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This study seeks to characterise the breakdown of the steady two-dimensional solution
in the flow around a 180-degree sharp bend to infinitesimal three-dimensional
disturbances using a linear stability analysis. The stability analysis predicts that
three-dimensional transition is via a synchronous instability of the steady flows.
A highly accurate global linear stability analysis of the flow was conducted with
Reynolds number Re < 1150 and bend opening ratio (ratio of bend width to inlet
height) 0.26β65. This range of Re and β captures both steady-state two-dimensional
flow solutions and the inception of unsteady two-dimensional flow. For 0.2 6 β 6 1,
the two-dimensional base flow transitions from steady to unsteady at higher Reynolds
number as β increases. The stability analysis shows that at the onset of instability,
the base flow becomes three-dimensionally unstable in two different modes, namely
a spanwise oscillating mode for β = 0.2 and a spanwise synchronous mode for
β > 0.3. The critical Reynolds number and the spanwise wavelength of perturbations
increase as β increases. For 1 < β 6 2 both the critical Reynolds number for onset
of unsteadiness and the spanwise wavelength decrease as β increases. Finally, for
2 < β 6 5, the critical Reynolds number and spanwise wavelength remain almost
constant. The linear stability analysis also shows that the base flow becomes unstable
to different three-dimensional modes depending on the opening ratio. The modes are
found to be localised near the reattachment point of the first recirculation bubble.

Key words: instability, separated flows, channel flow

1. Introduction
An important geometric feature of the ductwork carrying liquid-metal coolant fluid

within prototype blankets in magnetic confinement fusion reactors is the presence of
sharp 180-degree bends (Barleon, Casal & Lenhart 1991; Kirillov et al. 1995; Barleon,

† Email address for correspondence: Greg.Sheard@monash.edu
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Mack & Stieglitz 1996; Boccaccini et al. 2004; Bühler 2007). The transport of heat
from the far side wall of the bend and the flow around the bend are critical aspects
for the efficient transport of heat from the reactor for power generation (Boccaccini
et al. 2004). Despite its relative simplicity, few studies have been conducted on the
hydrodynamic flow in this geometry, and they have focused mostly on heat transfer.
An understanding of this flow underpins the duct flow problem with application to
fusion reactor blankets.

Fundamentally, the two-dimensional flow around the sharp bend creates recirculation
structures that resemble those seen in several canonical confined flow problems,
including the backward-facing step flow (Armaly et al. 1983; Ghia, Osswald &
Ghia 1989; Barkley, Gomes & Henderson 2002; Blackburn, Barkley & Sherwin
2008). These flows exhibit a streamline emerging from the upstream separation point
that divides regions of reversed flow from the main bulk flow, and is termed the
dividing streamline. When the dividing streamline reattaches to the wall downstream,
a closed separation bubble is formed. Specifically, the flow first passes over a large
recirculation bubble attached to the downstream side of the inner corner of the
bend, and under the same conditions, subsequently a second recirculation bubble
develops on the opposite wall a little further downstream. Separating and reattaching
flows play an important role in numerous engineering applications, especially in heat
transportation (Larson 1959; Krall & Sparrow 1966; Abu-Nada 2008).

There have been a number of studies on the effect of different geometric parameters
on the efficiency of heat transfer in flows around a bend. The effects of a duct with a
180-degree bend with three different turning configurations, namely the sharp corner,
rounded corner and circular turn, were studied by Wang & Chyu (1994). In their
study, all walls were heated and cold fluid was supplied from the inlet. Their results
show that the sharp bend had the strongest turn-induced heat transfer enhancement by
approximately 30 % as compared to the circular turn, which has the weakest among
those three configurations. Heat transfer was found to be optimum downstream of
the sharp bend turn; see the experimental studies by Metzger & Sahm (1986) and
Astarita & Cardone (2000). In an experimental study on the effect of the sizes of
bend openings in ducts with a sharp bend by Hirota et al. (1999), with a channel
cross-section of 50 mm× 25 mm, bend openings of 70 mm and 50 mm were found
to have almost the same value of Sherwood number Sh (the ratio of convective to
diffusive mass transport), whereas a smaller bend opening (30 mm) led to values of
Sh that were 1.3 times larger than that for 50 mm. Only a few studies focused on the
effect of controllable parameters on the structure of the flow. Liou, Tzeng & Chen
(1999) and Liou et al. (2000) experimentally showed that the divider thickness (the
thickness of the structure between the inflow and outflow channels) mainly influenced
the intensity and uniformity of turbulence.

