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The effect of rotation on horizontal convection in a cylindrical enclosure is
investigated numerically. The thermal forcing is applied radially on the bottom
boundary from the coincident axes of rotation and geometric symmetry of the
enclosure. First, a spectral element method is used to obtain axisymmetric basic flow
solutions to the time-dependent incompressible Navier–Stokes equations coupled via a
Boussinesq approximation to a thermal transport equation for temperature. Solutions
are obtained primarily at Rayleigh number Ra = 109 and rotation parameters up to
Q= 60 (where Q is a non-dimensional ratio between thermal boundary layer thickness
and Ekman layer depth) at a fixed Prandtl number Pr = 6.14 representative of water
and enclosure height-to-radius ratio H/R = 0.4. The axisymmetric solutions are
consistently steady state at these parameters, and transition from a regime unaffected
by rotation to an intermediate regime occurs at Q≈ 1 in which variation in thermal
boundary layer thickness and Nusselt number are shown to be governed by a scaling
proposed by Stern (1975, Ocean Circulation Physics. Academic). In this regime an
increase in Q sees the flow accumulate available potential energy and more strongly
satisfy an inviscid change in potential energy criterion for baroclinic instability.
At the strongest Q the flow is dominated by rotation, accumulation of available
potential energy ceases and horizontal convection is suppressed. A linear stability
analysis reveals several instability mode branches, with dominant wavenumbers
typically scaling with Q. Analysis of contributing terms of an azimuthally averaged
perturbation kinetic energy equation applied to instability eigenmodes reveals that
energy production by shear in the axisymmetric mean flow is negligible relative
to that produced by conversion of available potential energy from the mean flow.
An evolution equation for the quantity that facilitates this exchange, the vertical
advective buoyancy flux, reveals that a baroclinic instability mechanism dominates
over 5 . Q . 30, whereas stronger and weaker rotations are destabilised by vertical
thermal gradients in the mean flow.

Key words: convection, instability, rotating flows

1. Introduction
The flow driven by a temperature difference imposed along a horizontal boundary

is known as horizontal convection, which arises in myriad geophysical and industrial
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systems (Hughes & Griffiths 2008). A natural convection flow develops as a result
of the horizontal temperature differences, which if sufficiently large lead to unsteady
overturning circulation. Numerous studies (Mullarney, Griffiths & Hughes 2004;
Sheard & King 2011; Gayen, Griffiths & Hughes 2014) have focused on planar
horizontal convection where the effects of thermal forcing and aspect ratio are
investigated. However, this paper will focus on the effect of rotation on horizontal
convection flows, which is important in many industrial applications as well as in
geophysical flows, including circulations of ocean and atmospheres (Marshall &
Schott 1999). More specifically, this paper addresses the linear stability of rotating
horizontal convection to non-axisymmetric disturbances.

For non-rotating horizontal convection at high Rayleigh number, Rossby (1965)
demonstrated that the horizontal thermal layer has a thickness proportional to the
−1/5th power of Rayleigh number. However, in a rapidly rotating system, the
thinnest horizontal boundary layer is the Ekman layer (Hignett, Ibbetson & Killworth
1981). The ratio between thermal boundary layer thickness and Ekman layer thickness
is important in describing the flow; the square of this ratio (Park, & Whitehead 1999;
Barkan, Winters & Smith 2013) is the non-dimensional rotation parameter

Q= 2
(
δθ

d

)2

, (1.1)

where the non-rotating thermal boundary layer thickness δθ =R/Ra1/5 and d=√2ν/f
is the Ekman depth. R is the radius, Ra is the horizontal Rayleigh number defined
later in § 3, ν is the fluid kinematic viscosity and f is the Coriolis frequency ( f = 2Ω ,
where Ω is the background rotation rate).

In a classical Rayleigh–Bénard convection, thermal buoyancy is the main source
of instability production. On the other hand, the stability of rotating horizontal
convection depends on the thermal gradient, vertical velocity shear as well as radial
velocity shear. In fact, for rapidly rotating stratified fluids that are subjected to a
horizontal temperature gradient, baroclinic instability originates as unstable wave-like
disturbances (Lappa 2012). Charney (1947) and Eady (1949) developed a theoretical
framework for the analysis of baroclinic instability in a rotating system, though in
the practical confines of a laboratory apparatus, different types of instabilities can
occur and might be hybrid in nature.

The important variables for baroclinic instability are the vertical shear of geostrophic
velocities and the stratification. The Richardson number (Ri) combines these two
variables to characterise baroclinic instability in the ocean. Stone (1966, 1970, 1971)
studied three-dimensional instability of baroclinic flow for small Ri. They considered
the Eady basic state of a plane baroclinic flow with constant temperature gradients
and constant vertical shear. Horizontal shear was omitted, and viscous and thermal
diffusion effects were neglected in both the basic state and perturbation analysis.
They determined that conventional baroclinic instability dominates if Ri > 0.95,
symmetric baroclinic instability dominates if 0.25 6 Ri 6 0.95 and Kelvin–Helmholtz
instability dominates if Ri< 0.25. However, his results failed to predict the existence
of symmetric baroclinic instability in the laboratory (Stone et al. 1969; Hadlock,
Na & Stone 1972). Therefore, the studies on symmetric baroclinic instability which
followed Stone’s analyses added viscous and thermal effects to make the model more
representative.

The effects of rotation on horizontal convection have been investigated by Stern
(1975), Hignett et al. (1981), Barkan et al. (2013) and more recently by Hussam,
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Tsai & Sheard (2014). Hignett et al. (1981) investigated the dynamics of horizontal
convection in an annulus rotating about its central axis and a radial temperature
gradient was maintained along the lower boundary. Their experiments focused on the
rotating regime with Q∼ O(1). For a large Rayleigh number, six flow regimes were
determined depending on the magnitude of parameter Q. They found that for small
Q, the flow is only weakly modified by rotation, and the scaling laws for heat flux
and thermal boundary layer thickness are similar to the non-rotating case (i.e. Rossby
scaling for horizontal convection).

Experiments on thermal convection in annular geometry showed that when the
rotation exceeds a certain critical value Qc ≈ 3.4, Coriolis forces inhibit overturning
motion in the meridional plane and promote a sloping convection or baroclinic waves
flow. The sloping temperature surfaces can amplify a perturbation by converting
potential energy into kinetic energy (Lappa 2012). Barkan et al. (2013) performed
a linear stability analysis on an analytical solution for rapidly rotating horizontal
convection, and demonstrated that the sloping isopycnals (equivalent to isotherms
in the present study) of the rotating horizontal convection flow result in greatly
enhanced available potential energy, and hence the flow was expected to support
baroclinic instability. The global stability of the flow within the enclosure remains
an open question; one we address in the present study via a global linear stability
analysis.

Barkan et al. (2013) also performed direct numerical simulations of rotating
horizontal convection in a rectangular enclosure with an arbitrary axis of rotation.
They extended the previous studies by exploring the rapidly rotating Q� 1 regime
(specifically up to Q = 24), which is more relevant to Earth’s oceans. They also
discussed the effect of baroclinic eddies on the zonally averaged flows, as these are
thought to play an important role in the dynamics of oceanic overturning circulation.
Analysis extending the models of Smith (1976) and Whitehead (1981) applied to the
rapidly rotating case did an excellent job of predicting the inclination of stratification
in the interior. Their results demonstrated that rapid rotation and baroclinic instability
significantly modify the steady state compared to non-rotating horizontal convection
and therefore are essential components for the model of the overturning circulation
and thermal structure of the ocean. They estimated a critical Qc= 2.63 for baroclinic
instability based on a relation obtained by Hignett et al. (1981) for the critical
rotation parameter, and proceeded to compute baroclinically active rotating horizontal
convection at a flux-based Rayleigh number RaB= 3.8× 109 and Q= 10. The present
study seeks to obtain solutions at sufficiently high Q to elucidate instabilities towards
Hignett et al.’s very strong rotation regime.

Geophysical applications provoke interest in baroclinic instability in these flows,
though in practice the finite enclosure of this system in laboratory set-ups inevitably
render them susceptible to other instability mechanisms, including Stewartson layers
arising from differential rotation between interior flow and sidewall shear layers
(Stewartson 1957; Hide & Titman 1967; Früh & Read 1999; Vo, Montabone & Sheard
2014, 2015) and thermal instability in regions of strong adverse temperature gradient
(Bodenschatz, Pesch & Ahlers 2000; King & Aurnou 2012). A key question for the
correct interpretation of laboratory investigations of baroclinically active flows and
horizontally driven convection flows with rotation is therefore its global stability to
axisymmetric and non-axisymmetric disturbances. The effects of eddies on large-scale
flows are frequently predicted using residual mean theories (Andrews & McIntyre
1976, 1978) such as the transformed Eulerian-mean approach (Plumb & Ferrari
2005; Barkan et al. 2013). In the present study a global linear stability analysis is
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FIGURE 1. (Colour online) Schematic representation of the system, showing key symbols.
Representative contours of temperature are plotted on the computational domain spanning
the meridional semi-plane.

employed to predict the instability modes of the flow, and to interrogate the dominant
instability modes using several approaches, including application of an energetics
analysis of the azimuthally averaged perturbation fields to elucidate the dominant
mechanisms of energy production and instability growth, and the change in potential
energy density criterion to identify those modes with characteristics consistent with
baroclinic instability (Lappa 2012; Barkan et al. 2013). A contribution of the present
work is the spatial elucidation of the instability modes and their energetics.

The paper is organised as follows: § 2 briefly describes the system under
investigation, § 3 introduces the governing equations, parameters, the change in
potential energy criterion for baroclinic instability, the available potential energy, the
linear stability analysis, the azimuthally averaged perturbation kinetic energy equation
and the numerical code used herein. Section 4 contains the results of the axisymmetric
computations, and § 5 contains results of the stability analysis and perturbation energy
analysis. Finally, concluding remarks are presented in § 6.

2. System description

The system under consideration consists of a free-surface cylindrical enclosure
rotating with an angular velocity Ω about its vertical axis of symmetry. It is filled
with fluid, and a radially increasing temperature profile is imposed on the base. The
tank radius R and height H combine to define an aspect ratio which in this study is
fixed at H/R= 0.4. The system is depicted in figure 1.

Taking a velocity field in cylindrical coordinates, u(z, r, φ, t)= 〈uz, ur, uφ〉, the tank
rotation is described by imposing an azimuthal velocity on the impermeable base and
side wall as uφ = rΩ , where r is the radial coordinate. To model a free surface, a
stress-free condition is imposed on the top boundary (uz= ∂ur/∂z= ∂uφ/∂z= 0). The
side wall is thermally insulated by imposition of a zero normal temperature gradient,
and to simplify the computational model, no heat loss is permitted through the stress-
free top surface, which is also approximated as being thermally insulated. A linear
temperature profile with an increase of δθ from r = 0 to r = R along the base is
imposed to drive horizontal convection in the z–r plane.
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3. Numerical methodology

A Boussinesq approximation for fluid buoyancy is employed, in which density
differences in the fluid are neglected except through the gravity term in the momentum
equation (Barkan et al. 2013). Under this approximation the thermodynamic equation
reduces to a scalar advection–diffusion equation for temperature which is evolved in
conjunction with the velocity field. The fluid temperature (θ ) is related linearly to
density (ρ) via ρ = ρ0[1− α (θ − θ0)], where α is the volumetric thermal expansion
coefficient, while θ0 and ρ0 are reference temperature and density, respectively.

