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a b s t r a c t

We demonstrate that instability in enclosed horizontally driven convection is due to a convective
buoyancy-driven transverse-roll instability resembling the classical Rayleigh–Bénard convection in the
thermal forcing boundary layer rather than a shear instability in the corresponding kinematic boundary
layer. Instability growth is weakly sensitive to the local velocity profile, with velocity shear acting to
select a transverse roll mode in preference to longitudinal rolls. The convectively unstable region grows
from the hot end of the forcing boundary with increasing Rayleigh number two orders of magnitude
lower than the natural onset of unstable horizontal convection. This analysis highlights the importance
of the thermal boundary layer to the instability dynamics of horizontal convection, elucidating the path
towards an understanding of turbulence and heat transport scaling in horizontal convection at oceanic
Rayleigh numbers.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The emergence of instability in enclosed horizontally driven
convection (HC) — where an overturning fluid heated unevenly
across a horizontal boundary transitions from a steady state —
marks a key threshold in the response of this fundamental class
of natural convection flows to increased strength of thermal forc-
ing. The source of this instability remains unknown, despite its sig-
nificance to debate around the existence of turbulence in
horizontal convection flows, and its role in determining the scaling
of horizontal convection towards oceanic scales.

Horizontal convection may contribute to global overturning in
Earth’s oceans, though extrapolation of the scaling between hori-
zontal convective heat transport and thermal forcing from theory
and experiment falls several orders of magnitude below accepted
oceanic values. Rossby [1] argued that a balance between horizon-
tal convection of heat within the forcing boundary layer, and ver-
tical diffusion of heat through the forcing boundary, will produce
a 1=5th-power scaling for Nusselt number (characterising convec-
tive heat transport) with Rayleigh number (characterising the
strength of thermal forcing). This has been supported by
experiment [2,3] and simulation [4–6], but evidence from
high-resolution simulations [7] at Rayleigh numbers greater than
1010 has indicated that instability increases the rate of scaling,
which has a theoretical upper bound of 1=3rd [4].
Here we show via a linear stability analysis applied to one-
dimensional velocity and temperature profiles (obtained from
high-order simulations of horizontal convection flows) that insta-
bility originates as a thermally driven instability of the boundary
layer on the forcing boundary; similar analysis has proved very
successful in characterising global or convective instability in
extensively studied canonical flows such as Rayleigh–Bénard con-
vection (RBC; fluid between two horizontal plates heated from
below), and Rayleigh–Bénard–Poiseuille flow (RBP; RBC with a
horizontal through-flow). Weber [8] showed, for a shear flow both
heated from below and driven horizontally by a horizontal thermal
gradient, that the preference for longitudinal or transverse rolls
was dependent on the Prandtl number, stronger horizontal thermal
forcing led to oscillatory instability, and that the main instability
mechanism had a thermal origin for low-to-moderate horizontal
thermal forcing [8–10]. Sun et al. [11] subsequently investigated
the instability mechanism of HC flows. Their numerical experiment
involved thermal forcing at the centre as well as side-wall forcing
with two circulating cells. They concluded that velocity shear
instability rather than thermal instability is responsible for the
unsteady HC flow through a Hopf bifurcation with a critical Ray-
leigh number of 5:5377� 108 at Prandtl number Pr ¼ 1. In contrast
to [11], we consider HC in water [12–14] with a single overturning
cell, and a Prandtl number Pr ¼ 6:14. At this Prandtl number, King
[7] showed that horizontal convection in enclosures with height-
to-length aspect ratio H=L P 0:16 driven by a linearly increasing
temperature profile along the base became unstable to unsteady
flow at 3:5� 108 KRaK8:5� 108.
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Nomenclature

A generalised eigenvalue matrix (left-hand side)
B generalised eigenvalue matrix (right-hand side)
D operator representing partial derivative with respect

to y
f generic symbol representing a horizontally parallel flow

variable (e.g. velocity, pressure or temperature)
~f generic symbol representing a perturbation flow vari-

able
f B generic symbol representing a horizontally parallel base

flow variable
g gravitational acceleration
ĝ unit vector in direction of gravity
H enclosure height
i imaginary unit
~h eigenfunction of infinitesimal temperature perturbation
k total wavenumber, k2 ¼ a2 þ b2