The only reported parametric study on the effect of the bend opening ratio on
hydrodynamic flow around a 180-degree sharp bend was carried out numerically
by Zhang & Pothérat (2013). They categorised the two-dimensional flow into five
regimes (see figure 4 in Zhang & Pothérat 2013). Regime I was at very low Re,
where the flow was laminar and remained attached to the walls throughout. Regime
II emerged at higher Re, where flow separation appears at the bend, leading to the
creation of the primary recirculation bubble. Regime III occurred at a yet higher
Reynolds number when the adverse pressure gradient at the top wall was strong
enough to create a secondary recirculation bubble there. Regime IV occurred when a
small-scale vortex structure was detected far downstream at high Re before the flow
entered regime V, which featured vortex shedding originating from the sharp bend
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at higher Re. They also reported the results of some three-dimensional simulations.
According to their results, at Re = 2000, two types of shedding structures were
found in the spanwise direction, reminiscent of A- and B-modes in the flow past a
circular cylinder (Williamson 1988; Brede, Eckelmann & Rockwell 1996; Thompson,
Hourigan & Sheridan 1996; Henderson 1997). These shedding structures disrupted the
two-dimensional vortex in the flow and tended to slow down the shedding mechanism.
Though a very detailed study of the two-dimensional 180-degree bend flow has been
provided by Zhang & Pothérat (2013), the three-dimensional stability of these flows
is yet to be determined.

One approach to understanding the three-dimensional stability relies on a linear
stability analysis, where the stability of infinitesimal three-dimensional perturbations
to a two-dimensional flow is determined by obtaining the leading eigenmode(s)
of the evolution operator of the linearised perturbation field. Combined with
accurate numerical methods, this technique has significantly contributed to a better
understanding of separated flows in complex geometries over the past couple of
decades. Relevant examples include backward-facing step (Barkley et al. 2002;
Blackburn et al. 2008) and partially blocked channel flows (Griffith et al. 2008).

Studies elucidating the stability and the three-dimensionality of the flow past a
backward-facing step include Armaly et al. (1983), Ghia et al. (1989), Barkley et al.
(2002), Wee et al. (2004), Griffith et al. (2007) and Lanzerstorfer & Kuhlmann (2012).
Based on detailed experiments, Ghia et al. (1989) and Armaly et al. (1983) initially
proposed that the curvature in the main flow caused by the second recirculation
bubble led to a Taylor–Görtler instability. This type of instability occurs in flows
with curved streamlines when the fluid velocity decreases radially and the centrifugal
force drives pairs of counter-rotating streamwise vortices (Drazin & Reid 2004).
However, the linear stability analysis of Barkley et al. (2002) ruled out the effect
of a Taylor–Görtler-type instability because they found that the two-dimensional
flow remained linearly stable long after the secondary recirculation bubble appeared.
Instead, they found the critical eigenmode to consist of a flat roll localised in
the primary recirculation region at the step edge. Hammond & Redekopp (1998)
studied the instability properties of separation bubbles. They found that the instability
mode associated with the inflection point of the dividing streamline became globally
unstable as the peak backflow velocity approached approximately 30 % of the free
stream value. As the size of the bubble grew, the peak velocity of the backflow
increased correspondingly and the conditions for local absolute instability could be
predicted.