The dimensionless incompressible Navier–Stokes equations and thermodynamic
equation governing a Boussinesq fluid flowing in an inertial frame may be written as

∇ · u= 0, (3.1)

∂u
∂t
= Nu −∇p+ 2

QRa2/5∇2u− ĝθ
4Ra1/5

PrQ2
, (3.2)

∂θ

∂t
=Nθ + 2

Pr QRa2/5∇2θ, (3.3)

where nonlinear momentum and thermal advection terms are evaluated in convective
form written as Nu = −(u · ∇)u and Nθ = −(u · ∇)θ , respectively. Symbols p, t, Q,
Pr and ĝ are the pressure, time, rotation parameter, Prandtl number and unit vector
in the direction of gravity, respectively. In (3.1)–(3.3) and hereafter, lengths are scaled
by R, velocity by RΩ , time by Ω−1, pressure by ρ0R2Ω2 (where ρ0 is the reference
density) and temperature by δθ .

A horizontal Rayleigh number characterising the thermal forcing is given by

Ra= gα δθR3

νκT
, (3.4)

where g is the gravitational acceleration and κT is the thermal diffusivity of the fluid.
The rotation parameter (1.1) can be written

Q= 1
Ek Ra2/5

(
H
R

)−2

, (3.5)

where Ek is an Ekman number characterising the ratio of viscous to Coriolis forces
(Hignett et al. 1981)

Ek= ν

2ΩH2
. (3.6)

The rotation parameter Q accounts for the importance of rotation in horizontal
convection. When Q > O(1), the thermal boundary layer is thicker and rotation is
important. When Q < O(1), the Ekman boundary layer is thicker than the thermal
boundary layer and frictional dissipation is important within the thermal boundary
layer.

The Prandtl number of the fluid is given as

Pr= ν

κT
, (3.7)
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and throughout this study Pr = 6.14, which approximates water at laboratory
conditions. To explore the various modes of instability produced in a horizontal
convection flow across the full span of rotation-affected flow regimes (Hussam et al.
2014), a strongly convective Rayleigh number Ra = 109 and rotation parameters
(0 6 Q 6 60) are considered in the bulk of this study, while the Rayleigh number
dependence of the stability is also considered. This range of rotation is below
estimates of both molecular and turbulent values (Q≈ 130 and 210, respectively) for
oceanic basin scale values on an f -plane (Barkan et al. 2013). However, the range
both significantly exceeds the coverage of previous studies, and extends far beyond
the estimated onset of baroclinic instability (Q=O(1)).

3.1. Change in potential energy density 1Ep

In an inviscid flow with positive temperature gradients in both the upward vertical
and horizontal directions, a particle moving from a colder higher region to a hotter
lower region (while also traversing a horizontal distance 1L) experiences a change in
potential energy density which under the Boussinesq approximation (Lappa 2012) is

1Ep =−gρ0α 1L2ξ
∂θ

∂r

[
1− ξ

δ

]
, (3.8)

where ξ is the angle from the horizontal of the path taken by the particle, and
δ = tan−1(−∂rθ/∂zθ) is the inclination of the lines of constant temperature to the
horizontal. When 0 < ξ < δ, 1Ep < 0 and potential energy is released, which may
amplify a perturbation by converting potential energy to kinetic energy, leading to
baroclinic instability. Differentiating with respect to ξ demonstrates that the maximum
energy transfer occurs when ξ = δ/2. This optimal orientation relates the horizontal
displacement to a fixed particle path length through 1L = Lp cos(δ/2), and hence
equation (3.8) can be expressed for change in potential energy normalised by path
length squared as

1Ep

Lp
2 =−

1
4

Ra δ cos2

(
δ

2

)
∂θ

∂r
, (3.9)

where 1Ep/Lp
2 is normalised by ρ0νκ/R4. Equation (3.9) will be plotted on

axisymmetric base flow fields to identify those regions where the necessary condition
for baroclinic instability, 1Ep < 0, is satisfied. Interpretation of modes will be aided
by considering the alignment of disturbance mode structures with regions of negative
1Ep, while instability structures confined to regions of 1Ep > 0 would suggest
a non-baroclinic origin. As a necessary but not sufficient criterion for baroclinic
instability, (3.9) may yield 1Ep < 0 in flows where baroclinic instability is not
observed, and its inviscid and local nature may lead to disparity against the global
stability solutions for the viscous flows obtained within this study. A powerful
alternative for assessing the capacity for a flow to be baroclinically active is the
available potential energy (Winters & Barkan 2013), which is described in the
subsection to follow.

3.2. Available potential energy Ea and density Ea

The development of baroclinic instability is contingent on potential energy in the fluid
being available for conversion to kinetic energy. The elaboration to follow draws from
Winters et al. (1995), Winters & Barkan (2013) and references therein, and in this
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subsection quantities are expressed in their dimensional form. To begin, at any instant
in time a body of fluid contains a total potential energy

Ep ≡ g
∫
ρz dV , (3.10)

where V is the fluid volume. If we imagine permitting the parcels of fluid to
adiabatically (i.e. without heat or molecular mass transfer Winters et al. 1995) settle
to their equilibrium heights, then a minimum potential energy state is achieved, known
as the background potential energy Eb ≡ g

∫
ρz∗ dV . Here z∗(x, t) is the equilibrium

height of fluid parcel with density ρ, and the one-dimensional function ρ(z∗) is
independent of the spatial distribution of fluid parcels.

It follows then that the available potential energy is the difference between potential
and background potential energies, i.e.

Ea = Ep − Eb = g
∫
ρ(z− z∗) dV . (3.11)

Winters & Barkan (2013) made the further contribution of defining the available
potential energy density Ea(x, t), a positive-definite field that integrates to the total
available potential energy, i.e.

Ea = g
∫

Ea dV . (3.12)

The available potential energy density is zero where fluid parcels are at their
equilibrium height, and larger values indicate greater displacement from equilibrium.
It is formally defined as

Ea ≡ (z− z∗) [ρ(x, t)− ρ̄(z, z∗)] , (3.13)

ρ̄(z, z∗)= 1
z− z∗

∫ z

z∗
ρ(z′∗) dz′∗. (3.14)

For convenience (3.13)–(3.14) are recast in terms of temperature consistent with (3.1)–
(3.3), yielding

Ea ≡ αρ0

[∫ z

z∗
θ(z′∗) dz′∗ − (z− z∗) θ(x, t)

]
. (3.15)

When presented in this study, Ea is given in dimensionless form, scaled by ρ0νκ/gR2.
Winters & Young (2009), Winters & Barkan (2013) describe horizontal convection

as being driven by the conversion of available potential energy to kinetic energy,
emphasising the importance of the Ea distribution and buoyancy fluxes in these flows.
Buoyancy relates to temperature through a linear equation of state approximation,
b= αgθ .

3.3. Linear stability analysis
The potential for non-axisymmetric three-dimensional instability developing and
significantly altering its characteristics on an axisymmetric base flow motivates an
application of linear stability analysis. In this analysis, first an axisymmetric solution
to equations (3.1)–(3.3) is obtained by fixing ∂/∂φ= 0. Then the linearised governing
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equations are obtained by decomposing the velocity, pressure and temperature into
the sum of an axisymmetric field (ū, p̄, θ̄ ) and a small non-axisymmetric perturbation
(u′, p′, θ ′). The perturbation field is constructed as a single complex Fourier mode of
an azimuthal expansion of the flow field and the wavenumber of the perturbation is
a parameter in the stability analysis. Substituting these into (3.1)–(3.3) and retaining
only terms of order of the perturbation field yields the linearised Navier–Stokesand
thermodynamic equations

∇ · u′ = 0, (3.16)

∂u′

∂t
= L′u −∇p′ + 2

QRa2/5∇2u′ − ĝθ ′
4Ra1/5

PrQ2
, (3.17)

∂θ ′

∂t
= L′θ +

2
Pr QRa2/5∇2θ ′, (3.18)

where the linear advection terms are L′u = −[(ū · ∇)u′ + (u′ · ∇)ū] and L′θ = −[(ū ·
∇)θ ′ + (u′ · ∇)θ̄ ].

An operator A (T) is defined as being equivalent to time integration of a
perturbation field by equations (3.16–3.18) over some time interval T . Linear
stability of a base flow of a given (Ra, Q, Pr) and azimuthal wavenumber β is
dictated by the leading eigenmode of A (T), which is obtained using an implicitly
restarted Arnoldi method in conjunction with time integration of the base flow and
one or more perturbation fields (Cogan, Ryan & Sheard 2011; Vo et al. 2015).
The leading complex eigenvalue |µ| is related to the exponential growth rate σ of
the corresponding eigenmode (corresponding to the most asymptotically unstable
perturbation field) via σ = log |µ|/T . In the case of steady-state base flows (all
cases considered in this study reach a steady-state axisymmetric equilibrium), T may
be chosen arbitrarily. If |µ| > 1 for any β, then σ > 0 and the flow is unstable,
whereas if |µ| < 1 for all β, then the axisymmetric flow is asymptotically stable to
all infinitesimal disturbances. The azimuthal wavenumber relates to the azimuthal
wavelength of the instability through β = 2π/λ.

3.4. Azimuthally averaged perturbation kinetic energy
To complement the linear stability analysis, consideration is given to energy
conversion from the base flow to growing disturbances via analysis of the volume
integrated energetics of the predicted eigenmodes (Gill 1982; Ménesguen, McWilliams
& Molemaker 2012). The fluctuation kinetic energy per unit mass is defined as
k ′ = (u′z2 + u′r

2 + u′φ
2
)/2, and an equation describing its evolution is obtained by

taking the dot product of u′ with (3.17), given that ∂tk ′ = (1/2)∂t(u′ · u′) = u′ · ∂tu′.
The azimuthal average of the equation is then taken (denoted by overbars), resulting
in the azimuthally averaged perturbation kinetic energy equation

∂k ′

∂t
= −

[
ūz
∂k ′

∂z
+ ūr

∂k ′

∂r

]
+ {Divergence terms}

−
[

u′z
2 ∂ ūz

∂z
+ u′zu′r

∂ ūz

∂r
+ u′ru′z

∂ ūr

∂z
+ u′r

2 ∂ ūr

∂r
+ u′φu′z

∂ ūφ
∂z
+ u′φu′r

∂ ūφ
∂r

− u′φu′r
ūφ
r
+ u′φ

2 ūr

r

]
− 4

Q Ra2/5 s ′ijs ′ij +
4Ra1/5

Pr Q2
u′zθ ′, (3.19)
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where
k ′ = 1

2

(
u′zu′z + u′ru′r + u′φu′φ

)
(3.20)

and s ′ij is the instantaneous rate-of-strain tensor, which in cylindrical (z, r, φ)
coordinates is written

s ′ij =
1
2




2
∂u′z
∂z

∂u′z
∂r
+ ∂u′r
∂z

∂u′φ
∂z
+ 1

r
∂u′z
∂φ

∂u′z
∂r
+ ∂u′r
∂z

2
∂u′r
∂r

r
∂

∂r

(
u′φ
r

)
+ 1

r
∂u′r
∂φ

∂u′φ
∂z
+ 1

r
∂u′z
∂φ

r
∂

∂r

(
u′φ
r

)
+ 1

r
∂u′r
∂φ

2
r

(
∂u′φ
∂φ
+ u′r

)
.