L enclosure width; characteristic length of thermal forc-
ing for horizontal convection

p pressure
~p eigenfunction of infinitesimal pressure perturbation
pB pressure, base flow
Pr Prandtl number, Pr ¼ m=j, here Pr ¼ 6:14 throughout
Ra Rayleigh number based on imposed temperature differ-

ence across heated horizontal boundary
Rac critical Rayleigh number
Rac;m critical marginal Rayleigh number
t time
u velocity vector
u horizontal velocity component
~u eigenfunction of infinitesimal horizontal velocity per-

turbation
uB horizontal velocity component, base flow

v vertical velocity component
~v eigenfunction of infinitesimal vertical velocity perturba-

tion
w transverse (out-of-plane) velocity component
~w eigenfunction of infinitesimal transverse velocity per-

turbation
x Cartesian horizontal coordinate
xk eigenvector, concatenation of collocation-point values

of ~v and ~uh
y Cartesian vertical coordinate
z Cartesian transverse (out-of-plane) coordinate

Greek symbols
a travelling wave number in horizontal (x) direction
ac critical horizontal travelling wave number
aT volumetric thermal expansion coefficient
b travelling wave number in transverse (z) direction
d an arbitrary small constant
dh temperature difference imposed across horizontal

boundary
jT fluid thermal diffusivity
k1D predicted horizontal wavelength of instability from 1D

linear stability analysis
k2D horizontal wavelength of disturbance from two-

dimensional simulation
m fluid kinematic viscosity
h fluid temperature
hB fluid temperature, base flow
x complex eigenvalue representing growth rate and fre-

quency of an instability eigenmode
xi imaginary part of complex eigenvalue x
xr real part of complex eigenvalue x
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More recently, Gayen et al. [6] used a mechanical energy budget
to explain the transition of horizontal convection from small scales
of motion driven mainly by thermal convection to a shear
instability of the large-scale flow at high Rayleigh number. The
three-dimensional direct numerical simulation in that study was
carried out in an enclosure with aspect ratio H=L ¼ 0:16 at a
Prandtl number Pr ¼ 5, with horizontal convection driven by a
step-change in temperature at half the horizontal distance along
the base. The same setup was considered at a range of Rayleigh
numbers in [15], elucidating a complex instability pathway
for horizontal convection: stable, laminar overturning flow was
produced at Rayleigh number Ra ¼ 5:86� 107, while at
Ra ¼ 5:86� 108 unsteady two-dimensional (transverse) rolls were
detected in the boundary layer near the hot end of the enclosure.
At a higher Rayleigh number Ra ¼ 5:86� 109, these structures
were more closely spaced and visible from further upstream, and
at Ra ¼ 5:86� 1010 and 5:86� 1011 the two-dimensional struc-
tures were superposed by longitudinal-roll structures appearing
at approximately mid-way along the base. The longitudinal struc-
tures were dominant at the higher Rayleigh number, and began
merging and interacting approximately two-thirds of the distance
along the base, before erupting into mushroom plumes closer to
the end-wall. These findings point to the source of instability in
horizontal convection as a convective instability in the boundary
layer, and the present work aims to elucidate this instability mech-
anism via a local one-dimensional (1D) linear stability analysis. We
will show that this analysis reveals the instability to be thermally
driven.
2. Numerical setup

The system comprises a rectangular enclosure of width L and
height H aligned with Cartesian coordinates x and y, respectively,
with z the transverse coordinate. The flow is driven by a time-
invariant temperature profile increasing linearly in x imposed along
the bottom of the enclosure. The side and top walls are insulated
(zero normal gradient of temperature), and a no-slip (zero velocity)
condition is imposed on the velocity field on all walls. Taking the
temperature difference imposed across the forcing boundary dh,
volumetric expansion coefficient aT , gravitational acceleration g,
kinematic viscosity m and thermal diffusivity jT , the characteristics
and strength of this circulation are determined by a Rayleigh
number Ra ¼ aTg dhL