No such scenario has been established for the onset of unsteadiness of flows in
180-degree sharp bends. The purpose of the present paper is to find such a scenario
using methods in the spirit of Barkley et al. (2002). The specific aim is to thoroughly
characterise the three-dimensional stability of flow around a 180-degree sharp bend as
a function of the Reynolds number, bend opening ratio and spanwise wavenumber of
the three-dimensional disturbances. In turn it is expected that this study will provide
insights into more general separated confined flows, and this understanding may enable
future enhancement of the efficiency of heat transport in such systems.

This paper is organised as follows. Problem formulation and numerical methods
are presented in §§ 2 and 3, respectively. In §§ 4 and 5, respectively, the base flow
characteristics and the results of the stability analysis for a range of β and Re are
discussed. Finally, the nature of bifurcation in the three-dimensional flow is studied
in § 6.
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FIGURE 1. Flow geometry for the 180-degree sharp bend system. The fluid enters the
bottom channel flowing to the right, and exits the top channel flowing leftwards.

2. Problem formulation
Figure 1 shows the computational domain under consideration, including the

geometric parameters for the problem. The channel widths in the inlet and at the
bend are a and b, respectively. The heights of the inlet and outlet channels are
identical. The divider thickness is c, with d and e denoting the lengths from the far
wall of the bend to the inlet and outlet, respectively. The ratio of the gap c to the
channel height a is 4 %, while the lengths of the upstream and downstream channels
are (d − b) = 15a and (e − b) = 30a. The opening ratio of the bend is defined as
β = b/a.

The fluid has a constant density ρ and kinematic viscosity ν. In this study, velocities
are normalised by the peak inlet velocity Uo, lengths by inlet channel height a, time
by a/Uo and pressure by ρU2

o . The fluid motion is governed by the incompressible
Navier–Stokes equations,

∂u
∂t
=N(u)−∇p+

1
Re
∇

2u, (2.1)

∇ · u= 0, (2.2)

where u is the velocity field, p is the pressure, the Reynolds number is given by

Re≡
Uoa
ν

(2.3)

and the nonlinear advection term is calculated in convective form as N(u)≡−(u ·∇)u.
Fluid enters from the inlet, flows around the sharp bend and through the outlet

channel. With the origin of a Cartesian coordinate system positioned at the midpoint
of the divider surface at the inside of the bend (see figure 1), boundary conditions
are imposed as follows: at the inlet (x = b − d, −1.02 6 y 6 −0.02), a Poiseuille
velocity profile ux = 1− 4(y+ 0.52)2, uy = 0, uz = 0 is imposed. A no-slip boundary
condition (u=0) is imposed at all solid walls. At the outlet (x=b− e,0.026 y61.02),
a standard outflow boundary is enforced with a Dirichlet reference pressure (p = 0)
and a weakly enforced zero normal velocity gradient (Barkley, Blackburn & Sherwin
2008).

3. Computational methods
The governing equations are spatially discretised using a spectral-element method

and time integrated using a third-order backward differentiation scheme (Karniadakis,
Israeli & Orszag 1991). The two-dimensional Cartesian formulation of the present
code has been validated and employed in several confined channel flow problems
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Stability of flow around a 180-degree bend 817

(e.g. Neild et al. 2010; Hussam, Thompson & Sheard 2012a,b). The method used
to analyse the linear stability of perturbations is based on time integration of the
linearised Navier–Stokes equations following Barkley & Henderson (1996) and
references therein. The technique is in fact a Floquet problem for time-periodic
base flows, but is applied to the steady-state base flows in the present problem for
convenience, as it was already implemented and validated within our code.