. (3.21)

For brevity we have adopted tensor notation to represent the double-dot-product of the
rate-of-strain tensor (i.e. s ′ijs

′
ij represents the sum of the square of each element in s ′ij).

In (3.19), the left-hand side is the rate of change of azimuthally averaged
perturbation kinetic energy due to time dependence in the perturbation field, and
the first group of terms (in square brackets) on the right-hand side describes the rate
of change of azimuthally averaged perturbation kinetic energy due to its advection on
the base flow in the r–φ plane. Omitted from the right-hand side are the divergence
terms, which describe transport of azimuthally averaged kinetic energy on the r–φ
plane due to pressure fluctuations and viscous stresses, but which identically contribute
nothing to the overall change in the integral of k ′ over the flow domain. The next
group of terms on the right-hand side describe the rate of k ′ production from shear
in the base flow. Following this is a term describing the rate of k ′ dissipation due to
viscous stresses, and finally a perturbation buoyancy flux term. In general, this last
term would be written −(4Ra1/5/Pr Q2)[ĝru′rθ ′ + ĝφu′φθ ′ + ĝzu′zθ ′], with ĝz, ĝr and ĝφ
being components of the unit vector in the direction of gravity, but in (3.19) only the
axial component is included as gravity acts solely in the negative axial (downward)
direction in the present study.

The perturbation buoyancy flux describes the reversible exchange of energy
between potential energy in the axisymmetric base flow and kinetic energy in
the perturbation field. This may be demonstrated by considering the evolution of
potential energy. Winters et al. (1995) combine their buoyancy transport equation
and the incompressibility constraint to obtain an evolution equation for total potential
energy; here instead the local potential energy evolution is considered. Defining a
potential energy density Ep = ρz such that (3.10) becomes Ep ≡ g

∫
Ep dV , which has

axisymmetric mean and fluctuating perturbation components Ēp and E ′p , respectively,
appendix A details the derivation of the evolution equation for azimuthally averaged
potential energy density in the mean flow. In dimensionless form this equation
is written

∂Ēp

∂t
=−(ū · ∇)Ēp − (u′ · ∇)E ′p −

4Ra1/5Fr
PrQ2

[
ūzθ̄ + u′zθ ′

]+ 2
PrQRa2/5 z∇2ρ̄, (3.22)

where a Froude number Fr = RΩ2/g has been introduced. The first two terms on
the right-hand side of (3.22) describe advective transport of potential energy density
by the mean flow and perturbation, respectively. The third term describes vertical
advective buoyancy fluxes in the mean flow and perturbation field and the final term
describes the effect of thermal dissipation in the mean flow. When comparing the
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prefactors to the dimensionless azimuthally averaged vertical advective buoyancy
flux terms in the perturbation kinetic energy equation (3.19) and (3.22), the Froude
number captures the ratio of the quantities used to scale kinetic and potential energy
in the present study. Notice that in (3.22) the perturbation buoyancy flux term is
negative, whereas the corresponding term is positive in (3.19), reflecting the reversible
exchange role of these terms. Crucially, vertical advective buoyancy flux facilitates a
conversion of potential energy in the axisymmetric mean flow to kinetic energy in a
non-axisymmetric perturbation.

The power of equation (3.19) is revealed when we consider its application to
the predicted linear instability modes of the axisymmetric base flows. These modes
necessarily exhibit exponential growth (at a rate σ ), and it is straightforward to show
then that

σ = 1
2Ek

∫

V

∂k ′

∂t
dV , (3.23)

where total perturbation kinetic energy Ek =
∫
Ω

k ′ dV . Hence when normalised by
2Ek, (3.19) equates to the exponential growth rate of eigenmodes arising from the
linear stability analysis, and therefore, the integrals of each term normalised by 2Ek
provide insight into their individual contributions to the overall growth or decay of
each instability mode. Furthermore, the spatial variation of each term on the z–r plane
will provide insight into the local features of the underlying axisymmetric velocity and
temperature fields that most actively contribute to the instability growth, facilitating a
quantitative basis for the classification of instability modes reported herein.

3.5. Spatial and temporal discretisation
The governing equations (3.1)–(3.3) are solved in cylindrical coordinates using a nodal
spectral element method in space, and a third-order scheme based on backwards
differentiation is employed for time integration (Karniadakis, Israeli & Orszag
1991). The same scheme is also employed for solution of the linearised equations
(3.16)–(3.18). Lagrangian tensor-product polynomial shape functions are imposed
upon each macro-element. The polynomial order is varied to control spatial resolution
and interpolated at the Gauss–Lobatto–Legendre quadrature points. The cylindrical
formulation of the solver employed here has been validated in previous studies
(Sheard & Ryan 2007; Sheard 2009) and was used recently to study axisymmetric
rotating radial horizontal convection by Hussam et al. (2014).

The computational domain in the z–r plane is discretised into quadrilateral elements.
A rectangular mesh comprising 1320 elements was constructed to discretise the
meridional semi-plane. To resolve the flow accurately, the grid size was much smaller
in the vicinity of the side and bottom walls, particularly the heated boundary, with
coarser grid spacing in the interior. A grid resolution study was undertaken to
determine a suitably accurate element polynomial degree. The test was performed
at the upper end of the parameter range of this study, Ra = 109 and Q = 60 as a
stringent test of the mesh resolution. Three parameters are monitored for convergence:
domain integral of temperature (θavg) and square of velocity magnitude (L2), and
the growth rate of the leading eigenmode obtained from the linear stability analysis
at the dominant azimuthal wavenumber (σ ). As shown in table 1, θavg and L2 are
highly resolved: θavg errors between polynomial degree Np and Np + 1 decrease from
3.0 × 10−2 % down to 4.4 × 10−3 % from Np = 4 to 6, while L2 errors decrease
from 4.8× 10−4 % down to 1.6× 10−4 %. However, the higher resolution required to
resolve the instability eigenmodes is reflected in the σ case, with errors decreasing
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Np θavg L2 σ

4 0.685004 0.629373 0.013506
5 0.684797 0.629370 0.013890
6 0.684477 0.629371 0.013665
7 0.684447 0.629372 0.013660

TABLE 1. Convergence of the integral temperature magnitude throughout the domain θavg,
integral velocity magnitude L2 and maximum growth rate σ for different polynomial degree
Np at Ra= 109 and Q= 60.

from 2.8 % at Np = 4 down to 3.7 × 10−2 %. Hence Np = 7 is used hereafter to
constrain errors to less than O(0.1 %).

For time integration of equations (3.2)–(3.3), the advection/convection terms are
concurrently solved explicitly, followed by a projection of the velocity field onto
a divergence-free space, and finally implicit solves for velocity components and
temperature. This procedure extends the backwards differentiation algorithm of
Karniadakis et al. (1991) to the coupled Boussinesq equations. The temperature
transport formulation of the present code has been validated in studies on buoyancy-
driven flows (Sheard & King 2011; Hussam et al. 2014).

4. Axisymmetric base flows: structure, scaling and available potential energy

Axisymmetric solutions are obtained at Ra= 109 for rotation parameters up to Q=
60. While the algorithm employed in this study computes the time-dependent flow
solution, ultimately all flows saturated to a steady state. Solutions were considered as
time independent once maximum variations in dimensionless velocity and temperature
between successive time steps were less than 10−10 and 10−9, respectively. These tight
convergence criteria are necessitated by the slow asymptotic approach towards thermal
equilibrium exhibited by the base flows. A detailed study of the axisymmetric flows,
their associated regimes and heat transport through the forcing boundary was carried
out in Hussam et al. (2014); the present study explores a larger range of Q, and here
features potentially relevant to the stability of these flows are explored.

In order to illustrate the effects of rotation on the flow, figure 2 plots the
axisymmetric temperature field along with the corresponding available potential
density Ea at several values of Q. Here Ea represents the positive-definite spatial
contribution of available potential energy, which integrates to Ea (3.11) (Winters
et al. 1995; Barkan et al. 2013; Winters & Barkan 2013). Depending on the strength
of rotation, the flow can be divided into three regimes (Hussam et al. 2014): a
rotation-dominated regime at high Q where convection in the z–r plane is suppressed
(regime I), a rotation-affected mixed regime (regime II) and a convective regime at
low Q that is insensitive to rotation (regime III). Hignett et al. (1981) defined six
regimes for rotating horizontal convection: no rotation at Q= 0; very weak, weak and
medium rotation up to Q ∼ 1 (corresponding to Hussam et al.’s regime III); strong
rotation for 1 � Q � Ra4/15 (corresponding approximately to regime II); and very
strong rotation for Q� Ra4/15 (corresponding approximately to regime I).