3=mjT and Prandtl number Pr ¼ m=jT charac-
terising the strength of thermal forcing and the ratio of molecular
to thermal diffusivity, respectively. We adopt a Boussinesq approx-
imation for buoyancy, in which density differences in the fluid are
neglected except through the gravity term in the momentum equa-
tion. Under this approximation the energy equation reduces to a
scalar advection–diffusion equation for temperature which is
evolved in conjunction with the velocity field governed by the
incompressible Navier–Stokes equations. Introducing velocity
vector u with components u;v and w respectively in x; y and z, a
pressure p and temperature h, and normalising length, velocity,
time, pressure and temperature by L;jT=L; L

2=jT ;qj2
T=L

2 and dh
permits the governing equations to be expressed as

@tuþ ðu � rÞu ¼ �rpþ Prr2u� PrRa ĝh; ð1Þ
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Fig. 1. Nusselt number time histories (left), and plots of temperature (centre) and
vorticity (right) at the hot end of the enclosure at the Rayleigh numbers shown.
Here Nu is the normalised absolute vertical temperature gradient integrated across
the forcing boundary, and dark to light temperature contours show levels
0:225 6 h 6 0:375. The respective minimum and maximum displayed vorticity
contours for Ra ¼ 108;109 and 1011 are �3� 104;�1� 105 and �2� 106.
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r � u ¼ 0; ð2Þ

@thþ ðu � rÞh ¼ r2h; ð3Þ
where @t represents partial differentiation with respect to time t,
and ĝ is a unit vector in the direction of gravity. All quantities are
expressed in normalised form hereafter.

Two-dimensional solutions are obtained by solving the govern-
ing equations using a high-order spectral element method for spa-
tial discretization and a third-order time integration scheme based
on backward-differencing (see [7,16] for more details and valida-
tion). The enclosure is discretized with 3692 7th-order spectral
elements in the x–y plane, providing 853� 157 interpolation
points over the domain (including at least 30 points vertically
spanning the forcing boundary layer). The 7th-order elemental
polynomial basis functions ensure that these simulations exceed
the resolution of contemporary published simulations of horizon-
tal convection for Ra 6 1011.

3. One-dimensional linear stability analysis

We are interested in the stability of one-dimensional vertical
base flow profiles uBðyÞ; pBðyÞ; hBðyÞð Þ extracted from two-
dimensional solutions along lines of constant x (we rely on
@=@x; @=@z � @=@y to consider these as parallel flows) to small
three-dimensional time-dependent perturbations taking the form

f ¼ f BðyÞ þ d~f ðyÞeiðaxþbz�xtÞ; ð4Þ

where f is any of u;v ;w;p or h; d is an arbitrary small constant, and ~f
is a complex eigenfunction. While the horizontal convection flows
under investigation in this study are not strictly parallel, they are
approximately parallel except towards the upstream and down-
stream end-walls. This parallel flow assumption is supported by
comparing the horizontal and vertical flow velocities as well as
the shear deformation of the horizontal velocity as shown in
Fig. 2(a). Overall the vertical velocities are well below a tenth of
the horizontal velocities in the region of interest to the current
one-dimensional stability analysis (0:4K xK0:9). In addition, the
horizontal velocity gradients are much smaller than vertical gradi-
ents in the region of interest as shown in Fig. 2(b). Futhermore, local
1D stability analysis has been applied successfully to examine con-
vective instability in flows with streamwise variation, such as
wakes behind circular cylinders [17,18]. The perturbation com-
prises travelling wave numbers a and b in x and z directions, respec-
tively, and a frequency and growth rate dictated by x. The
disturbance equations are obtained by substituting Eq. (4) into
Eqs. (1)–(3), and retaining OðdÞ terms. Following a similar approach
to the derivation of the Orr–Sommerfeld equation [19,20], the equa-
tions are simplified, and continuity and momentum equations are
combined to eliminate ~u, ~w and ~p. The complete derivation of the
linearised perturbation equations is given in Appendix A. The prob-
lem reduces to

ia u 00
B � uBðD2 � k2Þ

h i
~v þ PrðD2 � k2Þ2~v � PrRak2~h ¼ ixðD2 � k2Þ~v ;