Velocity and pressure fields are decomposed into a two-dimensional base flow and
infinitesimal fluctuating disturbance components

u= u2D + u′, (3.1)
p= p2D + p′. (3.2)

Substituting (3.1) and (3.2) into (2.1) and (2.2) and retaining terms in the first order
of the perturbation field yields the linearised Navier–Stokes equations describing the
evolution of infinitesimal three-dimensional disturbances,

∂u′

∂t
=−DN(u′)−∇p′ +

1
Re
∇

2u′, (3.3)

∇ · u′ = 0, (3.4)

where we calculate the linearised advection term as DN(u′)= (u2D ·∇)u′+ (u′ ·∇)u2D.
Since the base flow is invariant in the spanwise direction, we can decompose

general perturbations into Fourier modes with spanwise wavenumber

k=
2π

λ
, (3.5)

where λ is the wavelength in the spanwise direction. As per (3.3) and (3.4), the
equations are linear in u′ and therefore Fourier modes are linearly independent and
coupled only with the two-dimensional base flow. The absence of any spanwise
component to the base flow further permits a single phase of the complex Fourier
mode to be considered, i.e.

u′(x, y, z, t)= 〈û(x, y, t) cos(kz), v̂(x, y, t) cos(kz), ŵ(x, y, t) sin(kz)〉
p′(x, y, z, t)= p̂(x, y, t) cos(kz).

}
(3.6)

The flow stability therefore reduces to a three-parameter problem in Re, β and
k. Following Barkley & Henderson (1996) and others, spanwise phase-locked
perturbations of the form in (3.6) remain in this form under the linearised evolution
equations (3.3)–(3.4): for a Re, β and spanwise wavenumber k, the three-dimensional/
three-component perturbation field u′(x, y, z, t) then reduces to a two-dimensional/three-
component field

û(x, y, t)= 〈û(x, y, t), v̂(x, y, t), ŵ(x, y, t)〉, (3.7)

which is computed on the same two-dimensional domain as the base flow. The
perturbation z-velocity features a sine function rather than a cosine as only
z-derivatives of this term (yielding a cosine) interact with other terms under
(3.3)–(3.4).
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By defining A(τ ) to represent the linear evolution operator for time integration
(via (3.3) and (3.4)) of a perturbation field comprising a single phase-locked spanwise
Fourier mode û over time interval τ , i.e.

û(t+ τ)=A(τ )û, (3.8)

an eigenvalue problem may then be constructed as

A(τ )ûk =µkûk, (3.9)

having complex eigenvalues µk and eigenvectors ûk. The eigenvalues µk are Floquet
multipliers that relate to the eigenmode’s exponential growth rate σ and angular
frequency ω through

µ≡ e(σ+iω)τ , (3.10)

where the subscripts have been omitted for clarity. As the base flows are time
invariant in this study, the usual time period is replaced by an arbitrary time interval
for τ . An appealing feature of this technique is that solutions to the eigenvalue
problem (3.9) may be obtained using iterative methods involving time integration of
the linearised perturbation field via (3.3)–(3.4), which avoids the substantial cost of
explicitly constructing the very large operator A(τ ).

Stability is dictated by the leading eigenmode (i.e. µ = µk having the largest
|µk|). Neutral stability corresponds to |µ| = 1, while |µ| > 1 and |µ| < 1 describe
unstable and stable flows, respectively. The bifurcation may be either synchronous
(ω= 0) or oscillatory (ω 6= 0). The smallest Reynolds number for which any spanwise
wavenumber k yields |µ| = 1 is the critical Reynolds number for the onset of
instability.

The following steps are taken in order to solve this problem numerically. The
time-invariant base flow at a given Re and β is obtained by solving the two-
dimensional Navier–Stokes equations (2.1)–(2.2) and stored. Subsequently, random
initial perturbation fields are constructed for one or more spanwise wavenumbers k,
and an implicitly restarted Arnoldi method in conjunction with time integration of
the linearised Navier–Stokes equations (3.3)–(3.4) is used to determine the leading
eigenmodes governing stability. The ARPACK (Lehoucq, Sorenson & Yang 1998)
implementation of the implicitly restarted Arnoldi method is used, and the present
formulation has been validated and employed across Sheard, Fitzgerald & Ryan
(2009), Sheard (2011) and Vo, Montabone & Sheard (2014, 2015).