Hussam et al. (2014) proposed a threshold between regimes III and II of QII−III= 1.
Figure 2(a–c) shows an example of a regime III flow at this threshold. The
temperature and available potential energy density fields are similar to those of
non-rotating horizontal convection, in agreement with experimental results of Hignett
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FIGURE 2. (Colour online) Contour plots of temperature (a,d,g,j,m), change in potential
energy 1Ep/L2

p (b,e,h,k,n) and available potential density Ea (c, f,i,l,o) at different Q
((a–c) Q= 1 (regime III), (d–f ) Q= 4 (regime II), (g–i) Q= 10 (regime II), ( j–l) Q= 30
(regime II), (m–o) Q = 60 (regime II→ I)) as indicated for Rayleigh number Ra = 109,
plotted on a meridional cross-section through the centre of the tank. The symmetry axis
is at the left of each frame. For 1Ep/L2

p, positive values are not shown for clarity.
Temperature, 1Ep/L2

p and Ea are respectively normalised by δθ , ρ0νκ/R4 and ρ0νκ/gR2.

et al. (1981) and numerical results of Sheard & King (2011), Barkan et al. (2013),
Hussam et al. (2014). This regime is characterised by a thin boundary layer on
the base where temperature changes rapidly in the vertical direction, with only
minimal variation throughout the interior of the enclosure. The adverse vertical
thermal gradient in the forcing boundary layer in regime III is potentially a source
of instability via a Rayleigh–Bénard mechanism (Bodenschatz et al. 2000; King &
Aurnou 2012). The isotherms depart the bottom wall towards the right (hotter end)
before rapidly turning towards the axis, establishing a strong stratification above the
forcing boundary. This is due to the strong horizontal boundary layer near the bottom
boundary. Almost 90 % of the inner part of the base has isotherms departing the base
and terminating at the symmetry axis. The corresponding plot of Ea is consistent
with figure 8(a) in Barkan et al. (2013), in that available potential energy density
is zero everywhere except in close proximity to the corner of the enclosure where
destabilising buoyancy is supplied (bottom right here and top right in the Barkan et al.
study). The predominance of Ea ≈ 0 is consistent with the corresponding temperature
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distribution in this case. Available potential energy density is low where fluid is
near its equilibrium height, and high otherwise. Here the coolest fluid is located
towards the left of the base and is therefore near its equilibrium height, as is the
near-uniform-temperature bulk above the bottom boundary layer. However, the hotter
fluid near the bottom right corner seeks an equilibrium at the top of the enclosure,
resulting in the high Ea seen in this region.

For strong rotation cases (regime II) shown in figure 2(d–i), there is still evidence of
a horizontal boundary layer above the base, though isotherms are now more strongly
inclined with greater vertical temperature variation throughout the enclosure. At Q= 4
(figure 2d–f ), approximately 70 % of the isotherms depart the base and terminate at
the symmetry axis. The emergence of the slanted isotherms with temperature gradient
inclined upward and away from the axis produces conditions potentially supportive
of baroclinic instability (Marshall et al. 2002; Wolfe & Cessi 2010; Lappa 2012;
Barkan et al. 2013). Hussam et al. (2014) employed the criteria suggested by Hignett
et al. (1981) with Pr= 6.14 and estimated a critical rotation parameter of Qc = 2.76
beyond which baroclinic instability would be anticipated. It would therefore be
expected that the temperature fields exhibit characteristics supportive of baroclinic
instability at strong and very strong rotations within regime II and I, respectively
(Lappa 2012; Barkan et al. 2013; Hussam et al. 2014), which will be explained in
the next section. Indeed Q= 4 shows that the available potential energy density field
is beginning to exhibit the characteristic distribution seen earlier at baroclinically
active higher rotation parameters by Barkan et al. (2013), where the higher-Ea region
at the bottom right corner broadens, and a similarly broad region of higher Ea appears
at the opposite corner. This is characteristic of the temperature/buoyancy distribution
in these cases: the inclination of isotherms creates a radial thermal gradient at all
heights. Therefore, near the top of the enclosure the cooler fluid at the left seeks
a lower equilibrium height while the warmer fluid at bottom right of the enclosure
seeks a higher equilibrium position, leading to the higher Ea in these regions, while
across a band spanning from the cool bottom left to hot top right of the enclosure,
fluid is near its equilibrium height and Ea ≈ 0.

Figure 2(m–o) shows the flow at Q = 60, within the rotation-dominated regime I.
In this regime the thermal and available potential density fields have reached an
asymptotic regime with increasing Q. This is characterised by a smooth appearance
of the θ and Ea contours, reflecting the suppression of horizontal convection in the
z–r plane. In contrast, the corresponding fields in regime II, depicted at Q = 4, 10
and 30 in figure 2(d–i), exhibit small-scale deviations towards the hotter end of the
enclosure: near the bottom wall at lower Q, and more visible towards the enclosure
side wall at Q= 10 and 30.

A consequence of the suppression of horizontal convection with increasing Q is a
corresponding decrease in Nusselt number characterising the transfer of heat through
the base (Hussam et al. 2014). Here Nusselt number is defined as the heat flux
relative to that due to conduction following convention in horizontal convection (e.g.
Mullarney et al. 2004; Hussam et al. 2014),

Nu=
∣∣∣∣
∂θ

∂z

∣∣∣∣
R
δθ
, (4.1)

where |∂θ/∂z| is the integral of the absolute value of temperature flux over the base,
and the combination of a vertical heat flux with a horizontal conduction scale mean
that this definition does not follow Nu→ 1 with vanishing convection.
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FIGURE 3. Plots of (a) log10 Nu, (b) log10 δθ/R, (c) log10 Ea and (d) log10〈ūzb̄〉 against
log10 Q for saturated axisymmetric flows at Ra = 109 and Pr = 6.14. Ea is normalised
by ρ0Rνκ and 〈ūzb̄〉 by ν2κ/R4. In (d), black diamond symbols show log10(κ/H)1b̂. The
regime thresholds QII−III = 1 and QI−II = 54.1 from Hussam et al. (2014) are included
for reference, and are respectively shown by vertical dashed and dash-dot lines. Gradient
indicators are included for guidance where the data is consistent with Stern’s scaling (a,b)
or where it may locally support a power-law scaling (c,d).

It would be expected that in the low-Q regime III the Nusselt number would be
constant and consistent with that of the non-rotating case for the given Rayleigh
number, while in the high-Q regime I the Nusselt number would adhere to the
low-Ra value in the non-rotating system due to the aforementioned suppression of
horizontal convection. The intermediate regime II would then see a decrease in
Nu with increasing Q to bridge the two asymptotic regimes. Hussam et al. (2014)
showed for higher rotation parameters that rotating radial convection demonstrated
behaviour consistent with a scaling proposed by Stern (1975). Stern developed a
scaling for thermal boundary layer thickness (δθ ) in rotating horizontal convection
which using the present nomenclature is δθ/R=Q3/4Ra−1/5. Given that Nu∼R/δθ , the
corresponding Nusselt number scaling is Nu∼Q−3/4Ra1/5. Figure 3(a) plots logarithms
of Nu and δθ/R against the logarithm of Q. Immediately apparent is an asymptotic
behaviour in Nu and δθ/R as both Q → 0 and → ∞. Furthermore, the expected
decrease in Nu and increase in δθ/R at intermediate Q is observed. The bulk of the
decrease in Nusselt number occurs over 1 . Q . 10, and throughout this range the
decrease closely follows the Nu∼Q−3/4 scaling of Stern (1975).
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Hussam et al. (2014) proposed a threshold between regimes I and II at higher
rotation parameters where they found the Stern scaling to hold, given by QI−II =
0.215Ra4/15. This threshold has the same form as the very strong rotation threshold
given by Hignett et al. (1981). The threshold was taken as the value of Q where
the Nusselt number first reached its high-Q asymptotic value. Extrapolating to the
present conditions (Ra = 109), Hussam et al.’s threshold predicts QI−II = 54.1. Their
threshold was estimated using data acquired only up to Q = 1.59 at Ra = 109, so
its applicability to the rotation parameters Q � 1 traversed in the present study is
unknown. In figure 3(a), Nusselt number decreases steeply in accordance with the
Nu∼Q−3/4 scaling only up to Q≈ 10. Beyond this, only a gradual decrease in Nusselt
number is observed towards the high-Q asymptotic value. Stern’s scaling relies on the
thickness of the thermal boundary layer being much less than the enclosure height,
i.e. δθ � H. This condition breaks down at Q ≈ 10, impeding further growth in δθ
with increasing Q (and thus impeding further reduction in Nu). Nevertheless, the data
in figure 3(a) reaches constant values at high Q for Q& 50. Inspecting figure 4(b) in
Hussam et al. (2014) demonstrates that while the departure of Nu from its regime I
value occurs at log10

(
Q−3/4Ra1/5

) ≈ 0.5, it reaches the power-law dependence on
Q−3/4Ra1/5 predicted by Stern at log10

(
Q−3/4Ra1/5

) ≈ 1. This corresponds to Q ≈ 12,
close to the Q ≈ 10 value at which the Nu ∼ Q−3/4 behaviour seen in figure 3(a)
ceases. These results combine to verify that the scaling proposed by Stern persists to
the high Q range of the present study. However, it should be noted that baroclinic
eddies will play a key role in determining the depth of the thermal boundary layer
in the three-dimensional (non-axisymmetric) flow (Cessi & Fantini 2004; Barkan
et al. 2013), which is likely to disrupt the scaling underpinning the QI−II threshold
discussed here. The linear stability of the baroclinically active flows will be explored
in § 5.

It is pertinent to briefly discuss the role of the height ratio in determining the regime
thresholds (Sheard & King 2011). The threshold between regimes III and II represents
the point at which rotation effects begin to modify Rossby’s (1965) scaling for the
horizontal convection boundary layers valid at low rotations (Q<O(1)), producing a
thicker thermal layer on the base and smaller Nusselt numbers. Both Rossby’s and
Stern’s scalings require the boundary layer to be much thinner than the enclosure
height: hence at a sufficiently low Rayleigh number, the layers will interfere with the
limited enclosure height, suppressing the rotation-affected regimes II and III altogether.
Smaller height ratios require higher Rayleigh numbers to produce the sufficiently thin
boundary layers to avoid this interference. This effect is amplified at higher Q, as
under Stern’s scaling the boundary layer is relatively thicker than the corresponding
horizontal convection layer under weak rotation (scaling with Q3/4Ra−1/5 rather than
Ra−1/5). Hence even higher Rayleigh numbers would be required to produce distinct
boundary layers at smaller height ratios under stronger rotation.

The available potential energy density plots in figure 2 exhibited an increase in
both the strength and extent of Ea across the flow. This observation is supported
quantitatively by figure 3(c), which relates the total available potential energy (Ea)
to Q. Ea is low and constant in regime III at low Q, and increases monotonically
throughout regime II. As indicated in the figure, the data follows an approximate
scaling Ea∼Q3/2 within this regime over O(1) <Q<O(10). Beyond Q≈ 10, the rate
of increase of Ea becomes shallower, before it ultimately plateaus towards the high-Q
regime.

