and convection operators involve products of variables with gradients of 

other variables. Thus a higher resolution is required to properly resolve the result the 

operation. If the operators are calculated using the elemental polynomial basis (i.e. an 

element with 𝑃 × 𝑃 quadrature points), aliasing may introduce errors possibly leading 

to numerical instability (aliasing is where unresolved high-wavenumber/small-scale 

parts of the solution are mapped erroneously back onto the resolved modes). Aliasing 

tends to be more of a problem at higher Reynolds/Rayleigh numbers, where the physical 

viscosity/thermal diffusivity is insufficient to damp the small-scale errors introduced 

by aliasing. Over-integration tackles this problem by evaluating the advection operator 

at a higher resolution. The result is then interpolated back to the original elemental basis 

order. 

The following options are available: 
-n <n> 

An integer (<n> =  𝑁) specifying the number of elemental interpolation 

points (i.e. 𝑁 × 𝑁 points) upon which the advection term is evaluated 
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within each element. If this option is not specified, the "2/3rds rule" is 

invoked, whereby 𝑁 = ceiling(
3𝑃

2
). 𝑁 must be greater than number of 

quadrature points originally set using gvar_N in the viper.cfg file. 

 

Pbc 

Syntax: pbc 

Function: Toggle the high-order Neumann pressure boundary condition 

off/on. 

Description: 

By default, a high-order Neumann boundary condition is imposed on the pressure field 

on Dirichlet velocity boundaries. This follows from Karniadakis, Israeli & Orszag 

(1991), who showed that this was required to preserve the 3rd-order accuracy of time 

integration when using the backwards multistep scheme we employ. This command 

should be reserved for problem diagnosis: e.g. troublesome instabilities, etc. as the 

computation may reduce to 1st order accuracy in time.     
 

Pert 

Syntax: pert <m1> [<m2> <m3> ... <mNfloq_modes>] 

Function: Establishes perturbation fields for stability analysis. 

Description: 

This command must be called prior to a call to init, as it is used to specify a number 

of spanwise (2D Cartesian) or azimuthal (2D axisymmetric) wavenumbers for linear 

stability analysis. Any number of fields can be specified, though the corresponding 

increase in memory resources required to compute the flows increases almost linearly 

with (<Nfloq_modes>+1). The spanwise/azimuthal wavelength is 𝐿 =
2𝜋

𝑚
, where 𝑚 

is the wavenumber. 

Linear stability analysis can be conducted with the driver command lsa. Transient 

growth analysis can be conducted using the direct time integration approach of' Barkley, 

Blackburn & Sherwin by calling the driver routine tg. Transient growth analysis can 

be conducted using a reconstruction from eigenmodes of the linear evolution operator 

using the approach of Schmid & Henningson by calling the driver routine svd. 

If a scalar field is active, calling pert will also invoke a scalar perturbation field, 

which may or may not be desired. This is facilitated for stability analysis of Boussinesq 

flows - it is unlikely to be useful elsewhere. 

Note: floq has been renamed to pert. Furthermore, pert cannot be called if 

an SE/Fourier computation is initialized (do not call fourier if using pert). It 

also cannot be invoked in 3D, and init must be called after pert to initialize 

time stepping. 

See also: arnoldi, lsa, pert2, pert_ke_evol, svd, tg. 
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Pert2 

Syntax: pert2 –fst <m1> -lst <mNfloq_modes> -n 

<Nfloq_modes> [-log] 

Function: Sets linearised perturbation fields. 

Description: 

This command must be called prior to a call to init, as it is used to specify a number 

of spanwise (Cartesian) or azimuthal (cylindrical) wavenumbers for linear perturbation 

fields. The spanwise/azimuthal wavelength is 𝐿 =
2𝜋

𝑚
, where 𝑚 is the wavenumber. 

Linear stability analysis can be conducted with the driver command lsa. Transient 

growth analysis can be conducted using the direct time integration approach of' Barkley, 

Blackburn & Sherwin by calling the driver routine tg. Transient growth analysis can 

be conducted using a reconstruction from eigenmodes of the linear evolution operator 

using the approach of Schmid & Henningson by calling the driver routine svd. 

If a scalar field is active, calling pert2 will also invoke a scalar perturbation field, 

which may or may not be desired. This is facilitated for stability analysis of Boussinesq 

flows - it is unlikely to be useful elsewhere. 

The following options are available: 
-fst <m1> 

Used to specify the first wavenumber in the sequence, which must be a 

non-negative integer. The default value is 0.0. No perturbation fields are 

established if this is not specified. 
-lst <mNfloq_modes> 

Used to specify the last wavenumber in the sequence, which must be a 

non-negative integer. The default value is 0.0. No perturbation fields are 

established if this is not specified. 
-n <Nfloq_modes> 

Used to specify the number of wavenumbers in the sequence. The 

number of floquet modes be a positive integer. The default value is 0, 

which will cause an error if left unmodified. No perturbation fields are 

established if this is not specified. 
-log 

Invokes a logarithmic spread of wavenumbers rather than a linear 

spread. This option cannot be used with a zero wavenumber (as 

log(0)  =  −∞). 

E.g. 1: 
 

\> pert2 –fst 0.0 –lst 5.0 –n 3 

 

Gives wavenumbers 0.0, 2.5, 5.0. 

 

E.g. 2: 
 

\> pert2 –fst 1.0 –lst 16.0 –n 5 –log 

 

Gives wavenumbers 1.0, 2.0, 4.0, 8.0, 16.0. 

 

Note: pert cannot be called if an SE/Fourier computation is initialized (do not 

call fourier if using pert). It also cannot be invoked in 3D, and init must be 

called after pert to initialize time stepping. 
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See also: arnoldi, lsa, pert, pert_ke_evol, svd, tg. 

 

Pert_ke_evol 

Syntax: pert_ke_evol [-p <prefix> -k <field>] 

Function: Outputs the out-of-plane averaged perturbation kinetic energy 

evolution terms. 
Description: 

This command calculates the local minimum, local maximum and volume integrated 

values of the terms of the out-of-plane averaged linearised perturbation kinetic energy 

evolution equation.  This equation is found by taking the dot product of the perturbation 

velocity vector with the momentum equation of the linearised perturbation field, then 

averaging in the out-of-plane direction. The calculations will only be perfomed if the 

solution has been initialised 

The following options are available: 
-p <prefix> 

Used to specify a string containing the filename prefix (three text files 

are output, <prefix>_pert_KE_evol_terms_min.dat,  
<prefix>_pert_KE_evol_terms_max.dat,  

<prefix>_pert_KE_evol_terms_total.dat for the 

minimum, maximum and total values for each term, respectively). If the 

-p option is not specified, the default prefix pert_KE_evol.dat is 

used. 
-k <field> 

An integer ranging from 1 to the number of active perturbation fields 

(Nfloq_modes) in the simulation from which the min/max/total 

values are to be calculated. The default field number is 1. 

Note: pert_ke_evol can only be employed in 2D simulations. It also requires 

an active linearised perturbation field (a previous pert call). 

See also: arnoldi, lsa, pert, pert2. 
 

Pres 

Syntax: pres 

Function: Toggle pressure substep on/off during time integration. 

Description: 

Time integration is carried out by solving each of the advection, pressure and viscous 

diffusion terms consecutively.  This function is used to switch off computation of the 

pressure term, which also stops the continuity (conservation of mass) constraint being 

enforced.  The default setting of this feature is ON.  This facility is primarily provided 

as a debugging tool. 

Note: Switching off the pressure term alters the equations being solved by Viper. 

See also: diff, advect. 
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Quit 

Syntax: quit 

Function: Exits Viper. 

Description: 

Viper terminates immediately, and any unsaved work will be lost.  This command 

performs the same action as stop and exit. 

See also: exit, stop. 