3.1. Test of base flow structure computations
The flow past a 180-degree sharp bend is a deceptively difficult problem to fully
resolve, especially at large Reynolds number, due to the sensitivity of the solution to
the mesh structure mainly near the sharp bend. This section describes the tests used to
validate the numerical algorithm and to select appropriate meshes and element order.
For the spatial resolution study, we varied element polynomial degree from N = 4 to
N = 8 for a mesh based on domain length parameters from the mesh domain. For
consistency with the domain size study, the mesh employed in this study models a
180-degree sharp bend with opening ratio β = 1 and Re = 500. In this regime, the
flow is steady, with two recirculation bubbles. Figure 2 shows the detail of the mesh
with N = 3. The mesh is structured and refined in the vicinity of the sharp bend as
well as in the downstream channel in order to capture the detailed structure of the
flow that passes around the bend.
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Stability of flow around a 180-degree bend 819

FIGURE 2. Details of the mesh around the turning area with polynomial order N = 3.

AB

CD

FIGURE 3. Sketch of separation and reattachment points defining the locations of all
recirculations. The unbroken arrow represents the direction of the main bulk flow as it
navigates the bend.

N A B C D LR1 LR2 %LR1 %LR2

4 0 −4.8057 −3.7077 −9.7726 4.80573 6.06489 0.0307 0.0797
5 0 −4.8072 −3.7069 −9.7765 4.80716 6.06955 0.0009 0.0029
6 0 −4.8073 −3.7071 −9.7766 4.80730 6.06962 0.0019 0.0018
7 0 −4.8073 −3.7070 −9.7766 4.80725 6.06966 0.0009 0.0010
8 0 −4.8072 −3.7069 −9.7767 4.80720 6.06972 — —

TABLE 1. Dependence of recirculation length on polynomial order. The parameter N
indicates the independent polynomial order of the base flow. Two separation points
(A and C) and two reattachment points (B and D) as indicated in figure 3 computed on
the mesh at Re= 500 and β = 1 are given; LR1 and LR2 represent the recirculation lengths
of the first and second bubbles, respectively. Errors on bubble lengths at each N relative
to the highest N are also provided.

To demonstrate the accuracy of computing recirculation length in the base flow,
table 1 shows the relative error of several measured quantities as a function of
polynomial order. From computations of error on the recirculation length (table 1), it
was found that the polynomial order N = 5 provides good accuracy for running the
base flow computations. To examine the effect of downstream channel length on the
solutions, a convergence study was conducted on the lengths of the first recirculation
bubble on the bottom wall of the downstream channel and the secondary recirculation
bubble on the top wall. The results shown in table 2 demonstrate that an outlet
length of 10 results in an error in the determination of the primary recirculation
bubble length of approximately 0.007 %, and the error is approximately 4.5 % for the
secondary bubble. The relatively large error in the size of the secondary bubble is
caused by its proximity to the outlet. Outlet lengths of 20–100 are required to achieve
at least 5 significant figures of accuracy. Hence, an outlet length of 30 is considered
adequately long to be used throughout this study. Barton (1997) and Cruchaga (1998)
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Outlet length (e− b) LR1 LR2 %LR1 %LR2

10 4.80485494 5.79491686 0.00723577 4.482661
20 4.80452028 6.06684499 0.00027037 0.000483
30 4.80452020 6.06685749 0.00026858 0.000277
40 4.80452009 6.06685810 0.00026644 0.000267
50 4.80451921 6.06685923 0.00024807 0.000248
60 4.80451788 6.06686092 0.00022029 0.000220
70 4.80451875 6.06685982 0.00023848 0.000239
80 4.80451505 6.06686448 0.00016141 0.000161
90 4.80450991 6.06687100 0.00005442 0.000054