Barkan et al. (2013) showed that advection dominated the horizontal buoyancy flux
at low rotation parameters, while diffusion dominated at high rotations. The present
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axisymmetric solutions support this: figure 2 shows that lateral thermal gradients
are low at small Q (corresponding to small lateral diffusive buoyancy flux), and
become more pronounced as the isotherms begin inclining from the near horizontal at
low Q towards the vertical at high Q (supporting stronger diffusive lateral buoyancy
flux). Simultaneously, with increasing Q, the progressive suppression of lateral heat
and mass transport via horizontal convection achieves the switch from advective
to diffusive lateral buoyancy flux with increasing Q. Winters & Young (2009)
presented the volume-averaged potential energy equation applicable to horizontal
convection, which can be used to show (Barkan et al. 2013) that at saturation, the
volume-averaged vertical buoyancy flux 〈ūzb̄〉 is proportional to the difference between
the mean buoyancy at the top and bottom boundaries (1b̂) through 〈ūzb̄〉 = (κ/H)1b̂.
In figure 3(d) the variation of vertical buoyancy flux with Q is plotted. The flux
is strong at low Q, before elevating slightly up to its maximum value at Q ≈ 3. It
subsequently decreases as Q is increased further. Over 5 . Q . 30 this decrease
approximately follows a power law 〈ūzb̄〉 ∼ Q−1, and thereafter the rate of decrease
accelerates rapidly as the very strongly rotating regime is reached. Competing effects
combine to produce the observed behaviour. The shift from the horizontally stratified
low-Q state to a predominantly horizontal thermal gradient with increasing Q places
cooler fluid nearer the axis where downwelling occurs and warmer fluid towards
the side wall where fluid is transported upwards, which serves to enhance vertical
buoyancy flux. Conversely, as Q is increased from the non-rotating scenario, the
suppression of horizontal convection serves to reduce the vertical buoyancy flux.
While the former effect is stronger at lower Q leading to the slight increase in 〈ūzb̄〉
up to Q ≈ 3, at higher Q the arrest of horizontal convection overturning in the z–r
plane reduces and ultimately suppresses 〈ūzb̄〉.

Figure 3(d) also includes calculations of (κ/H)1b̂ for the 5 cases shown in figure 2.
The average buoyancy at the bottom boundary was calculated analytically using the
prescribed thermal boundary condition

b̂z=0 = 2παg
πR2

∫ R

0
r θ̄z=0 dr= 2

3
αg δθ, (4.2)

while at the top boundary it was approximated using a trapezoidal quadrature rule
employing a very large number of intervals (N = 999 intervals; 1000 sample points)
interpolated at spectral accuracy from the high-order temperature field solution,

b̂z=H ≈ 2παg
πR2

R
N

[
R θ̄z=H,r=R

2
+

N−1∑

k=1

kR
N
θ̄z=H,r=kR/N

]
. (4.3)

Calculations of the integrals were repeated with 500 points, and these agreed to
between 5 and 7 significant figures, verifying the accuracy of the quadrature estimates.
A very close agreement between the 〈ūzb̄〉 and (κ/H)1b̂ data is seen up to Q= 30.
However, at Q = 60 〈ūzb̄〉 drops below the (κ/H)1b̂ values, which are observed
continuing to follow the aforementioned Q−1 scaling trend. This discrepancy appears
at the highest Q investigated, and where the buoyancy flux is smallest, so may
reflect a difficulty in accurately capturing the buoyancy flux when the advective
transport in the z–r plane becomes very weak. Nevertheless, the observed agreement
confirms that the relation obtained from the potential energy equation for horizontal
convection (Winters & Young 2009; Barkan et al. 2013) at steady state extends to
radial horizontal convection with rotation in cylindrical enclosures.
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FIGURE 4. Neutral stability (solid line) and loci of maximum growth rate (dashed lines)
for the 5 identified mode branches (labelled) across the Q–β parameter space for Ra= 109

and Pr= 6.14. For guidance, the data are plotted over faint radial lines of constant β/Q,
with values doubling in the clockwise direction from β/Q= 0.25 to 8.

Hussam et al. (2014) demonstrated that a consequence of the radial horizontal
convection combined with the system rotation is the development of an azimuthal
swirl in the interior exceeding the background rotation rate. This incites azimuthal
shear at the enclosure side wall that may promote non-axisymmetric instability through
mechanisms such as centrifugal instability (Lopez & Marques 2009; Lopez, Marques
& Avila 2013; Curbelo et al. 2014), or Stewartson layer instabilities (Stewartson
1957; Hide & Titman 1967; Niino & Misawa 1984; Vo et al. 2014, 2015). The next
section describes the linear stability analysis performed to elucidate the instability
mechanisms active in the rotating radial horizontal convection system.

5. Linear stability of the axisymmetric base flows

Growth rates of the leading eigenmode as a function of azimuthal wavenumber
were obtained across a wide range of rotation parameter 0 6 Q 6 60. The leading
eigenmode was found to be consistently complex across the Q–β parameter space.
A map of instabilities in the Q–β parameter space was constructed from stability
calculations performed at over 300 Q–β combinations at Ra = 109 and Pr = 6.14.
A marginal stability envelope was obtained by interpolating for the values of β
giving zero growth rate. The loci of peak growth rate for distinct instability modes
branches were extracted, and the instability mode were classified by inspection of
their respective eigenmodes.

Figure 4 plots the marginal stability curve for Q 6 60. Everywhere inside the
marginal stability curve, the growth rate is positive and hence the flow is unstable
to infinitesimal disturbances of the enclosed azimuthal wavenumbers. Five distinct
instability mode branches have been identified in the Q–β parameter space. Below
Q= 1.86 the flow is stable. At Q= 1.86, instability first emerges with an azimuthal
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FIGURE 5. A plot of σ scaled by ν/R2 against β/Q for the dominant eigenvalue at
each wavenumber at Q values as shown. Line dash length and line thickness increase
with increasing Q to aid reading of the plot, and the actual computed eigenvalues are
represented by symbols. Shaded regions contain the local maxima corresponding to each
mode branch identified in this study, as labelled.

wavenumber β ≈ 5. The domain of unstable wavenumbers widens rapidly with
increasing Q up to Q ≈ 12, with instability growth predicted across 0 . β . 80.
The band of unstable wavenumbers contracts to β ≈ 48 at Q ≈ 20, and a gradual
monotonic increase is observed thereafter, passing β ≈ 64 at Q= 60. The asymptotic
state for high Q appears to be a single instability mode branch of more modest
wavenumber, ranging from β ≈ 15 at Q= 30 to β ≈ 30 at Q= 60.

A feature that emerges from figure 4 is that the loci of maximum growth, and
indeed the neutral stability boundary over 2 . Q . 10, lie approximately along radial
lines extending from the origin (or in other words, along lines of constant β/Q).
In figure 5 the growth rate of the dominant eigenvalue (σ ) is plotted against this
scaled wavenumber (β/Q). In this plot the growth rate has been re-scaled: under the
normalisation described in § 3, the physical growth rate is normalised by Ω , whereas
here it is scaled by ν/R2. Under close inspection, this figure reveals subtleties in the
alteration in the flow stability with changing Q.

Beginning with the M1 branch, a stable local maximum is seen at Q= 1 and β/Q≈
1.2, which by Q = 2 has just become unstable, with peak growth rate occurring at
β/Q≈2.6. By Q=3, the growth rate is stronger, with a peak at β/Q≈3, and maxima
corresponding to this branch are observed up to Q= 5, with monotonically increasing
growth rate. A retreat in peak scaled wavenumber back to β/Q≈2.5 is found over this
increase in Q, which reflects the positive curvature in Q–β space for the M1 branch
seen in figure 4. The mode exhibits an increase in growth rate and reduction in β/Q,
having β/Q≈1.4 at Q=10. Q=5 is also notable for the appearance of a second peak
exhibiting weaker growth rates at a lower β/Q≈ 0.4: this peak marks the inception
of the M2 branch.

The M2 branch is dominant at Q = 10, and exhibits little change in peak growth
rate or scaled peak wavenumber (β/Q ≈ 0.5) over 10 6 Q 6 17.5. However, the M1
branch at Q = 15 and beyond consistently achieves a higher peak growth rate than
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FIGURE 6. Plots of maximum growth rate σmax against Q for each identified mode branch.
Panels (a) and (b) show σmax respectively scaled by Ω and ν/R2.

the M2 branch. In fact, in the vicinity of 0.5 . β/Q . 0.7 evidence of an erosion of
the M2 local maxima from the higher-wavenumber side is observed with increasing
Q. From Q = 16.5 to 17.5, the M2 local maximum vanishes due to encroachment
of the waveband of the higher-wavenumber M1 branch. This suppression of a low-
wavenumber mode persists through to Q = 25, but by Q = 30, a peak with β/Q ≈
0.5 corresponding to the M5 branch appears. This branch is weaker than the higher-
wavenumber M1 branch at Q = 30, but at higher Q the higher-wavenumber mode
peaks vanish, leaving the M5 branch as the sole branch for Q & 50.

Between Q = 10 and 17.5, the higher-wavenumber M3 branch is also found at
β/Q ≈ 3.8. This mode is notable in that its peak growth rate is almost independent
of Q. Beyond Q = 16.25 the M3 branch too gives way as the maximum scaled
wavenumber producing unstable eigenmodes contracts from β/Q ≈ 7.4 at Q = 10 to
β/Q ≈ 2.8 at Q = 17.5. The final mode branch found in this study is M4, which
exists as a small local maximum at β/Q≈ 2.2 and 17.5 . Q . 18.75. However, with
a growth rate σ ≈ 230, this mode is insignificant against the M1 branch (σ > 1200)
at these Q values.

Figure 6 distils the maximum growth rate of each of the mode branches against
Q, using both the native Ω-scaling as well as the alternative ν/R2 scaling employed
in figure 5. Considering figure 6(b), with increasing Q the growth rate progressively
increases, with each of the mode peaks observed in figure 6(a) emerging with a rapid
increase in growth rate before plateauing and being replaced by a subsequent mode:
first the M1 mode emerges at 1.86, before being surpassed by the M2 mode at Q≈
5, which is overtaken by the M1 branch again at Q ≈ 14. The M1 branch reaches
a peak growth rate at Q ≈ 20 before gradually reducing and being replaced by the
M5 branch at higher Q. The growth rate appears to plateau at σ ≈ 1.6× 103 beyond
Q ≈ 55. This corresponds to the very strongly rotating regime I described in § 4, in
which the underlying axisymmetric base flows reach an asymptotic state invariant with
further increases in Q. It is therefore expected that no additional instability modes
will manifest beyond the range Q 6 60 investigated in this study. This assertion is
supported by the single maximum in the σ–β data presented for Q = 50 and 60 in
figure 5.

Characterisation of, and elaboration on, each of the mode branches shown in
figure 4 is provided in the subsections to follow.
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Term Value % of sum of terms % of range of terms

−〈ūz ∂zk ′ 〉 −6.491× 10−8 −2.3 −0.14

−〈ūr ∂rk ′ 〉 6.491× 10−8 2.3 0.14

−〈u′z2 ∂zūz〉 1.624× 10−7 5.7 0.36
−〈u′zu′r ∂rūz〉 9.519× 10−8 3.4 0.21
−〈u′ru′z ∂zūr〉 6.694× 10−9 0.2 0.01

−〈u′r2 ∂rūr〉 2.853× 10−8 1.0 0.06

−〈u′φu′z ∂zūφ〉 −7.788× 10−7 −27.4 −1.73

−〈u′φu′r ∂ r ūφ〉 4.096× 10−6 144.1 9.11
〈u′φu′r ūφ/r〉 −4.882× 10−6 −171.8 −10.87

−〈u′φ2 ūr/r〉 −5.058× 10−9 −0.2 −0.01
−(4/QRa2/5)〈s ′i j s

′
i j〉 −2.105× 10−5 −740.7 −46.84

(4Ra1/5/Pr Q2)〈u′zθ ′〉 2.389× 10−5 840.7 53.16

TABLE 2. Volume integrated values of terms in (3.19) for the leading instability eigenmode
with β = 12 for a flow with Q= 5 and Ra= 109. The integrated term values are scaled
by R5Ω3. For each term, the two right-most columns respectively include the percentage
contributions of each term to the sum and range (max – min) of the terms contributing to
∂tk ′. Highlighted in bold are the four terms of largest absolute value contribution.