ð5Þ

h 0
B~v þ iauB

~h� ðD2 � k2Þ~h ¼ ix~h; ð6Þ

where k2 ¼ a2 þ b2, operator D evaluates partial derivatives with
respect to y, and primes denote differentiation with respect to y. As
per convention, we seek solutions subject to zero Dirichlet and Neu-
mann conditions on the boundaries. Eqs. (5) and (6) are discretised
using a Chebychev collocation method [21], yielding a generalised
eigenvalueproblemAxk ¼ xkBxk, wherematricesA andB are respec-
tively constructed from the left- and right-hand sides of Eqs. (5) and
(6), and eigenvector xk concatenates vectors of collocation-point val-
ues of ~v and ~h. Eigenvalues x ¼ xr þ ixi describe spatio-temporal
mode evolution through exp xitð Þ cosxrt � i sinxrt½ �. The imaginary
part provides the growth rate, with instability corresponding to
xi > 0, while the real part gives the angular frequency of any oscilla-
tory component of the instability mode. Transverse roll instability is
investigated by setting b ¼ 0 and finding a maximising Imfxg, and
vice versa for longitudinal roll instability. In their study of instability
in horizontally driven flow between parallel boundaries, Stiller and
Schöpf [22] considered only longitudinal rolls as these were well-
known [10] to be selected over transverse rolls in RBP flows without
horizontal thermal forcing. While the horizontal thermal gradient
does not explicitly appear in Eqs. (5) and (6), it does modify the basic
flow profiles [8,22], and energy considerations [8] demonstrate that
these modifications may either destabilise or stabilise transverse
rolls. Hence even when instability has a thermal rather than
hydrodynamic (shear) origin, shear selects the preferred mode. We
therefore consider both longitudinal and transverse roll instability
in this study.

The stability code was validated against an accurate numerical
result for plane Poiseuille flow [23], where it reproduced the cor-
rect critical Reynolds number Rec ¼ 5772:22 and wavenumber
ac ¼ 1:02056 for hydrodynamic instability. A test against a thermal
instability benchmark, RBC flow, delivered the expected critical
Rayleigh number Rac ¼ 1707:76 and wavenumber ac ¼ 3:117 [24].
4. Results

Two-dimensional numerical simulations are conducted within
an enclosure of aspect ratio H=L ¼ 0:16, with cases representative
of steady-state, time-periodic and irregular convective regimes
shown in Fig. 1. A time-periodic solution is seen at Ra ¼ 1� 109;
at this Rayleigh number disturbances are advected along the
thermal boundary layer and feed into the rising plume. As the
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Fig. 2. Verification of the parallel flow assumption, solid line represents Rayleigh
number of Ra ¼ 107 and the dashed line is for Ra ¼ 109, incremental Rayleigh
numbers are bounded by these curves which are omitted for clarity. (a) A
comparison of vertical and horizontal verlocity magnitude summing over the
depth of the enclosure at each x-location, (b) comparison of the horizontal velocity
gradients in the x- and y-direction summing over the depth of the enclosure at
different x-location. The horizontal dash-dotted line at 10% included as an
indicative guide for approximately parallel flow (i.e. jv j � juj and @=@x � @=@y).

Fig. 3. Left to right: Plots of vertical uB and hB profiles at x ¼ 0:9 and Ra ¼ 1� 108.
Vorticity in the predicted leading eigenmode from the stability analysis at these
conditions. A perturbation vorticity field predicted for RBC for comparison.

(a) uB and θB (b) θB only (c) uB only

Fig. 4. (a) Vorticity field of the dominant eigenmode at x ¼ 0:90 and Ra ¼ 1� 108

(streamwise wavenumber a ¼ 58 and wavelength kx ¼ 0:108). (b) and (c) Corre-
sponding eigenmodes generated respectively from the thermal and velocity base
flow profiles in isolation.

512 T. Tsai et al. / International Journal of Heat and Mass Transfer 94 (2016) 509–515
plume rises to mid-height, all internal energy has been converted
to potential and kinetic energy. Subsequently, the plume descends
and creates a small local circulation zone near the corner of the hot
wall. This plume lacks the energy to rise up to the top to create a
larger circulation as seen in cases with higher Rayleigh number.
At RaJ3:2� 109, plume eruptions from the forcing boundary
layer occur upstream of the end-wall, as shown in Fig. 1(c). These
produce the high-frequency oscillations seen in the NuðtÞ signal,
and the irregular capture of these plumes by the interior overturn-
ing flow produces the longer-timescale fluctuation in Nu. The inter-
action of global overturning circulation and local plume eruptions
creates a more irregular flow characteristic within the enclosure
which breaks the periodicity of the flow. This large-scale global
and local transport interaction was discussed in a recent review
by [25].