100 4.80450729 6.06687431 — —

TABLE 2. Dependence of the length of the primary and secondary recirculation bubbles
(LR1 and LR2 , respectively) on outlet channel length (e− b). Percentage differences between
bubble lengths at each e−b relative to the longest outlet case e−b=100 are also provided.
Outlet lengths of e− b= 20 and higher capture the bubble lengths to a precision of at least
5 significant figures.

studied the entrance effect for backward-facing step flow with an expansion ratio
of 2 and found that inlet lengths of 10h and 2h (where h is the step height) return
slightly different numerical solutions compared to that with zero inlet length. In this
study, the inlet length is 15, which is adequately long for the velocity flow to be
fully developed before reaching the bend.

3.2. Test of eigenvalue computations
The precision of the eigenvalue µ and eigenmode û produced by subspace iteration
was quantified by the residual

r= ‖Aû−µû‖, (3.11)

where ‖·‖ is the standard vector norm and eigenmodes were normalised (‖û‖=1). The
linear stability analysis technique relied on an iterative process to obtain the leading
eigenvalues and eigenmodes of the system. The process ceased when r < 10−7 was
achieved. Nevertheless, the eigenmodes are also resolution dependent. Table 3 reports
the accuracy of the eigenvalue computations as a function of element polynomial
degree N. The leading eigenvalue for Re= 500, β = 1 and k= 6.4 is real and linearly
stable. It is found that the eigenvalue converged to an error of merely 0.0003180 %
at N = 5, which is employed hereafter.

3.3. Code validation
Finally, the present model was validated against published two-dimensional simulations
providing the position and length of the recirculation bubble. In a viscous flow
(featuring boundary layers adjacent to no-slip surfaces), the point of reattachment
can be precisely measured by finding the location where the wall shear stress
τwall =−µ∂u/∂y is zero.

Figure 4 shows a comparison between the recirculation length of the first bubble
(LR1) in a flow with β = 1 as a function of Reynolds number between the present
and previously reported results digitised from figures in Chung et al. (2003) and
Zhang & Pothérat (2013). The coefficient of determination, R2, between the present
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Chung et al. (2003)

Zhang et al. (2013)

FIGURE 4. Length of the first recirculation bubble (LR1 ) against Reynolds number (Re) for
β = 1, comparing the present results to those of Chung, Tucker & Roychowdhury (2003)
and Zhang & Pothérat (2013).

N |µmax| Relative error (%)

4 0.9941048 0.0143794
5 0.9942509 0.0003180
6 0.9942458 0.0001927
7 0.9942469 0.0000837
8 0.9942477 —

TABLE 3. Dependence of leading eigenvalues on polynomial order. The parameter N
indicates the independent polynomial order of the base flow. Leading eigenvalues computed
on the mesh at Re = 500, β = 1 and spanwise wavenumber k = 6.4 are provided. The
relative error is to the case of highest polynomial order (N = 8). The given eigenvalues
are real.

data and those of these previous studies differ by just 2.2 % and 0.2 %, respectively.
The comparison displays a strong agreement between the studies, with each curve
increasing rapidly and linearly at Reynolds numbers Re . 200, before transitioning
to a more gradual linear regime of further bubble elongation beyond Re≈ 300. This
regime terminates with the onset of unsteady flow. The sudden drop in the data from
Zhang & Pothérat (2013) at Re ≈ 600 coincides with the onset of unsteady flow in
that study. The present computations return a steady state (in agreement with Chung
et al. 2003) up to Re≈ 700.