5.1. Eigenmode energetics along instability mode branches
Along each of the mode branches revealed in figures 4 and 6, the energetics of
the azimuthally averaged eigenvector fields were analysed by evaluating each term
of equation (3.19). In every case considered in this work, the same four terms
consistently had the largest magnitudes across the 12 calculated terms: the next
largest term was at most 5 % of the dominant term in all cases, with a mean of
2.1 %. As an example, table 2 displays the computed integral summations of each
term for the leading instability mode at Q= 5 and k = 12, with the dominant terms
highlighted.

For brevity, nomenclature is assigned to each of the four dominant terms, as per
table 3. The first two terms describe the production of perturbation kinetic energy in
the r-θ plane due respectively to horizontal shear in, and azimuthal rotation of, the
base flow, and are denoted by P1 and P2. The third term, denoted by D, describes
the viscous dissipation of perturbation kinetic energy and the fourth term, denoted by
B, describes the transfer from perturbation potential energy to kinetic energy. Note
that due to the absence of the integration operators 〈· · · 〉 from the terms in table 3
compared to the corresponding terms in table 2, P1, P2, D and B each represent a
spatially varying field on the z–r plane.

Percent-of-range contributions of each of the four dominant terms were evaluated
along the loci of maximum growth rate for the mode branches from figures 4 and 6.
These are plotted in figure 7. Several different instability behaviours are suggested
by the markedly different proportional contributions of the four dominant terms in
these plots:

(1) At both Q & 30 (M5) and Q ≈ 18 (M4), the two production terms 〈P1〉 and
〈P2〉 are weakly negative and positive, respectively (magnitudes being less than
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FIGURE 7. (a–d) Plots of the respective percent-of-range contributions of 〈P1〉, 〈P2〉, 〈D〉
and 〈B〉 against Q, for each of the mode branches identified in figure 4.

Symbol Term

P1 −u′φu′r ∂rūφ
P2 u′φu′r ūφ/r

D −(4/QRa2/5)s ′ijs ′ij
B

(
4Ra1/5/Pr Q2

)
u′zθ ′

TABLE 3. Nomenclature assigned to the four dominant terms from (3.19) and table 2
in terms of their absolute contributions to the rate of change of azimuthally averaged
perturbation kinetic energy.

approximately 6 %), and sum to approximately zero. The dissipation term 〈D〉
is strongly negative (≈−47 %), while the buoyancy term 〈B〉 is slightly stronger
(≈52 %) and positive.

(2) The M1 and M3 modes at smaller Q values exhibit similar proportions to M4 and
M5 for the 〈D〉 and 〈B〉 terms, but are notably different in the production terms.
In addition to being stronger (M1 and M2 having production term magnitudes
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up to 12 % and 18 %, respectively), the terms are opposite-signed, with 〈P1〉
predominantly positive and 〈P2〉 negative.

(3) The M2 mode is different again: production terms 〈P1〉 and 〈P2〉 are strong
(≈50 %), with 〈P1〉 positive and 〈P2〉 negative. This mode exhibits the weakest
proportions of dissipation (between −7 % and −14 %) and buoyancy (between
approximately 12 % and 25 %) amongst all mode branches.

(4) The M1 mode exhibits the most significant change in the relative contributions
of the terms over intermediate Q values 5.Q. 15. At low Q, the mode exhibits
modest production term contributions, a strong negative dissipation contribution,
and a stronger positive buoyancy contribution, while at higher Q, the distribution
is similar to the M2 mode.

In order to confirm if the categorisation of instability modes based on their
energetics is valid, attention is turned to the eigenvector fields in the subsections
to follow.

5.2. Eigenmode structure and dominant energetics fields
The first mode branch to be considered is the M1 branch. In contrast to the other
mode branches described herein, the energetics analysis in figure 7 shows that the
M1 branch experiences a significant change in the proportional contributions of
individual terms to the evolution of azimuthally averaged perturbation kinetic energy
as a function of Q: when Q . 5 the M1 branch has energy evolution contributions
consistent with the M3 branch; the shift in the distribution of contributions occurs
over 5 . Q . 15; and for Q & 15 the M1 branch has energy evolution contributions
resembling the M2 branch. Figure 8 illustrates the eigenmode structure and the
integral contributions of all 12 terms from table 3 for the M1 branch at values of Q
capturing each of the aforementioned behaviours.

The first case, Q = 2 and β = 5, demonstrates that the eigenmode is concentrated
adjacent to the hot outer part of the forcing boundary and up the outer side wall
(occupying approximately the outer radial 25 % of the base and lower 40 % of the
side wall). This is reflected by the θ ′, D and B fields shown in figure 8(a–i). The
dissipation field D is strongest at the boundaries in the vicinity of the junction between
base and side wall. This behaviour is consistent with dissipation due to viscous shear
in perturbation velocity boundary layers in this vicinity. In terms of the B field, regions
of high production extend from the hot corner. At Q = 2, the mode is only very
weakly unstable (ref. the small positive peak growth rate in figure 5). Correspondingly,
in figure 8( j) the integrals of the two dominant terms, D and B, are seen to be
approximately equal and opposite.

In the region of shifting mode behaviour (Q = 10 and β = 15, figure 8d–f ), the
eigenmode is found to become narrower and extend further in the vertical direction.
In notable contrast to the Q= 2 case, here the perturbation field structure is displaced
from the side wall, the dissipation field D is again strongest at the bottom boundary at
the same location as the temperature field features and the B field is dominated by a
region of strong energy production extending vertically from the base through much of
the interior. At Q=20, the eigenmode structure is positioned at approximately 80 % of
the tank radius from the axis. The B field exhibits a similar dominant vertical structure
to the Q= 10 case, but the structure is broader.

In figure 8( j) the production term contributions 〈P1〉 and 〈P2〉 are consistently
positive and negative, respectively, and approximately cancel. While not shown in
this paper, the authors consistently found the fields for the P1 and P2 production
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FIGURE 8. (Colour online) (a–i) Structure of the M1 eigenmode; contour plots of
perturbation temperature, azimuthally averaged perturbation kinetic energy evolution
viscous dissipation (D) and available potential energy conversion fields (B) at Q and β
as shown. Arbitrary contour levels equispaced about zero are plotted to elucidate the
perturbation field structure. For each Q–β combination, the same contour levels are used
for D and B fields. ( j) Plots the integral contributions of each of the terms contributing
to the azimuthally averaged perturbation kinetic energy equation, for each of the Q–β
combinations in (a–i). White, light grey and dark grey bars represent (a–c) Q= 2, β = 5◦,
(d–f ) Q= 10, β = 15◦, and (g–i) Q= 20, β = 20◦, respectively. From left to right, the plot
follows the order of terms shown in table 2, while the four dominant terms, 〈P1〉, 〈P2〉,
〈D〉 and 〈B〉 are labelled. The first two terms arise from advection of k ′ on the mean
flow, the next 8 terms arise from production of k ′ due to velocity shear, as labelled. The
contributions to ∂k ′/∂t are scaled by ν3/R4.

terms to be similarly structured, but opposite signed. Hence the P1 and P2 fields
typically sum to approximately zero both locally and globally. With increasing Q, the
M1 branch exhibits a strong increase in the magnitude of 〈P1〉 and 〈P2〉. At Q= 2,
the 〈D〉 and 〈B〉 contributions have a significantly greater magnitude than 〈P1〉 and
〈P2〉, but by Q= 20 this is reversed.

The M2 branch is represented at Q = 10 with dominant wavenumber β = 5 in
figure 9. In figure 9(a–f ), fields θ ′, D and B are plotted, along with the axial,
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FIGURE 9. (Colour online) Representative structure of the M2 eigenmode at Q= 10 and
β = 5. (a–f ) Plots fields of θ ′, D, B and perturbation vorticity components ω′z, ω

′
r and ω′φ .

For θ ′, D and B, contour levels and shading are as per figure 8. The same set of arbitrary
contour levels are used for each vorticity component. (g) Plots contributions to ∂tk ′ as per
figure 8.

radial and azimuthal components of vorticity in the eigenvector field (ω′z, ω
′
r and

ω′φ , respectively). Strong similarities are observed between the M2 branch eigenmode
visualised here and the M1 branch at Q = 20 in figure 8 (moreover, the energetics
data in figure 7 indicates that the behaviour at Q = 20 will be maintained over
15 . Q . 30). However, here the M2 eigenmode structures are approximately three
times broader than the Q = 20 M1 eigenmode, likely reflecting the lower dominant
wavenumbers of the M2 branch (here β = 5) in comparison to the M2 branch beyond
Q≈ 15 (β & 15).

The perturbation kinetic energy contributions plotted in figure 9(b) demonstrate
that the production terms sum to a weakly negative contribution. The gain from 〈B〉
is more than twice the deficit due to viscous dissipation through 〈D〉, reflecting the
importance of 〈B〉 to the instability growth. The spatial distribution of B reveals that
this conversion of perturbation available potential energy to kinetic energy is strongest
in a broad region extending almost the full depth of the enclosure at approximately
50 % of the radial distance from the axis. The vorticity fields reveal alternating-sign
axial vorticity structures extending from the top to the base of the enclosure. The
radial and azimuthal vorticity fields are both strongest in a thin layer adjacent to
the bottom wall, which the D field in figure 9(a–f ) demonstrates is responsible
for significant viscous dissipation, but because it is localised to a slender region,
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FIGURE 10. (Colour online) Representative structure of the M5 eigenmode at Q= 50 and
β = 25. Contour levels and shading are as per figure 9.

its integral 〈D〉 is modest, and does not inhibit instability growth. Revisiting the
axisymmetric base flow for this case with Q = 10 depicted in figure 2(g–i), the
region occupied by the eigenmode structures has inclined isotherms with thermal
gradient directed diagonally upward and radially outward. Under rotation, this flow
pattern is susceptible to baroclinic instability, and the change in potential energy
field 1Ep in figure 2(g–i) is indeed found to be strongly negative in the region
occupied by the eigenmode structures, supporting the assertion that this instability
mode has a baroclinic origin. Furthermore, the available potential energy density field
Ea for the axisymmetric base flow demonstrates that the flow has accumulated a
significant amount of potential energy that cannot be released into the axisymmetric
flow, but is available for release to the non-axisymmetric (three-dimensional) modes.
Barkan et al. (2013) demonstrated using numerical simulation that two-dimensional
rotating horizontal convection in a rectangular enclosure accumulated significantly
more available potential energy than its three-dimensional counterpart. The present
results demonstrate a global linear instability mode with baroclinic features that may
facilitate a conversion of accumulated axisymmetric available potential energy to
perturbation kinetic energy in a non-axisymmetric flow state.