We obtain two-dimensional solutions at Ra ¼ 3:2� 108 over
Prandtl numbers 0:01 6 Pr 6 100. The flow is time invariant for
0:1 6 Pr 6 10, whereas unsteady periodic flow is obtained at
Pr ¼ 20;50 and 100. At lower Prandtl numbers the thermal layer
thickens and large-scale unsteady structures manifest in the over-
turning return flow. This reduction in critical Rayleigh number
with increasing Prandtl number follows the PrRa product in the
buoyancy term of Eq. (1), i.e. buoyancy is strengthened by
increasing either Prandtl or Rayleigh number. However, the critical
Rayleigh number does not decrease reciprocally with the increase
in Prandtl number: at Ra ¼ 108, time-invariant flows are main-
tained over 0:1 6 Pr 6 100. This is due to the contribution of
Prandtl number to the viscous diffusion term (the second term of
the RHS of Eq. (1)), acting to damp the instability and reduce the
advancement of the transition to unsteady flow, and resulting in
only a modest reduction in the critical Rayleigh number with
increasing Prandtl number.
To initiate our 1D linear stability analysis, local flow profiles are
extracted at desired x-locations from a thermally equilibrated
two-dimensional solution at the required Rayleigh and Prandtl
number. These flow profiles serve as base flow conditions to solve
for the fastest-growing eigenmodes of transverse- and
longitudinal-roll instability. To illustrate, Fig. 3 shows representa-
tive base flow profiles at x ¼ 0:90 for Ra ¼ 1� 108. The wavenum-
ber achieving maximum growth for this case is a ¼ 58, and the
corresponding eigenvector vorticity field are also plotted in
Fig. 3. Three-dimensional direct numerical simulations [15] exhibit
transverse two-dimensional ripples in the HC forcing boundary
layer prior to the emergence of three-dimensional features at and
beyond Ra � 5� 1010. This both supports the use of two-
dimensional solutions to source flow profiles for 1D stability anal-
ysis, and motivates a focus on the inherently two-dimensional
transverse-roll mode of instability in the present study. The lead-
ing transverse-roll perturbation shows that instability is concen-
trated in the thermal boundary layer adjacent to the bottom
surface (the region of adverse vertical temperature gradient
reminiscent of RBC). For comparison, Fig. 3 shows the leading
eigenmode from a linear stability analysis of RBC flow. The
counter-rotating roll structure of the eigenmode is consistent with
thermal RBC instability. Further supporting the dominant role of
thermal forcing on instability in horizontal convection, the base
flow velocity profile lacks an inflexion point (a necessary but not
sufficient condition for shear instability under Rayleigh’s inflexion
point theorem [26]). These results combine to show that HC
instability is thermally driven rather than a velocity shear
instability, in contrast to [11].

This result is tested by independently analysing the stability of
velocity and temperature base flow profiles. Fig. 4 compares the
stability of the combined flow to transverse rolls with that of hB
and uB in isolation (note that isolating the thermal profile removes
a terms from Eqs. (5) and (6), and is equivalent to computing the



Fig. 6. Vorticity plots showing the evolution of a small random disturbance (seeded
at time t ¼ 0) at the hot end of a horizontal convection flow at Ra ¼ 1� 108. Rapid
viscous dissipation of incoherent noise reveals the disturbance structure predicted
by the 1D linear stability analysis (Ref. Fig. 3).
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corresponding longitudinal-roll stability problem). The isolated
thermal profile produces almost identical growth up to wavenum-
bers exceeding the dominant wavenumber, whereas the velocity
profile produces growth rates monotonically decreasing with
increasing a. At the dominant wavenumber a ¼ 58, the eigenmode
produced by the thermal profile is almost indistinguishable from
the reference case (achieving a growth rate differing by just
0:36% from the reference case), whereas the velocity profile pro-
duces a completely different disturbance structure and growth rate
differing by �175%. This confirms the thermal nature of the
instability.