4. Two-dimensional base flows
4.1. Flow regimes

In this section, we focus on the behaviour of the two-dimensional base flow, especially
around the sharp bend and along the downstream channel. For the range of opening
ratios β studied, four regimes are identified (figure 5). The first regime exhibits
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(a)

(b)

(c)

(d)

FIGURE 5. (Colour online) Streamlines of steady two-dimensional base flow at (a) Re=
10, (b) Re= 200 and (c) Re= 600; (d) flooded contours of vorticity magnitude at Re= 800
for β=0.5. In (d), white represents zero vorticity (no rotation) and darker shading denotes
arbitrarily higher vorticity magnitude levels.

only a single recirculation bubble immediately behind the sharp bend. The second
regime sees the emergence of a bubble at the opposite wall slightly downstream of
the first bubble. The third regime reveals the appearance of a small counter-rotating
recirculation bubble between the primary recirculation bubble and the bottom wall.
Finally, the fourth regime marks the development of an unsteady two-dimensional
flow. The Reynolds numbers at the onset of each regime are denoted by ReR1 , ReR2 ,
Rein and Rec, respectively, as shown in figure 6. The results of the current study
agree with those of Zhang & Pothérat (2013), but small discrepancies are found for
Rein at β > 1, which are attributed to the different node density in the meshes at high
Re in both studies. The present study also extends the lower end of the range of β
from β = 0.1 (Zhang & Pothérat 2013) to β = 0.0125. The constriction at the bend
at smaller β leads to high velocities and shear in that region.

For clarity, we shall highlight the main features of the regimes shown in figure 6,
but a more detailed description can be found in Zhang & Pothérat (2013). The onset
of all regimes is delayed consistently to larger Re at larger β over β . 1, and it
remains almost constant when β & 1. It is worth noting that the behaviour of the flow
is different between β < 0.2, 0.2< β < 1 and β & 1. For β . 0.2, a flow resembling
jet flow is created through the narrow bend orifice, causing the flow to accelerate
transversely and hit the top wall before deflecting towards the streamwise direction.
This causes the onset of each regime to occur at low Re. By contrast, at 0.2. β . 1,
the width of the opening of the bend is sufficient for the flow to turn smoothly to the
streamwise direction around the bend; hence, β influences the onset of each regime.
However, at β & 1, the onsets do not vary significantly because a recirculation bubble
develops at the outer wall of the bend, which confines the turning flow, such that
the true breadth of the bend opening is no longer apparent. Thus the flow behaves
similarly to that of β = 1 and the onset Re values for the flow regimes remain almost
constant for β & 1.
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200

400

600

800

0.0125

Unsteady region

1 2 3 4 5

Re

0.1 0.2

FIGURE 6. Reynolds number where the primary recirculation bubble (ReR1 ), secondary
recirculation bubble (ReR2 ) and inside recirculation bubble (Rein) start to appear in the
two-dimensional flow; Rec is the transition from steady to unsteady. The lines are from
the current study and the symbols are results from Zhang & Pothérat (2013):E,A,@ and
C represent ReR1 , ReR2 , Rein and Rec, respectively.

At very low Re, the flow in the downstream and upstream channel is almost
symmetrical with respect to y = 0. However, as Re increases, the flow streamlines
at the bottom wall move upward until an inflexion point becomes visible behind
the edge of the sharp bend. Consequently, flow separation occurs and a recirculation
bubble is formed. In the range of β studied, the primary recirculation bubble appears
at very small Re because of a strong adverse pressure gradient behind the bend, as
can be seen in figure 5(a). Theoretically a sharp edge always causes separation to a
flow, even at very low Re→ 0 (Taneda 1979; Moffatt 1985). The finite ReR1 captured
in this study is a numerical artefact of finite spatial resolution at the sharp bend
corner. The finite discretisation obscures the bubble at very low Re.

As Re increases, the secondary recirculation bubble appears when the flow
streamlines in the bulk flow above the primary recirculation bubble move away from
the top wall. This results in a strong adverse pressure gradient at the wall, which
causes another separation to occur at ReR2 (figure 5b). Under the same circumstances,
an inner counter-rotating recirculation bubble, as seen in figure 5(c), is formed
between the primary recirculation bubble and the bottom wall when the backflow in
the primary recirculation bubble moves away from the wall.