A representative eigenmode from the M5 branch is displayed in figure 10 for Q=
50 and β = 25. Figure 10(g) demonstrates the unusual feature amongst these mode
branches that 〈P1〉<0 and 〈P2〉>0 which is contrary to all but the fleeting M4 branch.
The eigenmode structures are concentrated in a narrow region adjacent to the side
wall. The radial vorticity component is small compared to the axial and azimuthal
components, both of which are prominent.
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FIGURE 11. Ratio of the sum of production terms to the perturbation vertical advective
buoyancy flux for each of the mode branches identified in figure 4. Symbols are as per
figure 7.

In addition to thermal instability mechanisms, consideration was also given to the
possibility that hydrodynamic shear-layer instabilities may play a role in this system.
For instance, the development of swirling flow about a vertical axis of rotation
may invite shear-layer instabilities on horizontal planes. The Rayleigh–Kuo criterion
(Rayleigh 1879; Kuo 1949) is a necessary but not sufficient condition for instability
that requires the horizontal gradient of absolute vorticity to change sign somewhere
within the domain. The base flows obtained in § 4 were tested at various depths
across the investigated range of Q against the Rayleigh–Kuo criterion. All Q > 4
satisfied this criterion at radial positions 0.85. r< 1. This does appear to correspond
to the location of eigenmode structures in this case. However, it would be expected
that an instability mechanism of this kind would present in the azimuthally averaged
perturbation kinetic energy evolution analysis through a significant net contribution
of the P1 and P2 terms, as these describe the production of perturbation kinetic
energy due to perturbation velocity on the horizontal plane and the radial variation
in azimuthal velocity (ref. table 3). No such net contribution from these production
terms is found for this mode nor any of the mode branches elucidated in this study.
The dominance of thermal instability mechanisms in this system is discussed in detail
in the section to follow.

5.3. The dominant mechanism of perturbation kinetic energy growth

It is apparent from the plots of the contributions of terms of ∂k ′/∂t that the two terms
largest in magnitude, P1 and P2, approximately offset each other, and that the other
production terms are significantly smaller in magnitude. Hydrodynamic instabilities,
such as shear-layer instability, would present through these production terms. On
the other hand, it was shown in § 3.4 and (3.22) that buoyancy-driven instabilities,
such as baroclinic or Rayleigh–Bénard type instabilities, will present through vertical
advective buoyancy flux (term B). Insight into the dominant mechanism driving
perturbation kinetic energy growth (and hence growth of the underlying instability
modes) is gleaned from consideration of the relative contributions of the sum total of
the production terms to the buoyancy flux term. Figure 11 plots this ratio against Q
for each mode branch. The largest value of this ratio is found to be approximately
5.5 % for the M3 mode. As the buoyancy flux contribution was always positive, any
negative values of the ratio

∑〈P〉/〈B〉 correspond to negative net contributions from
the production terms. Modes M1 and M2 both exhibit this behaviour. The M4 and
M5 branches are approximately zero, corresponding to a near-zero contribution to
instability growth by the production terms in these cases. Given that the production
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terms contribute at best approximately 5 % of the contribution of vertical advective
perturbation buoyancy flux, it is apparent that the instability modes identified in this
study consistently have a thermal origin, being driven by the conversion of available
potential energy in the axisymmetric mean flow to kinetic energy in the perturbation
field.

Recently, Tsai et al. (2016) confirmed via a local one-dimensional linear stability
analysis that the instability leading to unsteady flow in planar horizontal convection
had a thermal origin – specifically of a Rayleigh–Bénard kind at the hotter end of
the heated bottom boundary. Their study also demonstrated the near insensitivity of
the instability to velocity shear in the boundary layer adjacent to the heated boundary.
This is consistent with the observations reported herein of negligible net contribution
to perturbation kinetic energy growth from the production terms, relative to the
contribution from perturbation buoyancy flux, across all instability branches.

The role played by the axisymmetric mean thermal field towards the exchange of
vertical advective perturbation buoyancy flux is now considered. Appendix B describes
the derivation of an evolution equation for azimuthally averaged buoyancy flux,

∂u′zθ ′

∂t
= −u′zθ ′

∂ ūz

∂z
− u′rθ ′

∂ ūz

∂r
(5.1a)

− 1
ρ
θ ′
∂p′

∂z
(5.1b)

+ κ(1+ Pr)
[∇2u′zθ ′ − 2∇u′z · ∇θ ′

]
(5.1c)

−
[

ūz
∂u′zθ ′

∂z
+ ūr

∂u′zθ ′

∂r

]
(5.1d)

−
[

u′z
2 ∂θ̄

∂z
+ u′zu′r

∂θ̄

∂r

]
. (5.1e)

Briefly, this equation is obtained by premultiplying the perturbation thermodynamic
equation (3.18) by the vertical perturbation velocity u′z, rearranging and azimuthally
averaging. The first two terms on the right-hand side (5.1a) describe vertical buoyancy
flux production by buoyancy flux through vertical and radial gradients of axial
velocity in the base flow. The contributions arising from the perturbation pressure
gradient (5.1b) and both thermal and viscous dissipation (5.1c) follow. The transport
of the buoyancy flux field on the z–r plane is described by (5.1d), and the production
of buoyancy flux through interaction of the perturbation velocity field and thermal
gradients in the axisymmetric mean flow is described by (5.1e).

Volume integration of the two thermal production terms (5.1e) for each of the
instability modes identified in this study will reveal the nature of the instability
mechanism – whether either or both of the radial (horizontal) and vertical thermal
gradients actively drive the exchange of perturbation buoyancy flux feeding the
instability growth – and the corresponding distributions of these production terms on
the z–r plane will elucidate the regions of the flow producing this activity.

It is pertinent to discuss these two terms in the context of thermal instability: the
change of potential energy criterion outlined in § 3.1 demonstrated that under an
upward and radially outward thermal gradient, movement of a fluid element from
a higher cooler position to a lower hotter position could incite baroclinic instability
via exchange of potential energy in the background flow to kinetic energy in a
disturbance. With respect to the second term of (5.1e), downward (negative u′z) and
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FIGURE 12. (Colour online) Contour plots showing the production of azimuthally
averaged vertical advective buoyancy flux by spatial gradients in the axisymmetric thermal
field, for select cases from figures 8 to 10. Solid and dashed contour lines separately
depict −u′z

2 ∂zθ̄ and −u′zu′r ∂rθ̄ , respectively, and their sum is shown by the flooded
contours. Only positive values are plotted, with darker shading representing larger values.
In each frame, contour levels are equispaced between zero and an arbitrarily maximum
magnitude. (a) M1: Q = 2, β = 5◦, (b) M2: Q = 10, β = 5◦, (c) M1: Q = 20, β = 20◦,
(d) M5: Q= 50, β = 25◦.

radially outward (positive u′r) motion from a cooler to a hotter region is facilitated by
a positive ∂rθ̄ . Gathering these returns the form of the second term, −u′zu

′
r∂rθ̄ , and

hence eigenmodes exhibiting regions with a positive value for this term may indicate
a baroclinic instability mechanism. Consider the first term of (5.1e) in the context of
Rayleigh–Bénard instability: upward or downward vertical motion of a fluid element
(i.e. positive u′z

2) through an adverse vertical thermal gradient (negative ∂zθ̄ ) causes
a reduction in potential energy, facilitating instability growth. Hence positive values
of the first term, −u′z

2
∂zθ̄ may be representative of a Rayleigh–Bénard instability

mechanism.
Figure 12 plots these thermal mean flow buoyancy flux production terms for four

cases from figures 8 to 10. These show the various dominant modes with increasing
Q. From figure 12(a), it is apparent that the M1 mode is initially an instability
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FIGURE 13. Growth rate as a function of azimuthal wavenumber β/Q for 106 6Ra6 109

for Q= 10. The highlighted symbols show the interpolated maximum growth rate for each
of the M1, M2 and M3 mode branches.

apparently produced by an adverse thermal gradient adjacent to the bottom wall
at the outer hot end, and adjacent to the enclosure side wall. The local Rayleigh
number across the thermal boundary layer at the radial location where the left-most
local maximum of buoyancy flux production occurs was calculated to be Raθ = 738.
This is somewhat lower than the accepted critical value for Rayleigh–Bénard
convection (Racrit. = 1707.76; Reid & Harris 1958), which is consistent with the
stable axisymmetric flows found at this Rayleigh number. Hence figure 12(a) may
depict production of perturbation buoyancy flux associated with a thermal instability
of the side-wall jet.

As per earlier observations, in figure 12(b) the M2 branch is found to be similar to
the high-Q M1 branch, having characteristics consistent with baroclinic instability.

Finally, the M5 branch at Q = 50 with β = 25 shown in figure 12(d) has a thin
vertical region adjacent to the lower half of the side wall exhibiting strong perturbation
buoyancy flux production by the locally adverse thermal gradient. In this region the
distribution of these production terms is similar to those of the M1 branch at Q= 2
with β = 5 in figure 12(a), though the absence of an additional region of positive
values of the vertical production term above the bottom boundary likely explains the
less evident similarities between these cases in the eigenmodes (cf. figures 8(a–c)
and 10).

The next section addresses the Rayleigh number dependence of the flow stability.

5.4. Rayleigh number dependence
The Rayleigh number dependence of the maximum growth rate and the associated
disturbances is now considered. Figure 13 shows the predicted growth rate against
β/Q for Q = 10. The case of Q = 10 is considered as it was particularly active to
instability, exhibiting each of the M1, M2 and M3 branches at Ra= 109, permitting
the Rayleigh number dependence of several of the mode branches to be examined.
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Decreasing Rayleigh number results in a decrease in the number of instability modes
from three to two modes, with the suppression of the thermal M3 mode. This is
not surprising given that thermal instability is expected to be strongly dependent
on Rayleigh number, so reducing Rayleigh number suppresses the M3 mode. It is
found that decreasing Rayleigh number from Ra = 109 to 107 leads to a significant
reduction in the maximum growth rate of the dominant instability, the M2 mode, and
a switch of the dominant instability mode to the M5 mode. In fact, the maximum
growth rate decreases by 46 % and 90 % from Ra= 109 down to Ra= 108 and 107,
respectively. However, the peak wavenumber where the maximum growth rate occurs
is approximately independent of Rayleigh number. For the M2 mode, instability
emerges with peak wavenumber at β/Q= 0.55 regardless of Rayleigh number, while
it emerges with peak wavenumber ranging from 1.3 to 1.5 for the M3-mode instability.
The suppression of the M2 mode identified earlier as having features consistent with
baroclinic instability with decreasing Rayleigh number illuminates the role of the base
flow in determining the sensitivity of the flow to baroclinic instability. It was earlier
shown that for Ra= 109, baroclinic instability is supported through much of regime II,
but is suppressed in regime I at Q= 60. Taking the QI−II criterion from Hussam et al.
(2014), it is found that from Ra= 108 to 107 to 106, the threshold rotation parameter
decreases from QI−II = 29 to 16 to 8.6. Hence at Q = 10 the Rayleigh numbers
producing baroclinic instability correspond to those in which QI−II > 10 (i.e. lying
within regime II). Ra = 106 is stable at Q = 10, and lies within the very strongly
rotating regime I.