Fig. 5 maps marginal stability curves for transverse and longitu-
dinal roll instabilities for different x-locations against Rayleigh
number. The largest unstable region is found for x ¼ 0:95 (analysis
was not performed for x > 0:95 as the parallel-flow assumption
was violated by the approaching end-wall and vertical plume).
Local instability was found to progressively advance upstream
with increasing Rayleigh number. Transverse rolls are found to
be slightly more unstable than longitudinal rolls (having a slightly
lower dominant Rayleigh number for each x) nearer the hot end-
wall. Beyond Ra � 108, instability switches preference to longitudi-
nal rolls as the location of instability onset advances upstream
from x � 0:8. This mirrors the observed replacement of
transverse-roll structures by longitudinal-roll structures within
the horizontal convection boundary layer in the three-
dimensional simulations of [15], though the role played by the
streamwise distribution of thermal forcing along the base of the
enclosure remains an open question. Two-dimensional simulations
find naturally unstable HC flows for RaJ5� 108 [7]; here the forc-
ing boundary layer is locally unstable for xJ0:73 at this threshold,
highlighting the extent of energy-amplifying convective instability
required to sustain an unstable global flow. Extrapolation of the
marginal stability curves to x ¼ 1 reveals that instability is led by
a transverse roll instability with thermal origin having the critical
marginal Rayleigh number Rac;m ¼ 1:23� 107. This is nearly two
orders of magnitude lower than the natural onset of HC instability.
In addition, the dominant streamwise wavenumber of the instabil-
ity increases with Rayleigh number, consistent with the observed
decrease in distance between transverse roll structures in simula-
tions [15]. This may be explained by a scaling of the instability
with the boundary layer thickness, which decreases with increas-
ing Rayleigh number [1,13,7].

Verification of the 1D stability analysis predictions are made via
the time-evolution of a thermally equilibrated two-dimensional
flow at Ra ¼ 1� 108 seeded with a small random perturbation. Vis-
cosity quickly dissipates random features, isolating the dominant
disturbance (Fig. 6). The disturbance structure emerging near the
base is consistent with the predicted 1D eigenmode (Fig. 3), and
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Fig. 5. Marginal stability of both transverse (b ¼ 0; k2 ¼ a2) and longitudinal
(a ¼ 0; k2 ¼ b2) roll instabilities over the k-Ra parameter space, for x-locations as
labelled.
despite the broad band of locally unstable wavenumbers, is found
to have a similar wavelength (k2D ¼ 0:07452) to that predicted by
the 1D analysis (k1D ¼ 0:1073).

Returning to the effect of Prandtl number, stability analysis at
Ra ¼ 108 (yielding steady-state two-dimensional solutions over
0:1 6 Pr 6 100) finds that growth rates at Pr ¼ 6:14 are typically
within 10% of those for Pr ! 1, with Pr > 6:14 achieving slightly
higher growth rates and advancing the instability threshold further
upstream; both consistent with our observed reduction in critical
Ra with increasing Pr. From Pr ¼ 6:14 ! 1, the peak growth rates
decrease by approximately 40% at stations near the hot end of
the enclosure, and a downstream shift of the point at which insta-
bility first appears occurs. The parallel flow approximation is vio-
lated by stronger horizontal gradients, invalidating the analysis
for Pr � 1.

Finally, the analysis reported herein is readily transferrable to
systems driven by buoyancy sources other than thermal expansion,
such as salinity [27,28], via substitution of jT with the appropriate
mass diffusivity coefficient.
5. Conclusions

We have shown that instability in enclosed horizontally driven
convection arises due to a two-dimensional (transverse-roll) ther-
mal instability of the forcing boundary layer: the horizontal advec-
tion of cooler fluid over to hotter parts of the forcing boundary
promotes destabilization of the flow through a Rayleigh–Bénard
mechanism. The quasi-parallel flow within the forcing boundary
layer at high Prandtl number conforms to the theory of convection
in shear flow driven by lateral heating, and confirms Weber’s pre-
diction from energy considerations that velocity shear controls the
mode selection in the presence of horizontal thermal forcing. We
demonstrate the seldom-observed dominance of both modes:
transverse roll instability at onset is succeeded by longitudinal
rolls at higher Rayleigh numbers.
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Appendix A. Derivation of linear stability equations