 

Rand 

Syntax: rand [-l <level> -k <field>] 

Function: Add a random perturbation to the velocity field. 

Description: 

This command adds a small random perturbation to the velocity field of an initialized 

computation. This can help accelerate the development of instability or transient flow 

features. The random noise will be divergence free if added to the base flow, or if added 

to a 3D Fourier simulation. Without a call to rand, the user relies on noise at the limit 

of numerical precision to trigger the growth of instabilities. The solution must be 

initialised for a random perturbation to be added. 

Users should use rand with care if they are restarting a simulation (using load) from 

a saved spectral-element/Fourier computation, as the added noise will contaminate time 

histories of flow quantities captured over multiple runs. 

The following options are available: 
-l <level> 

Used to set the magnitude (<level>) of the added noise. A positive 

value must be specified. By default, <level> is 1e-4. It is distributed 

in physical space, not Fourier space, and hence, the random noise will 

be distributed differently as the macro-element distribution, or 

polynomial order, are varied. 
-k <field> 

For spectral-element-Fourier three-dimensional simulations, this option 

allows only a specified Fourier mode (i.e. <field> = 1, 2, 3, etc.) to 

be perturbed, rather than all fields (which is the default behaviour). The 

<field> value must be no greater than the number of Fourier modes. 

For computations where linearized perturbation fields are being evolved, 

this option can be used to specify a single mode to be perturbed 

(<field> = 0 is the base flow, and positive integers (1, 2, 3, etc.) 

identify each linearized perturbation field). The <field> value must 

be no greater than the number of perturbation fields which are active. 

See also: fourier, pert. 

 

Reconload 

Syntax: reconload [-f <filename> -i <scheme> -p –t <tau>] 

Function: Load velocity fields from a data file saved using reconstore. 

Description: 

If the user has earlier stored snapshots of the flow field using reconstore, then this 

command is used to load the data from the file, and directs Viper to reconstruct the 
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velocity field from these snapshots instead of using the standard time integration 

scheme. The velocity, pressure, and scalar fields will be reconstructed, provided they 

were stored in the file. The user must ensure that the computation proceeding after 

reconload is consistent with that used when reconstore was called. For 

instance, a different mesh, polynomial order, setting for wvel, presence or otherwise 

of a scalar field, could all lead to unpredictable results.  

The following options are available: 
-f <filename> 

 Used to specify a filename <filename> (including extension) to write 

the data to.  If omitted, the default filename is reconstore.dat. 

-i <scheme> 

Used to specify the interpolation scheme used. Available choices are 

fourier (default), polynomial, or akima (e.g. –i fourier, –i poly, 

–i akima). Akima interpolation is preferred to polynomial 

interpolation as it is provides a much smoother curve without the 

spurious wiggles plaguing polynomial and cubic spline interpolation 

schemes. 
-p 

Used to reconstruct the pressure field. By default, the pressure field is 

not reconstructed (saving compute time), as it is not needed for stability 

analysis. However, if the user wishes to reconstruct the pressure field 

(e.g. for generating plots of the pressure field), the –p option must be 

specified when this command is called. 
-t <tau> 

The file created using reconstore has no information about the time 

interval used to store the snapshots of the solution: the user specifies this 

with the <tau> parameter, which should be set to the full time interval 

over which the snapshot data was acquired (usually this would be the 

period of the solution). However, as <tau> is supplied with this 

command, which is called at the beginning of a computation used to 

perform a subsequent stability analysis (for instance), the user could set 

<tau> to be different from the original period, if they desired. This 

would rarely be required. Note: For Fourier interpolation, <tau>  is the 

period of the flow field, whereas for polynomial interpolation, <tau>  

is the time between the first and last snapshot. Polynomial interpolation 

is only useful if the time of the computation remains within 0 <  𝑡 < 

<tau>, to avoid ludicrous extrapolation errors. 

Note: reconload should be called after init, and before time stepping 

commences. 

See also: reconstore. 

 

Reconstore 

Syntax: reconstore [-n <Nfields> -f <filename>] 

Function: Stores velocity fields for later reconstruction by interpolation. 

Description: 

Sometimes it is convenient to store a time-varying velocity field solution as a series of 

snapshots for later reconstruction using an interpolation scheme. This is particularly 

helpful during stability analysis, where it could be wasteful to continue to time integrate 
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a periodic base flow over the numerous periods required for the eigenvalue iterations 

to converge. This command is used to store snapshots of the flow field for later 

interpolation. The snapshots must be stored at equi-spaced time intervals. 

Reconstruction is achieved by calling reconload, for which a Fourier interpolation 

can be used if the stored flow is periodic, and either polynomial or Akima spline 

interpolation is available for transient fields. If the user wishes to store a periodic 

solution (for reconstruction using Fourier interpolation), they must ensure that the 

solution at the beginning of the period is only stored ONCE, and not again at the end of 

the period. For reconstruction using polynomial and Akima interpolation, snapshots of 

the first and last fields must be explicitly stored, as they are not necessarily the same. 

On the first call to this command, the data structures are created, based on the active 

fields in the computation (e.g. 𝑢, 𝑣, 𝑤, 𝑝 and/or 𝑠), and the current velocity field is 

saved as the first snapshot. On subsequent calls to reconstore, any supplied options 

(-n or -f) are ignored, and the velocity field at the present time is stored as subsequent 

snapshots. 

The following options are available: 
-n <Nfields> 

Used to specify the number of field snapshots to save.interpolation 

scheme used. If reconstore is called in an SE/Fourier 3D 

computation, only the (real) fundamental spanwise/azimuthal mode is 

stored: in other words, the spanwise-averaged velocity field is stored, 

not the three-dimensional solution. The default is <Nfields> = 1. 
-f <filename> 

 Used to specify a filename <filename> (including extension) to save 

all <Nfields> to (all fields are saved after the final snapshot is 

stored).  If omitted, the default filename is reconstore.dat. 

Note: reconstore should first be called after INIT, and at a time when the flow 

has been advanced to the point that the first field is to be stored. 

See also: reconload. 

 

Rotate 

Syntax: rotate <x> <y> <omega> 

Function: Specify a rotating frame of reference for stability analysis on a 

frozen base flow. 

Description: 

The command freeze artificially stops any time evolution of a flow field.  For some 

flows, such as co-rotating vortex pairs, the base flow would otherwise rotate about some 

point in the flow.  In essence, freeze transfers the computation into a frame of 

reference rotating with the base flow.  However, for stability analysis, the evolution of 

the perturbation field is still computed as if it were in an inertial reference frame.  

Therefore, Coriolis and centrifugal accelerations due to the rotation are not included in 

the computation. 

The command rotate is used to correct for these additional acceleration terms.  The 

command rotate only has an effect on the perturbation field(s) of a two-dimensional 

Cartesian (not asixymmetric) computation where freeze has been called. 

The command rotate takes as input the <x> and <y> coordinates of the centre of 

rotation of the computational domain, and the angular velocity of the rotation 
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(<omega>, defined positive for anti-clockwise rotation, and expressed in radian per 

unit time). 

The command rotate makes the following corrections to the calculation of the 

perturbation field: 

1) The solid-body rotation of the reference frame is subtracted from the frozen 

rotating base flow, U, supplied to the advection term for calculation of the 

perturbation field evolution (this puts the base flow in the rotating frame of 

reference consistent with the perturbation field). 

2) The correction due to the Coriolis acceleration −2𝝎 × 𝐯𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔 is added to the 

evolution equations of the perturbation field. 

Note that no contribution due to centrifugal effects is required, as this affects the 

evolution of the base flow. 

See also: freeze. 

 

 

Sample 

Syntax: sample [-f <filename> -k <field> -x <x> <y> <z>] 

Function: Get flow parameters at a physical location within the computational 

domain. 