This is a significant outcome from this study: following the definitions of Hignett
et al. (1981) baroclinic instability is supported in rotating horizontal convection under
strong rotation, but not very strong rotation. It is the strong rotation regime that is
most relevant to Earth’s oceans.

6. Conclusions

This study has investigated the effect of rotation on radially forced horizontal
convection in a free-surface cylindrical enclosure at a fixed Prandtl number Pr= 6.14
and height ratio H/R = 0.4. Axisymmetric solutions are obtained at a Rayleigh
number Ra = 109 and rotation parameters up to Q = 60 and are always found to
reach a time-independent state at equilibrium. At small rotation parameters (Q . 1)
the flows solutions are unaffected by rotation: convection is predominantly within the
meridional semi-plane consistent with non-rotating horizontal convection. Rotation
becomes significant beyond Q = O(1): up to Q = O(10) the Nusselt number and
thermal boundary layer thickness exhibit a variation consistent with the scaling
proposed by Stern (1975), which had earlier been reported for rotating horizontal
convection for more modest thermal forcing (Hussam et al. 2014). Total available
potential energy increases approximately with the square of the thermal boundary
layer thickness over these Q values. Beyond Q = O(10), Nusselt number, boundary
layer thickness and available potential energy gradually approach asymptotic high-Q
values as the top boundary confines further growth of the thermal boundary layer. The
very strong rotation regime (Hignett et al. 1981) is approached beyond Q=O(50) in
this system.

Linear stability analysis reveals five instability mode branches, four of which
are dominant at some Q. Instability first appears at Q = 1.86 and persists for all Q
thereafter. Instability modes have dominant wavenumbers typically scaling with Q. An
azimuthally averaged perturbation kinetic energy equation is constructed to interrogate
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the predicted eigenmodes for the terms that contribute most significantly to instability
growth. For all Q, the same four terms consistently dominate: two terms relating
disturbances in the r–φ plane to radial variation in azimuthal velocity in the mean
flow, a vertical advective perturbation buoyancy flux term and the viscous dissipation
term. The net contribution of perturbation production terms is negligible (always
<5.5 %) relative to buoyancy flux: hence instability in this system is produced by
the conversion of available potential energy in the mean flow to kinetic energy in the
disturbance. This system presents as a viable candidate for the study of baroclinic
instability in the laboratory across a wide range of rotation rates. An evolution
equation for vertical advective buoyancy flux is constructed, revealing that instability
is governed by a baroclinic instability mechanism over 5 . Q . 30, whereas flows at
lower and higher rotations are destabilised by vertical thermal gradients in the mean
flow.

The baroclinically active simulations by Barkan et al. (2013) were conducted at
Q = 10, corresponding to both Hignett et al.’s strong rotation regime, and lying
within the regime dominated by baroclinic instability in the present study. Their
baroclinically active simulations demonstrated a significant reduction towards the
non-rotating values for volume averaged available potential energy, kinetic energy
and its dissipation rate and vertical buoyancy flux, compared with the corresponding
two-dimensional simulation at the same Q. The present study demonstrates that
instability at higher rotation rates towards the very strong rotation regime (e.g.
exceeding Q=O(50)) no longer has a baroclinic origin and instead features isolated
structure near the enclosure end wall. This suggests that the large-scale baroclinic
eddies responsible for mixing and consumption of the accumulated available potential
energy may not be generated in this regime. An interesting direction for future work
would be the exploration of this high-Q regime to characterise the energetics and
role (if any) of baroclinic instability on any three-dimensional flow states in the very
strong rotation regime.

The analysis contained herein, based on the azimuthally averaged perturbation
kinetic energy evolution equation, may readily be adopted to augment linear stability
analyses of planar natural convection flows in cylindrical or Cartesian systems alike,
as well as more general hydrodynamic linear stability analyses by excluding the
buoyancy flux term. To the authors’ knowledge this approach has seldom been applied
to classical linear stability problems including wake flows (Barkley & Henderson
1996) and barotropic shear flows (Niino & Misawa 1984).

In addition to the contribution of this work in elucidating the instability mode
branches and their dominant wavenumbers in this system, the characterisation of the
eigenmodes structures and the key instability mechanisms will inform contemporary
and future laboratory experiments and three-dimensional direct numerical simulation
of rotating horizontal convection. In particular, this work provides information crucial
to distinguishing baroclinic instability from instabilities arising from the confinement
of an experimental apparatus.
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Appendix A. Energy exchange between mean flow potential energy and
perturbation kinetic energy

Here the evolution equation for azimuthally averaged potential energy density is
derived. A potential energy density Ep= ρz is defined such that total potential energy
is Ep≡ g

∫
Ep dV , and is decomposed into axisymmetric mean and non-axisymmetric

perturbation components as Ep= Ēp+E ′p . Under the Boussinesq approximation, density
and temperature are related through ρ/ρ0 = 1 − α(θ − θ0), and hence spatial and
temporal gradients of θ and ρ are proportional. The thermodynamic equation (3.3)
may then be rewritten in terms of density as

∂ρ

∂t
=−(u · ∇)ρ = κ∇2ρ. (A 1)

Rewriting in terms of the mean and perturbation components, and retaining the
nonlinear term, gives

∂ρ̄

∂t
+ ∂ρ

′

∂t
=−(ū · ∇)ρ̄ − (ū · ∇)ρ ′ − (u′ · ∇)ρ̄ − (u′ · ∇)ρ ′ + κ∇2(ρ̄ + ρ ′). (A 2)

Averaging over the azimuthal direction eliminates terms linear in the perturbation
(which also demonstrates that the azimuthal average of the perturbation potential
energy is always zero), leaves

∂ρ̄

∂t
=−(ū · ∇)ρ̄ − (u′ · ∇)ρ ′ + κ∇2ρ̄. (A 3)

Substitution of ρ̄ = Ēp/z and ρ ′ = E ′p/z, and multiplication by z, produces

∂Ēp

∂t
=−(ū · ∇)Ēp + 1

z
ūzĒp − (u′ · ∇)E ′p +

1
z

u′zE ′p + κz∇2ρ̄, (A 4)

where it can be seen that vertical advective flux terms have been generated by the
appearance of z in the advection spatial derivatives arising from the potential energy
density substitutions. Substitution recasts these terms in a form consistent with the
vertical advective buoyancy flux term in (3.19). In dimensional form the equation is

∂Ēp

∂t
=−(ū · ∇)Ēp − αρ0ūzθ̄ − (u′ · ∇)E ′p − αρ0u′zθ ′ + κz∇2ρ̄, (A 5)

which can be non-dimensionalised to give (3.22) found in the main text of this paper.

Appendix B. Production of perturbation buoyancy flux by the mean thermal field
Here the role of thermal gradients in the mean flow in facilitating the exchange

of azimuthally averaged vertical advective buoyancy flux is considered. We begin
by premultiplying the linearised thermodynamic equation (3.18) by the vertical
perturbation velocity component u′z. For simplicity in the present working, quantities
are considered in their dimensional form (e.g. the prefactor to the thermal dissipation
term is κ rather than 2/PrQRa2/5). This gives

u′z
∂θ ′

∂t
=−u′z

[
(ū · ∇) θ ′ + (u′ · ∇) θ̄]+ κ∇2θ ′. (B 1)
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The product rule is invoked to recast the left-hand side for the time derivative of
vertical advective perturbation buoyancy flux, and terms on the right-hand side are
expanded in cylindrical coordinates to give

(B 2)
where it is recognised that azimuthal derivatives of the axisymmetric base flow are
zero by definition. The product rule is invoked to recast the advection derivatives in
terms of the advective vertical perturbation buoyancy flux, and the thermal dissipation
term is recast using a vector identity. Rearranging then gives

∂(u′zθ
′)

∂t
= θ ′

[
∂u′z
∂t
+ ūz

∂u′z
∂z
+ ūr

∂u′z
∂r
+ ūφ

r
∂u′z
∂φ

]

−
[

ūz
∂(u′zθ

′)
∂z
+ ūr

∂(u′zθ
′)

∂r
+ ūφ

r
∂(u′zθ

′)
∂φ

]

−
[

u′zu
′
z
∂θ̄

∂z
+ u′zu

′
r
∂θ̄

∂r

]
+ κ [∇2(u′zθ

′)− 2∇u′z · ∇θ ′
]
. (B 3)

The bracketed part of the first term on the right-hand side can be substituted using the
z-component of (3.17), i.e. the bracketed part equals −(u′ · ∇)ūz − (1/ρ)∂zp′ + ν∇2u′z.
The premultiplication by θ ′ permits the viscous diffusion term to be rewritten similarly
to the thermal dissipation term, νθ ′∇2u′z = ν[∇2(u′zθ

′)− 2∇u′z · ∇θ ′]. The thermal and
viscous dissipation terms may then be combined, and the equation simplifies to

∂(u′zθ
′)

∂t
= −

[
u′zθ
′ ∂ ūz

∂z
+ u′rθ

′ ∂ ūz

∂r
+ u′φθ

′

r
∂ ūz

∂φ

]

− 1
ρ
θ ′
∂p′

∂z
+ κ(1+ Pr)

[∇2(u′zθ
′)− 2∇u′z · ∇θ ′

]

−
[

ūz
∂(u′zθ

′)
∂z
+ ūr

∂(u′zθ
′)

∂r
+ ūφ

r
∂(u′zθ

′)
∂φ

]

−
[

u′z
2 ∂θ̄

∂z
+ u′zu

′
r
∂θ̄

∂r

]
. (B 4)

Azimuthally averaging the equation eliminates the remaining φ-derivative term, which
reduces the equation to

∂u′zθ ′

∂t
= −u′zθ ′

∂ ūz

∂z
− u′rθ ′

∂ ūz

∂r
− 1
ρ
θ ′
∂p′

∂z
+ κ(1+ Pr)

[∇2u′zθ ′ − 2∇u′z · ∇θ ′
]

−
[

ūz
∂u′zθ ′

∂z
+ ūr

∂u′zθ ′

∂r

]
−
[

u′z
2 ∂θ̄

∂z
+ u′zu′r

∂θ̄

∂r

]
. (B 5)
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