A set of disturbance equations can be obtained by substituting
Eq. (4) into Eqs. (1)–(3), and retaining OðdÞ terms. Recalling that
the base flow is invariant in time and the x- and z-directions, the
perturbation equations can be expanded and simplified. The expo-
nential terms are divided out, gravity is taken to act in the negative
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y-direction, and taking k2 ¼ a2 þ b2 permits the perturbation equa-
tions to be written as

�ix~u ¼ �uBia~u� ~vDuB � ia~pþ Pr ðD2 � k2Þ~u; ð7Þ

�ix~v ¼ �uBia~v � D~pþ Pr ðD2 � k2Þ~v þ Pr Ra ~h; ð8Þ

�ix~w ¼ �uBia~w� ib~pþ Pr ðD2 � k2Þ ~w; ð9Þ

iða~uþ b~wÞ þ D~v ¼ 0; ð10Þ

�ix~h ¼ �uBia~h� ~vDhB þ ðD2 � k2Þ~h; ð11Þ
The linearised perturbation equations consist of five unknowns

ð~u; ~v ; ~w; ~p; ~hÞ. Further simplification eliminates ~u; ~w and ~p to reduce
the problem to two equations in term of ~v and ~h. This is achieved
by multiplying Eqs. (7) and (9) by ia and ib, respectively. Summing
the two equations and substituting the continuity equation (Eq.
(10)) then applying the differential operator D, the equation can
be transformed to

�iðx� auBÞD2~v þ ia~vD2uB þ Pr ðD2 � k2ÞD2~v ¼ k2D~p: ð12Þ
Finally, the perturbation pressure is eliminated by multiplying

the y-momentum equation (Eq. (8)) with k2 and substituting Eq.
(12) into the resulting equation yielding Eq. (5). This is coupled
with the energy equation (Eq. (6)), which is simply a rearrange-
ment of Eq. (11).

Appendix B. Supplementry results

In constructing the marginal stability diagram presented in
Fig. 5, the one-dimensional stability analysis is applied across both
transverse and longitudinal wavenumbers over a range of Rayleigh
numbers at different x-locations. Fig. 7 shows growth rates com-
puted for a base flow with Ra ¼ 3:2� 107 at various x-locations.
At x ¼ 0:8 and 0:85, the base flow is stable to both longitudinal
and transverse disturbances. However, at x ¼ 0:9, the flow is unsta-
ble to a transverse-roll perturbation with a peak growth rate at a
wavenumber of 39:1 while longitudinal-roll disturbances remain
stable.

At a Rayleigh number of Ra ¼ 3:2� 108, the region of instability
extends further upstream to x � 0:74 as compared to x � 0:89
k
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Fig. 7. Growth rate for a base flow with Ra ¼ 3:2� 107, solid line represents
transverse roll instability and the dashed line corresponds to longitudinal
instability.
for Ra ¼ 3:2� 107. Additionally, across these x-locations,
longitudinal-roll disturbances consistently have a higher peak
growth rate than transverse-roll disturbances at Ra ¼ 3:2� 108,
whereas transverse-roll disturbances were dominant at Ra ¼
3:2� 107. Figs. 7 and 8 demonstrate that the peak growth rate
for longitudinal-roll instability was consistently achieved at a
slightly higher wavenumber than for transverse-roll instability.

The effect of Prandtl number on the stability of the flow is more
complex. Fig. 9 plots growth rates at a representative location
x ¼ 0:85 for base flows with Ra ¼ 108 at different Prandtl numbers.
At low Prandtl number (Pr ¼ 0:1), the dominant wavenumbers are
significantly different for longitudinal and transverse rolls, with
the latter having a slighly higher growth rate. At higher Prandtl
numbers (Pr P 1), the dominant wavenumbers for both
longitudinal- and transverse- instabilities are almost coincident.
Longitudinal rolls are clearly more dominant at Pr ¼ 1. For
Pr > 1, both forms of instability are equally dominant with a
similar wavenumber of k � 60.
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Fig. 9. Growth rate computed with the one-dimensional stability analysis of a base
flow at Ra ¼ 108 with different Prandtl number at a x-location of 0:85, solid line
represent transverse roll instability and the dashed line corresponds to longitudinal
instability. Thicker line width is used for Pr ¼ 6:14.
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