Description: 

This command outputs the time (𝑡), the velocity components (𝑢, 𝑣, 𝑤), velocity 

gradients (𝑑𝑢/𝑑𝑥, etc.), kinematic static pressure (𝑝), and strain rate magnitude at a 

physical point on the mesh.  The sample command will interpolate the flow quantities 

to the requested location, rather than just output the values at the nearest mesh node.  

Furthermore, the points are calculated and outputted to file at the time that sample is 

called. The command sample can only be called after init. This command will 

append new data to the end of an existing file of the same name, if one exists. 

The following options are available: 
 -f <filename> 

 Used to specify a filename <filename> (including extension) to save 

the flow values to. If the -f option is not specified, the default filename 

sample.dat is used. 
 -k <field> 

 Used to specify an integer perturbation field number (i.e., 1, 2, ... , 

Nfloq_modes, when Floquet analysis is active) to interpolate data 

from. The default is <field> =  0, corresponding to the base flow. 

  
 -x <x> <y> <z> 

Used to specify the (x,y) or (x,y,z) coordinates of a point in the 

computational domain at which to interpolate the flow values. Any 

coordinates not explicitly specified are taken to be equal to zero. The z-

coordinate is used for hexahedral 3D runs, spectral element-Fourier 3D runs, 

and 3D perturbation fields. 
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Samplef 

Syntax: samplef [-f <filename> -x <x> <y>] 

Function: Return the Fourier coefficients of the velocity field at a point. 

Description: 

This command outputs the time (t), the supplied spatial coordinates, and the Fourier 

coefficients of the velocity field at a physical point on the mesh samplef will 

interpolate the flow quantities to the requested location, rather than just output the 

values at the nearest mesh node.  Furthermore, the points are calculated and output to 

file at the time that samplef is called.  The command samplef can only be called 

after init. This command will append new data to the end of an existing file of the 

same name, if one exists. 

The following options are available: 
 -f <filename>

 Used to specify a filename <filename> (including extension) to save 

the flow values to.  If the -f option is not specified, the default filename 

samplef.dat is used. 
-x <x> <y> 

 Used to specify the spatial coordinates (in the 𝑥-𝑦 or 𝑧-𝑟 plane) of a 

point in the computational domain at which the Fourier coefficients are 

to be interpolated. Any coordinates not explicitly specified are taken to 

be equal to zero. 

Note: samplef can only be called during SE/Fourier computations. 

See also: autocorrf, energyf, fourier. 

 

Save 

Syntax: save [-f <filename> -hugh -k <floq_mode> -m –s] 

Function: Save flow field vectors to file. 

Description: 

Saves flow field vectors, as well as computation parameters t, dt, RKV, and mesh 

parameters Nelem, Nglobal, Nqdpts to a user-specified file. The computation can 

only be saved if the simulation has been initialised. The saved fields can then be 

reloaded using the load command to re-start a computation.  

Update 4/11/2006: This command now saves files containing flow fields at the three 

previous time steps.  This avoids the annoying perturbation that was added to flows 

upon re-start. 

The following options are available: 
 -f <filename> 

 Used to specify a filename <filename> (including extension) to save 

the binary file to. If the -f option is not specified, the default filename 

ff_out.dat is used. 
 -hugh 

Used to write out 𝑢, 𝑣, 𝑤 and 𝑝 fileds in ASCII format readable by 

SEMTEX, Prof Hugh Blackburn''s spectral element code (2D and 

perturbation fields only). Note: The -k option must be used to specify 

which perturbation field is to be written to the file. 
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 -k <floq_mode> 

 Used to specify an integer perturbation field number (i.e., 1, 2, ..., 

<Nfloq_modes>, when Floquet analysis is active) to load a saved 

flow field into. The default is <floq_mode> = 0, corresponding to the 

base flow. 
 -m 

 Specifies that you wish to save spatial coordinates to file also (this 

feature is only required if you wish to load data onto a different macro-

element mesh. 
 -s 

 Used to include a number sequence in the filename. A 4-digit integer 

(e.g., , , , etc.) is added to the default or user-specified 

filename, just prior to the file extension, if one is specified. Numbering 

begins at 1, and increments every time a save call is made with the -s 

option. 

See also: load. 

 

Scalar 

Syntax: scalar <operation> 

Function: Used to invoke functions relating to transport of a scalar field. 

Description: 

Viper facilitates the transport of a passive scalar field (variable 𝑆) on a two- or three-

dimensional flow field. The transport is computed using the same backwards-multistep 

time integration approach as used to solve the velocity field. If a scalar field is active 

and pert is called, a scalar perturbation field is established. To activate advection-

diffusion transport of the scalar field S, the user must set boundary conditions for the 

scalar field in the viper.cfg file. 

The following scalar transport option can be invoked with <operation> values: 

 scalar diff <coeff> 

 Defines the coefficient of diffusion for the scalar field.  By default, a 

coefficient of diffusion of <coeff> = 1.0 is used. The value of this 

coefficient can be set in the viper.cfg file (see help 

gvar_scalar_diff for more information).  A larger value will 

result in more diffusion (smearing) of the scalar field.  A value of zero 

(pure advection) is not permitted due to numerical stability implications.

See also: gvar_scalar_diff, pert. 

 

Set 

Syntax: set <variable> [=] <param_1> [... <param_n>] 

Function: Change the value of a configuration variable. 

Description: 

Change the value of a variable - supported variables are: 

 RKV Reciprocal kinematic viscosity 

 dt  Time step 

 t  Time 
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The value of the variable and other parameters are input as <param> values as 

required. If the time step is changed, the flow fields at previous time intervals will be 

interpolated to the new times. Set dt should be used after all load calls and before 

init. Note that if typing an equal signs, spaces must be placed on either side of the 

equals sign. For example, to set the reciprocal kinematic viscosity to 173.5, type: 

 
\> set RKV 173.5 

 

or 
 

\> set RKV = 173.5 

 

but not 

 
\> set RKV=173.5 

 

Note that as an alternative usage, users may change variables RKV, dt, or t by omitting 

the set command: i.e. to change the time step, users could type: 

 
\> dt 0.004 

 

or 
 

\> dt = 0.004 

 

 

Spreadscalar 

Syntax: spreadscalar [-r <newrange> -p <pivotval>] 

Function: Rescale the scalar field to spread the range of values. 

Description: 

In some heat transfer jobs, such as duct flows with periodic boundaries for 

inflow/outflow, the scalar (temperature) boundary conditions might be set up to specify 

a hot temperature on one wall, while the other boundaries are insulated. Over time, the 

scalar field will diffuse towards a constant value equal to the hot wall temperature 

throughout the domain. In these scenarios, the actual temperature values are arbitrary; 

the focus is instead on the normalised wall heat transfer rates. This command combats 

the tendency of temperatures to asymptote to a constant value in these situations by 

rescaling the range of the field. It can be called at any time during time integration (i.e. 

after init). 

The following options are available: 
 -r <newrange> 

 Used to specify the range of the scalar field after rescaling. The 

command will first record the difference between the maximum and 

minimum values of the field. A scale factor is then calculated that when 

applied to the scalar field will produce a difference between maximum 

and minimum values equal to <newrange>. This must be a positive 

value. If this option is not specified, no rescaling is performed. 
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 -p <pivotval> 

 Used to specify a value about which to rescale. For example, if a duct 

wall has a specified hot temperature value of, say, 1.0, then setting 

<pivotval> = 1.0 will scale around this value so the duct wall 

temperature is unaffected. If this option is not provided, a default value 

<pivotval> = 0.0 is used. 

Note: spreadscalar requires a scalar field to be active. It also is yet to be 

implemented in SE-Fourier 3D computations. 
 

Stab 

Syntax: stab [<filename>] 

Function: Calculate Floquet multipliers for each linear instability mode. 

Description: 

If Floquet linear stability analysis is being performed (call pert prior to init), this 

command calculates an estimate of the magnitude of the Floquet multiplier (|𝜇|) for 

each mode, using the power method.  The Floquet multiplier is a complex number 

related to the growth rate 𝜎, and the base flow period 𝑇, by 

 

𝜇 ≡ 𝑒𝜎𝑇 . 
 

Viper estimates |𝜇| by comparing the change in the magnitude of each perturbation 

field with their previous values, and evaluating growth rates based on the previous time 

at which a stab command was called. Over a sufficient number of periods, all but the 

fastest-growing mode wash out of the solution.  If 𝑁(𝑡) is a perturbation field integral 

evaluated at time 𝑡 (when stab was called), then 

 

|𝜇| =
𝑁(𝑡 + 𝑇)

𝑁(𝑡)
 , 

 

providing the flow has evolved for a sufficient number of periods to isolate only the 

fastest-growing mode at the given wavelength. The calculations can only be performed 

if the solution has been initialised, in a simulation with active perturbation fields. 

If users wish to resolve the complex components of an instability mode, or multiple 

modes at a single wavelength, then they should employ arnoldi instead of stab, 

which determines eigenvalues and eigenvectors using an Implicitly Restarted Arnoldi 

Method. 

The following options are available: 
 <filename> 

The period between stab calls and the resulting Floquet multiplier 

estimates are written to a specified file <filename> (including 

extension). If not specified, the default filename floq_mult.dat is 

used. 

See also: arnoldi, pert. 
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Step 

Syntax: step [<num_steps>]

Function: Performs <num_steps> time integration steps. 

Description: 

If <num_steps> is not specified, a single time step is completed, otherwise 

<num_steps> steps are taken. If zero were specified no time integration is performed. 

For backwards time integration using the adjoint of the linearised Navier-Stokes 

equations, supply a negative value to <num_steps>, i.e. step -5 would evolve a 

linearised perturbation field 5 steps backwards in time. Note that this will only work 

with a frozen (see freeze) or a reconstructed (see reconload/reconstore ) two-

dimensional or axisymmetric base flow. Note that time stepping is only performed if 

the solution has been initialised. If time stepping has been halted by a stop criterion, 

calling step again will restart the process. If particle tracking is in use, time stepping 

will occur in increments of Ntracksteps. 

See also: freeze, reconload, reconstore, stopcrit. 

 

Stop 

Syntax: stop 

Function: Exits Viper. 

Description: 

Viper terminates immediately, and any unsaved work will be lost.  This command 

performs the same action as exit and quit. 

See also: exit, quit. 

 

Stopcrit 

Syntax: stopcrit [<min_du>] 

Function: Sets a stopping criterion on time stepping. 

Description: 

When evolving a solution to a time invariant (steady) state, the max du monitor, 

which monitors the maximum change in velocity between each successive time steps, 

reduces towards zero.  It is sometimes desirable to compute only sufficient time steps 

to reach a steady state. 

To facilitate this, the stopcrit command can be called to specify a critical value of 

max du, beyond which no further time stepping is conducted.  By default, this function 

establishes a stopping criterion of 1 × 10−12 (1e10-12).  If this function is not called, 

time integration will not be prematurely arrested, regardless of the value of max du. 

Notes: 

1) This criterion also ceases any particle tracking or scalar field evolution. 

2) Subsequent calls to step (e.g., in a subsequent loop iteration, say) will 

allow time stepping to resume, subject to the same stopping criterion. 

3) The stopping criterion can be changed at any time.  To avoid stopping a set 

of timesteps early, set <min_du> to a negative value. 

4) After a set of time steps are ceased subject to this criterion, control passes 

to the next input command. 

See also: step.      
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Svd 

Syntax: svd [–fields [u][v][w][s] -prefix <string> -nev 

<integer> -ncv <integer> -Nsteps <integer> -save -tecp –

times <integer> <real> <real> -tol <integer> -vizmat] 

Function: Find leading singular value and right singular vector of a linear time 

integration operator. 

Note: This is a driver routine. It automatically executes a loop, calls the Arnoldi 

command, and conducts the required time integration. The solution must have 

been initialised (init) and perturbation fields must be active (pert). 

Description: 

Linear stability analysis (activated using pert, and conducted using arnoldi) 

returns the eigenmodes of a linear operator matrix [𝐴]. This command computes an 

approximation of the leading singular value and corresponding right singular vector of 

this matrix. These correspond to transient growth properties 𝐺(𝜏) and the corresponding 

initial vector field producing this peak growth, where tau is the time interval used in the 

time itegration of the perturbation field. The matrix [𝐴] is partially reconstructed using 

eigenvectors and eigenvalues found using the Arnoldi method. The approximation 

improves as the number nev of requested eigenvalues increases. If only one eigenmode 

is requested, the result will correspond to the leading linear instability mode. The code 

outputs a file "<prefix>eigenvalues.dat", containing the positive spectrum of 

eigenvalues returned from the linear stability analysis (these are used to estimate the 

transient growth of the system). The code also outputs a file 

""<prefix>sqr_singular_values.dat", containing the squared singular 

values at each requested time: the square of the singular value equates to 𝐺(𝜏), or the 

amplification of the optimal initial condition for a given time interval. 

The following options are available: 
 -fields [u] [v] [w] [s] 

Used to specify which fields are included in the energy norm to be 

optimized. By default, the norm is a kinetic energy, featuring 𝑢2 + 𝑣2 +
𝑤2. If a scalar field is active, 𝑠2 is also included in the norm by default. 

However, users might only want to optimize a norm containing energy 

in the horizontal component of velocity, 𝐸 =  𝑢2, say (using -fields 

u), or the scalar field only, 𝐸 =  𝑠2, say (using -fields s). This 

option facilitates these capabilities. 
 -prefix <string> 

 Used to specify a string containing the filename prefix for eventual 

output of the SVD solver. If the -prefix is not specified, the default 

prefix svd_ is used. 
 -nev <integer> 

 Used to specify the number of leading eigenmodes (number of 

eigenvalues) to be found by the Arnoldi solver prior to the SVD solution 

phase. These eigenmodes are used to construct an aproximation to the 

linear operator matrix A.  The default value (and minimum allowable 

value) is 1. 
 -ncv <integer> 

 Used to specify the length of the Arnoldi factorization used by the 

Arnoldi solver prior to the SVD solution phase. The default value is 6, 

and the minimum allowable value is (nev+2)]. 
 -Nsteps <integer> 
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 Used to specify the number of time steps per Arnoldi iteration update. 

The time interval 𝜏 is calculated as 𝑑𝑡 ∗ 𝑁𝑠𝑡𝑒𝑝𝑠. The default value is 

1000, and the minimum allowable value is 1. 
 -save 

 If included, the solver will output Viper restart files of the right singular 

vectors (optimal initial conditions) found for each requested 𝜏 value. 
 -tecp 

 If included, the solver will output Tecplot files of the right singular 

vectors (optimal initial conditions) found for each requested 𝜏 value. 
 -times <integer> <real> <real> 

 Used to specify the spread of 𝜏 values at which 𝐺(𝜏) is to be 

approximated. The first number is an integer: the magnitude specifies 

the number of 𝜏 values, and the sign specifies the spread of values 

(positive for linear intervals, negative for an exponential spread - 

intervals increase at larger 𝜏 values). The next two floating point 

numbers provide the start and end 𝜏 values for the spread of 𝜏 values to 

be analysed. 
 -tol <integer> 

 Used to specify the exponent of the convergence criterion used for the 

Arnoldi solver (i.e. 10^<integer>). The default value is −7, 

corresponding to 10−7. 
 -vizmat 

 If included, images will be output in the .pgm format showing the 

structure of the matrices formed in the calculation of the transient 

growth. 

  

Svv 

Syntax: svv [-epsi <epsi> -p <Pcut> -f <filter>] 

Function: Activate spectral vanishing viscosity (SVV) filtering of velocity / 

scalar fields. 
Description: 

Spectral vanishing viscosity is an approach for stabilising high Reynolds/Rayleigh 

number spectral element simulations by progressively applying a greater amount of 

artificial viscosity to higher-wavenumber spatial modes of the solution to help dampen 

spurious oscillations that can arise due to numerical instability or quadrature errors, etc. 

For further details see Kirby & Sherwin (Comput. Methods Appl. Mech. Eng., 2006), 

Malm et al. (J. Sci. Comput., 2013). 

The following options are available: 
 -epsi <epsi> 

 Used to specify the value of <epsi>, which is a non-negative real 

number that defines the strength of the filter. The default value is 0.0 (no 

filter). 
 -p <Pcut> 

Used to specify the value of <Pcut>, which is a positive integer less 

than the <number of quadrature points> – 2, and specifies the mode 

numbers beyond which the filter is applied. For instance, if a simulation 

has spectral elements with 15 x 15 quadrature points, and <Pcut> = 10, 

the filter will only be applied to mode 11 and higher in either direction. 
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Polynomials of order >  𝑂(𝑥<𝑷𝒄𝒖𝒕>+1) will be filtered. If this option is 

not specified, by default <Pcut> is set equal to the order of the 

elements so that no filter is applied. 
 -f <filter> 

 This option determines the selection of modes for filtering. If 𝑝 and 𝑞 

express the orders of each tensor-product polynomial mode forming the 

modal basis over each quadrilateral spectral element, then two 

possibilities are available for application of the filter: 

 <filter> = 1: The filter is applied if 𝑝 or 𝑞 are greater than <Pcut>. 

 <filter> = 2: The filter is applied if 𝑝 + 𝑞 is greater than <Pcut>. 

These correspond to equations (16) and (15), respectively, from Kirby 

& Sherwin (2006). By default, <filter> = 1 if this option is not 

specified. If a value other than 1 or 2, the value of <Pcut> will be set 

to 0. 

Note: svv must be called before init. Furthermore svv can only be employed 

in two-dimensional simulations (not 3D or SE-Fourier 3D). 
 

Tec_floq (Deleted) 

Syntax: NA

Function: Generate 3D vorticity plot of Floquet mode for Tecplot. 

Description: 

This command has been deleted from Viper. The same effect (with more flexibility) 

can be achieved by loading base flow and required perturbation fields (load -k) into 

the appropriate Fourier modes of an SE-Fourier 3D simulation and use the regular 

tecp output from there. The amplitude of the perturbation field can be scaled up or 

down for visualization purposes using the options of the load command. 

 

Tecp 

Syntax: tecp [-buoyancy –cartesian –cylindrical -e -f 

<filename> -k <Floquet_mode> -m <mode_num> -n 

<plot_interp_pts> -nozero -rotate <deg> -s –t –u 

<function> –vars [<varlist>]]

Function: Creates a Tecplot binary data file. 

Description: 

Creates a Tecplot .plt binary (or .dat ASCII) data file containing various flow 

quantities specified by the user. If tecp is called before init, only the mesh (𝑥, 𝑦, 

and 𝑧) coordinates are written to the Tecplot binary file, with the default file name 

tec_mesh.plt.  If tecp is called after init, the mesh information and other 

requested variables are output, with the default filename tec_out.plt being used. 

The following options are available: 
 -buoyancy 

 This option requires a Boussinesq buoyancy-driven flow simulation. 

This option adds the base flow available potential energy density field 

to the output variables. 
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 -cartesian 

 For SE/Fourier 3D computations in cylindrical coordinates, this option 

causes the velocity components to be output in the Tecplot data file in a 

Cartesian sense: i.e., (𝑢, 𝑣, 𝑤). This can be useful for vector plots in 

Tecplot. This is option can be abbreviated to -ca. 

 -cylindrical 

 For SE/Fourier 3D computations in cylindrical coordinates, this option 

causes the velocity components to be output in the Tecplot data file in a 

cylindrical sense: i.e., (𝑢𝑧, 𝑢𝑟, 𝑢𝜃), or axial, radial and azimuthal 

components, respectively.' This is the default behaviour. This option can 

be abbreviated to -cy. 

 -e 

 If the –e option is specified when outputting a linearised perturbation 

field, the various out-of-plane averaged perturbation kinetic energy 

evolution equation terms are added. 
 -f <filename> 

 Used to specify a filename <filename> (including extension) to save 

the Tecplot binary file to.  If the -f option is not specified, the default 

filenames tec_out.plt or tec_mesh.plt are used, for post- and 

pre-initialization calls respectively. 
 -k <Floquet_mode> 

 Used to specify which velocity field is to be saved.  <Floquet_mode> 

can be an integer between 0 and the maximum number of Floquet modes 

being computed. If this option is omitted, the default base flow field 

(mode zero) is saved. If Floquet stability analysis is not being performed, 

the base flow is output. 
 -m <mode_num> 

 In spectral-element/Fourier computations, this feature can be used to 

extract a single Fourier mode from the solution. The parameter 

<mode_num> is an integer, and expresses the number of the desired 

Fourier mode. That is, if you are computing a solution with 10 Fourier 

planes, this corresponds to 6 Fourier modes: the fundamental mode (0) 

plus 5 modes. Therefore <mode_num> may take a value from 0 to 5. 

If <mode_num> exceeds 5, it will default to 5, and if it is negative, this 

feature is ignored. 

 As well as providing the capability of isolating the contribution of a 

single mode in a 3D SE/Fourier computation, this facility can be used to 

delete modes from a plot of an SE/Fourier computation. i.e., The data 

set in the Tecplot file generated using this option may be subtracted 

within Tecplot from a file containing all Fourier modes generated the 

same solution. 
 -n <plot_interp_pts> 

 a) For 2D quadrilateral or 3D hexahedral simulations: 

 Used to specify a number of interpolation points along each element 

dimension for plotting. If this option is omitted, the data is plotted on 

the spectral element mesh interpolation points. Otherwise, an even 

distribution of points is used. <plot_interp_pts> must be an 

integer of at least 2. This option is helpful for improving the quality of 

the resulting plots.' 
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 b) For 3D spectral-element/Fourier simulations: 

 Used to specify the plotting resolution in the spanwise/azimuthal 

direction. If omitted, the number of Fourier planes is used by default, 

but experience shows that to resolve detail in the highest mode of the 

simulation, a value at least 4 times the number of planes should be 

used. 
 -nozero 

 In spectral element-Fourier 3D computations, this removes the 

fundamental (or zero-wavenumber mode from the solution when 

generating the output. Note that the fundamental mode is removed 

AFTER all fields have been calculated. 
 -rotate <deg> 

 Used to rotate the output (2D or 3D hexahedral only) by angle <deg> 

clockwise around the x-y plane. E.g. "-rotate 35.0 " will cause 

the Tecplot data file to display the mesh rotated clockwise by 35 degrees. 
 -s 

 Used to include a number sequence in the filename.  A 4-digit integer 

(e.g., , , , etc.) is added to the default or user-specified 

filename, just prior to the file extension, if one is specified. Numbering 

begins at 1, and increments every time a tecp call is made with the -s 

option. 
 -t 

 Specifies that data is to be written to an ASCII data file (Tecplot .dat 

file) rather than the default .plt file format. 
 -u <function> 

 Used to supply a user-specified function of 𝑡, 𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤, 𝑠, 𝑝, 𝑆𝑅 and 

spatial derivatives of velocity and scalar fields to plot in the Tecplot 

binary file. 
 -vars <varlist> 

 This option replaces the -o and -sr options (which have been deleted), 

providing more control over which variables are included in Tecplot 

files. This is most useful where file sizes are a problem. This option is 

implemented for 2D, 3D, and SE/Fourier computations. The parameters 

<varlist> is a list of space-separated variable names taken from the 

following list: 

 - vel:   Velocity components, 

 - p:    Pressure, 

 - vort:   Vorticity components,' 

 - ddx:      Spatial velocity gradients (𝑑𝑢/𝑑𝑥, 𝑑𝑤/𝑑𝑦, 𝑑𝑣/𝑑𝑧, etc.), 

 - sr:       Strain rate magnitude (leading eigenvalue of strain 

tensor), 

 - lambda2: 2nd eigenvalue of tensor of velocity gradients suggested 

by Jeong & Hussain (1995) to identify vortex structures, 

 - psi:     Streamfunction (2D simulations only).  

By default vel, p and vort are provided without needing to specify a variable list. 

The fields vel_mag and grad_u are no longer available, as they can be calculated 

trivially within Tecplot from the vel or ddx  fields, respectively. This is option can be 

abbreviated to -v. 
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Tg 

Syntax: tg [-prefix <string> -nev <integer> -ncv 

<integer> -tol <integer> -Nsteps <integer>] 

Function: Driver routine for transient growth analysis. 

Note: This is a driver routine. It automatically executes a loop, calls the Arnoldi 

command, and conducts the required time integration. The solution must have 

been initialised (init) and perturbation fields must be active (pert). The 

computation must also be two-dimensional and either freeze or reconload 

must be used with tg, else no computations can be performed. 

Description: 

Transient growth analysis is used to find the maximum possible amplification of energy 

of' a linear mode over a specified time interval, 𝜏, and the corresponding optimal initial 

condition. 

The following options are available: 
-prefix <string>  

Used to specify a filename prefix for eventual output of the TG solver. 

The default is tg_. 

-nev <integer> 

Used to specify the number of leading eigenmodes (number of 

eigenvalues) to be found by the Arnoldi solver. The default value (and 

minimum allowable value) is 1. 
-ncv <integer> 

Used to specify the length of the Arnoldi factorization used by the 

Arnoldi solver. The default value is 6, and the minimum allowable value 

is (nev+2)]. 

-tol <integer> 

Used to specify the exponent of the convergence criterion used for the 

Arnoldi solver (i.e. 10^<integer>). The default value is −7, 

corresponding to 10−7. 
  -Nsteps <integer> 

Used to specify the number of time steps per Arnoldi iteration update. 

The time interval 𝜏 is calculated as 𝑑𝑡 ∗ 𝑁𝑠𝑡𝑒𝑝𝑠. The default value is 

1000, and the minimum allowable value is 1. 

See also: freeze, init, pert, reconload, transgrowth. 

 

Tic 

Syntax: tic 

Function: Start stopwatch timer. 

Description: 

tic starts the stopwatch timer. The internal system time is recorded, and elapsed time 

can be displayed by calling the toc command. 

See also: toc. 
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Timeavg 

Syntax: timeavg [-save <filename> -tecp <filename> -u 

<function> -vars [<varlist>]] 

Function: Driver routine for time averaging of flow solution. 

Note: This is a driver routine. The solution must have been initialised (init). 

Description: 

This command facilitates the recording of a time average of the flow solution. This 

command must be called after init.  When it is first called, memory is allocated to 

store the time average of the flow solution, and the current field is stored (being the 

"time average" of a single field). Every subsequent call to this command updates the 

estimate of the time average, by scaling down the stored previous time average estimate 

by 𝑁/(𝑁 + 1), where 𝑁 is the number of fields already stored, then adding the new 

field scaled down by 1/(𝑁 + 1).  

Note on usage: The time average is estimated by sum(𝑢𝑖)/𝑁, where 𝑁 is the number 

of stored fields, and 𝑢𝑖 is the 𝑖′𝑡ℎ stored field. It is therefore a discrete mean estimate, 

and will be closer to the theoretical exact mean for smaller time intervals between each 

timeavg call, and for larger 𝑁.  

Example of usage - in this example the time-average estimate is updated every 10 time 

steps, but to save overall computation time, the time-averaged fields are output to file 

once every 500 calls (i.e. once every 5000 time steps). This is achieved using nested 

loops in a macro file or from the Viper command line: 
 

\> loop 100 

\>   loop 500 

\>     step 10 

\>     timeavg 

\>   endl 

\>   timeavg –save tavg_save.dat –tecp tavg_tecp.plt … 

  -vars vel p vort ddx 

\> endl 

 

The following options are available: 
-save <filename>  

Save the current estimate of the time-averaged flow fields to a Viper 

binary restart file with specified <filename> (preferred extension 

.dat). 
-tecp <filename> 

Save the current estimate of the time-averaged flow fields to a Tecplot 

file with specified <filename> (preferred extension .plt). 
 -u <function> 

 Used to supply a user-specified function of 𝑡, 𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤, 𝑠, 𝑝, 𝑆𝑅 and 

spatial derivatives of velocity and scalar fields to plot in the Tecplot 

binary file. 
 -vars <varlist> 

 This option replaces the -o and -sr options (which have been deleted), 

providing more control over which variables are included in Tecplot 

files. This is most useful where file sizes are a problem. This option is 

implemented for 2D, 3D, and SE/Fourier computations. The parameters 
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<varlist> is a list of space-separated variable names taken from the 

following list: 

 - vel:   Velocity components, 

 - p:    Pressure, 

 - vort:   Vorticity components,' 

 - ddx:      Spatial velocity gradients (𝑑𝑢/𝑑𝑥, 𝑑𝑤/𝑑𝑦, 𝑑𝑣/𝑑𝑧, etc.), 

 - sr:       Strain rate magnitude (leading eigenvalue of strain 

tensor), 

 - lambda2: 2nd eigenvalue of tensor of velocity gradients suggested 

by Jeong & Hussain (1995) to identify vortex structures, 

 - psi:     Streamfunction (2D simulations only).  

By default vel, p and vort are provided without needing to specify a variable list. 

This option can be abbreviated to -v. 

 

Toc 

Syntax: toc 

Function: Display elapsed time from stopwatch. 

Description: 

When toc is called, the elapsed time in seconds since tic was last called is output to 

screen. If tic has not been called, toc has no effect. Multiple toc calls may follow 

a single call to tic. 

See also: tic. 

 

Tony_psi 

Syntax: tony_psi [-f <filename> -n <points> -r <r_min> 

<r_max> -w <omega> -z <z_val>] 

Function: Output streamfunction in a rotating frame from an SE-Fourier 3D 

run. 

Description: 

This routine calculates the 2D streamfunction on a plane of constant z from an SE-

Fourier 3D simulation in cylindrical coordinates. The streamfunction is computed 

relative to a rotating reference frame. This computation can only be performed if the 

solution has been initialised. It can only be employed in SE-Fourier 3D simulations in 

cylindrical (axi) coordinates. 

The following options are available: 
 -f <filename> 

 Used to specify a filename <filename> (including extension) to save 

the binary file to. If the -f option is not specified, the default filename 

tony_psi.dat is used. 
-n <points> 

Used to specify the number of discrete points in the radial direction over 

which the interpolation of data for evaluation of the streamfunction is to 

take place. More points will improve the accuracy of the answer, but will 

incur a higher cost. <points> must be an integer >= 2. The default 

value is <points> = 100. 
-r <r_min> <r_max> 
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Used to specify the minimum and maximum radial coordinates between 

which the streamfunction is evaluated. By default, <r_min> = 0.0 and 

<r_max> = the maximum radial coordinate in the mesh (which may or 

may not be within the domain at the chosen z-value, so this option should 

not be omitted). <r_max> must be greater than <r_min> and both 

must lie within the domain. 
-w <omega> 

Used to specify any real value for the angular velocity of a rotating 

reference frame (taken relative to the reference frame of the simulation) 

upon which to compute the streamfunction. The azimuthal velocity will 

be altered by 𝑢𝜃 = 𝑢𝜃,𝑜𝑙𝑑 − <omega> ∙ 𝑟. By default, <omega> =  0 

(i.e. no adjustment for a rotating reference frame). 
-z <z_val> 

Used to specify the z-coordinate of the 𝑟-𝜃 plane on which the 

streamfunction is to be specified. By default, the mid-point of the range 

of 𝑧-values in the mesh is chosen. 

 

Track 

Syntax: track <operation> 

Function: Used to invoke functions relating to passive tracer particle tracking. 

Description: 

Viper facilitates an accurate and flexible particle tracking facility.  A (nearly) fourth-

order accurate time integration scheme is used to advance the positions of passive 

virtual particles in the flow.  This scheme employs a 4th-order Runge—Kutta method 

to advance particles within elements, and a series of linear increments to step to and 

across element boundaries (see Coppola, Sherwin & Peiró, J. Comput. Phys. 172, 356, 

2001).  Particles can either be injected from one or many spatial positions in the flow, 

or the flow can be seeded with a uniform concentration of particles. 

Several particle tracking options can be invoked with the following  <operation> 

values: 
 track diff <Sc> 

 By default, particles transport with no diffusion, precisely following the 

flow. This command activates diffusion by means of a Gaussian-

distributed random walk, whereby particle positions are adjusted by a 

Gaussian-distributed random number at each time step.  The variance of 

the random number relates to the Schmidt number (supplied as <Sc>) 

through 𝜎2 = 2𝜈 ∙ 𝑑𝑡/𝑆𝑐 where 𝜎2 is the variance, and 𝜈 the kinematic 

viscosity. Smaller Schmidt numbers therefore represent more diffusion. 

If no Schmidt number is supplied no diffusion will be added to particle 

transport. 
 track inject 

 Tracer injection points are loaded from a text file named track_pts, 

which first gives the number of injection points, then lists the 𝑥,𝑦, 𝑧-

coordinates of each point  (only two spatial coordinates per line are 

searched for in two-dimensional computations).  One injection point is 

given per line, and a large number of points may be established 

concurrently.  Particles are injected at each of these points every time 
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particle positions are updated (during time integration). Then particle 

tracking is initialized. 
 track inject_off 

 Ceases tracer injection and erases stored injector information from 

memory.  Further injection can be initiated by calling track inject. 

 track inject_steps <Ninject_steps> 

 Sets the number of particle time integration steps per particle injection.  

The default value is <Ntrack_steps> =  5.
 track load [-f <filename>] 

 Loads a binary restart file to a file <filename> (including extension) 

if the -f option is specified, or a default file restart_ptcls.dat 

if not. Note that to restart a particle transport simulation, the user also 

needs to save the velocity field using the save command, and then must 

use both load for the velocity field, the same track commands to 

initialize particle tracking, and then finally track load  after init 

is called in the restarted simulation. 
 track sample [<filename>] 

 Saves velocity field information at each particle location to a text file 

<filename> (including extension).  If not supplied, the default 

filename is track_sample.dat.  Particle information is output line 

by line, with each line containing:𝑡, 𝑥, 𝑦, [𝑧] coordinates, 𝑢, 𝑣, [𝑤]-

velocities, velocity gradients, shear rate, and pressure. This command 

will append new data to the end of an existing file of the same name. If 

particle tracking has not been initialised (see track seed or track 

load) then no action is taken. 
 track save [-f <filename> -s] 

 Saves a binary restart file to a file <filename> (including extension) 

if the -f option is specified, or a default file restart_ptcls.dat 

if not. The -s option is used to create a numbered sequence of files 

instead of overwriting a single file. A 4-digit integer (e.g., , , 

, etc.) is added to the default or user-specified filename, just prior 

to the file extension, if one is specified. Numbering begins at 1, and 

increments every time a track save call is made with the -s option. 

 Note that to restart a particle transport simulation, the user also needs to 

save the velocity field using the save command, and then must use both 

load for the velocity field, the same track commands to initialize 

particle tracking, and then finally track load after init is called in 

the restarted simulation. If particle tracking has not been initialised (see 

track seed or track load) then no action is taken. 

 track saveold [<filename>] 

 Saves information (invoking the old ASCII particle output) about 

particles to a text file <filename> (including extension). If no 

filename is given, a default file track_out.dat is created. Particle 

information is output line by line, with each line containing: 

<particle_number>, 𝑥, 𝑦, [𝑧] coordinates, and 𝑢, 𝑣, [𝑤]-velocities. If 

particle tracking has not been initialised (see track seed or track 

load) then no action is taken. 

 track seed [<density>] 
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 The flow is seeded with an even distribution of tracer particles. 

Throughout the domain, particles are placed <density> units apart in 

the 𝑥, 𝑦 (and 𝑧) directions.  If <density> is omitted, a particle spacing 

of 0.1 is employed.  For flows with inlets, the user may wish to maintain 

particle density by also including a call to track inject, 

incorporating a rake of injection points. 
 track steps [<Ntrack_steps>] 

 Defines the number of computation time steps (∆𝑡) per particle tracking 

time steps, where <Ntrack_steps> is an integer. If 

<Ntrack_steps> is omitted, the simulation will default to a value 

<Ntrack_steps> =  10.
 track tecp [-f <filename> -ascii -s] 

 Outputs particle data in Tecplot binary format (use extension .plt) by 

default, or in ASCII text format if the -ascii option is specified (use 

extension .dat). By default a filename tecp_ptcls.plt (or 

tecp_ptcls.dat for ASCII output) is used, or the user can specify 

their own filename using the -f option. Use the -s option to append a 

sequence number to the filename to store a sequence of files rather than 

overwriting the same file if multiple track tecp calls are made in a 

loop.  track tecp will only create an output file if the both the 

computation and particle tracking have been initialised (see init and 

track seed or track load). The -s option is used to create a 

numbered sequence of files instead of overwriting a single file. A 4-digit 

integer (e.g., , , , etc.) is added to the default or user-

specified filename, just prior to the file extension, if one is specified. 

Numbering begins at 1, and increments every time a track tecp call 

is made with the -s option. 
  

  

Transgrowth 

Syntax: transgrowth <numsteps> 

Function: Perform forward and adjoint time integration for transient growth 

stability analysis. 

Description: 

This command time integrates a linearised perturbation field, forward in time by a given 

number of steps, and then backward in time using the adjoint of the linearised equations. 

The user must call either stab or arnoldi (after each call to transgrowth), to 

respectively invoke either a simple power iteration method or the implicitly restarted 

Arnoldi method for finding the leading eigenvalue magnitude (transient growth 

amplification factor) and eigenvector (initial disturbance). This forms part of a manual 

version of the tg command.  Its only practical utility is to use the simple power iteration 

method (stab), if the Arnoldi method consistently fails.  It gives less information, 

providing only the magnitude of the leading eigenvalue rather than the full complex 

form of possibly several leading eigenvalues; though for transient growth, only the 

leading eigenvalue is of interest (as it must be positive and have only a real component). 

Note: transgrowth can only be employ 
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Note: The solution must have been initialised (init) and perturbation fields must 

be active (pert). The computation must also be two-dimensional and either 

freeze or reconload must be used with transgrowth, else no computations 

can be performed. 

See also: freeze, init, pert, reconload, tg. 

 

 

 

Vismat 

Syntax: vismat 

Function: Toggles output images showing the structure of the global matrices 

being solved. 

Description: 

The sparse matrices used to solve the global boundary system for the pressure and 

viscous diffusion substeps can be visualized using this command. Image files 

p_laplace_matrix.pgm and X_helmholtz_matrix.pgm are created, 

showing the structure of the matrices.  Many of the matrices built by Viper are 

symmetrical so in these cases only the upper or lower diagonal may be visible. 𝑋 are 

velocity components 𝑢, 𝑣, 𝑤 (if active) and scalar field 𝑠 (if active), and 𝑌 is either 

pre_fact or post_fact. Images are written both before and after factorization. Please 

inform the developer if you would find a binary image file format preferable for output. 

Note: This command must be called before init, otherwise no images will be 

produced. 

 

 

Womersley 

Syntax: womersley [-f <filename> -d <diameter> -u –w 

<omega>] 

Function: Initialise the Womersley velocity profile. 

Description: 

This command is called to impose a Womersley profile on a simulation. It is assumed 

that the profile will be imposed on the axial component of velocity (x-direction on a 2D 

mesh), and the profile is formulated for cylindrical coordinates (therefore the axi 

command should also be used). The user must supply a file containing Fourier 

coefficients of either a time-varying axial kinematic pressure gradient or an area-

averaged velocity. The Womersley profile is computed using the analytical solution for 

flow in a pipe driven by a time-varying pressure gradient derived by J. R. Womersley 

(J. Physiol., vol. 127, 553-563, 1955). Once activated, the Womersley profile will be 

written onto any Dirichlet velocity boundary with a radial distance within the specified 

diameter of the pipe. 

The following options are available: 
 -f <filename> 

 Used to specify the file from which the Fourier coefficient data is input 

from. The first line must contain an integer specifying the number of 

Fourier modes contained in the file (N). This must be followed by N 

rows, each containing two numbers (the real and imaginary components 

of each Fourier mode). It is assumed that the fundamental mode is the 
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first row, and positive frequency contributions follow in ascending 

order. Note that only positive frequency contributions may be included 

in this sequence. If this option is not specified, the default filename is 

womersley_pgrad_coeffs.dat. 
 -d <diameter> 

 Used to specify the diameter of the pipe in which the Womersley profile 

is being employed. If this option is not specified, the default diameter is 

1 unit. 
-u 

The supplied Fourier coefficient data can represent either kinematic 

pressure gradient data (the default), or area-averaged velocity data. If 

this option is supplied, the profile will be calculated based on area-

averaged velocity coefficients. 
-w <omega> 

Used to specify the angular velocity of the pressure gradient driving the 

Womersley profile. If this option is not specified, the default angular 

frequency is 1. 

 

Wvel 

Syntax: wvel 

Function: Toggles 𝒛/𝜽-component of velocity on or off in two-dimensional 

computations (default is OFF). 
Description: 

By default, Viper only evolves in-plane velocity components in two-dimensional 

simulations (i.e., only 𝑢 and 𝑣, but not 𝑤-velocity components in two-dimensional 

Cartesian coordinates).  However, sometimes it is necessary to include the out-of-plane 

velocity component (i.e., the 𝜃-velocity component in swirling flows in a cylindrical 

coordinate system), or the 𝑤-velocity component in the interaction of vortices with a 

non-zero axial velocity along their cores. A call to wvel prior to calling init will 

activate the out-of-plane velocity component for two-dimensional computations.  

Note that the computations will still be two-dimensional – that is, there is still no 

variation (zero spatial gradients) in the third dimension. Furthermore, it can only 

be invoked for two-dimensional simulations. In addition, if axirotate has been 

specified wvel cannot be turned off (it will always remain active, as axirotate 

turns wvel on). 

See also: axi, axirotate. 
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Appendix A 

Derivation of the quasi-static MHD equations 

The relevant equations are Ohm’s law, and the divergence of Ohm’s law under the 

assumption of solenoidal currents, noting also that the current density appears in the 

𝑁(𝒋 × 𝑒𝑩) term in the momentum equation: 

 

𝒋 = −𝜵𝜙 + 𝒖 × 𝒆𝑩 
 

∇2𝜙 = 𝛁 ∙ (𝒖 × 𝒆𝑩) 
 

The Poisson equation for the electric potential with a magnetic field in the +y direction 

(Cartesian coordinate system): 

 

∇2𝜙 = 𝛁 ∙ (𝒖 × 𝒆𝑩) 
 

∇2𝜙 = 𝛁 ∙ ((𝑢𝒆𝒙 + 𝑣𝒆𝒚 + 𝑤𝒆𝒛) × (𝒆𝒚)) 

 

∇2𝜙 = 𝛁 ∙ (−𝑤𝒆𝒙 + 𝑢𝒆𝒛) 
 

∇2𝜙 = −
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
 

 

 

𝒋 = −𝛁𝜙 + (𝒖 × 𝒆𝐵) 
 

𝒋 = − (
𝜕𝜙

𝜕𝑥
𝒆𝒙 +

𝜕𝜙

𝜕𝑦
𝒆𝒚 +

𝜕𝜙

𝜕𝑧
𝒆𝒛) + (−𝑤𝒆𝒙 + 𝑢𝒆𝒛) 

= (−
𝜕𝜙

𝜕𝑥
− 𝑤) 𝒆𝒙 −

𝜕𝜙

𝜕𝑦
𝒆𝒚 + (−

𝜕𝜙

𝜕𝑧
+ 𝑢) 𝒆𝒛 

 

𝑁(𝒋 × 𝒆𝐵) = 𝑁 [(−
𝜕𝜙

𝜕𝑥
− 𝑤) 𝒆𝒙 −

𝜕𝜙

𝜕𝑦
𝒆𝒚 + (−

𝜕𝜙

𝜕𝑧
+ 𝑢) 𝒆𝒛] × 𝒆𝒚 

= 𝑁 [(
𝜕𝜙

𝜕𝑧
− 𝑢) 𝒆𝒙 + (−

𝜕𝜙

𝜕𝑥
− 𝑤) 𝒆𝒛] 

 

The Poisson equation for the electric potential with a magnetic field in the axial +z 

direction (Cylindrical coordinate system): 

 

∇2𝜙 = 𝛁 ∙ (𝒖 × 𝒆𝐵) 
 

∇2𝜙 = 𝛁 ∙ ((𝑢𝑟𝒆𝒓 + 𝑢𝜑𝒆𝝋 + 𝑢𝑧𝒆𝒛) × (𝒆𝒛)) 

 

∇2𝜙 = 𝛁 ∙ (𝑢𝜑𝒆𝒓 − 𝑢𝑟𝒆𝝋) 
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∇2𝜙 =
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝜑) −

1

𝑟

𝜕𝑢𝑟

𝜕𝜑
 

 

𝒋 = −𝛁𝜙 + (𝒖 × 𝒆𝐵) 
 

𝒋 = − (
𝜕𝜙

𝜕𝑟
𝒆𝒓 +

1

𝑟

𝜕𝜙

𝜕𝜑
𝒆𝝋 +

𝜕𝜙

𝜕𝑧
𝒆𝒛) + (𝑢𝜑𝒆𝒓 − 𝑢𝑟𝒆𝝋) 

= (−
𝜕𝜙

𝜕𝑟
+ 𝑢𝜑) 𝒆𝒓 + (−

1

𝑟

𝜕𝜙

𝜕𝜑
− 𝑢𝑟) 𝒆𝝋 −

𝜕𝜙

𝜕𝑧
𝒆𝒛 

 

𝑁(𝒋 × 𝒆𝐵) = 𝑁 [(−
𝜕𝜙

𝜕𝑟
+ 𝑢𝜑) 𝒆𝒓 + (−

1

𝑟

𝜕𝜙

𝜕𝜑
− 𝑢𝑟) 𝒆𝝋 −

𝜕𝜙

𝜕𝑧
𝒆𝒛] × 𝒆𝒛 

= 𝑁 [(−
1

𝑟

𝜕𝜙

𝜕𝜑
− 𝑢𝑟) 𝒆𝒓 + (

𝜕𝜙

𝜕𝑟
− 𝑢𝜑) 𝒆𝝋] 

 

 

 