Zhang & Pothérat (2013) found an additional regime between Rein and Rec, where
they reported a small-scale vortices structure far downstream of the channel; this state
is not observed in the current study. The Rec in figure 6 indicates an unsteady flow
where large eddies or vortices are shed downstream from the sharp corner of the bend
as depicted in figure 5(d); Rec is found to be in agreement with the values in the
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FIGURE 7. Hysteretic behaviour described by the fluctuation of the integral of velocity
magnitude throughout the domain as a function of Re at β = 1: reducing Re from an
unsteady flow (r) and increasing Re from a steady flow (t) give different Rec; |A| = 0
indicates the steady flow solution.

Zhang & Pothérat (2013) study, and it is important to note that both studies started
the simulations from rest to obtain this Rec. In a further analysis, hysteretic behaviour
has been observed when the simulation is started from different initial conditions.
Considering the unsteady flow as a departure from the base steady flow at the same
Reynolds number, its amplitude |A| is measured as the L2 norm (the integral of
the magnitude of velocity over the computational domain) of the difference between
velocity fields in these states. Figure 7 shows the variations of |A|, and therefore
regimes of unsteady flow where |A|> 0, when the Reynolds number is incrementally
varied for β = 1. Two distinct onsets of two-dimensional unsteadiness are found by
initiating the simulation from three different initial conditions: (i) flow at rest, (ii) a
snapshot of unsteady flow computed at a slightly lower Reynolds number and (iii) the
steady flow solution obtained at a slightly lower Reynolds number. It is evident from
the figure that the simulations starting from the flow at rest and from an unsteady
flow yield the same value of Rec = 742, whereas the simulations starting from a
steady flow become unsteady at a higher Re, Rec ≈ 1150.

The location where shedding initiates at the onset depends on the initial conditions
too. When a simulation is initiated from a flow at rest, the vortex shedding can
be seen to emerge from the sharp corner of the bend, as illustrated in figure 8(a).
It is likely that large-amplitude perturbations caused by the impulsive initiation
of the flow are sufficient to induce a shedding from the bend that bypasses the
downstream destabilisation, and beyond Rec ≈ 742 (at least in these simulations)
this is self-sustaining. A similar observation was made when reducing Re from an
unsteady flow: a large sudden decrease could revert the unsteady flow to steady state
at a Reynolds number at which the unsteady state could be preserved via a gradual
decrease in Reynolds number.
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(a)

(b)

(c)

(d)

FIGURE 8. (Colour online) Flooded contours of vorticity magnitude demonstrating
unsteady saturated flows for (a) Re = 800 at β = 1 (which was initiated from rest) and
(b–d) Re= 1152 at β = 1 (which was initiated from a saturated steady-state flow solution
at a lower Reynolds number). Contour levels are as per figure 5(d). Panels (b–d) show
domain segments −45 6 x 6−29, −30 6 x 6−14 and −15 6 x 6 1, respectively.

When Re is increased gradually along the steady flow branch, the flow remains
steady up to Re ' 1150. Figure 8(b–d) depicts the saturated flow at Re = 1152.
This final state exhibits a wavy disturbance extending 25 diameters downstream of
the bend. In this case, unsteadiness first manifested in the shear layers behind the
secondary recirculation bubble in the form of small eddies, but over time the flow in
this region more proximate to the bend restabilised and the unsteady region retreated
to its ultimate position further downstream. This has some resemblance to the regime
described by Zhang & Pothérat (2013) before the flow becomes unsteady in their
study. It is likely that they found this regime at lower Re due to the high sensitivity to
mesh resolution of this feature. Since the flow was already unstable far downstream
of the bend, noise tended to be amplified and created small vortical structures. In
testing this hypothesis, we found that by increasing the resolution of the mesh in
our study, the onset of unsteadiness could be delayed significantly by increasing Re
gradually. It is also plausible that the length of the outlet channel would influence
the upper limit of the steady-state branch, though this was not tested. Finally, it is
noted that when comparing the flow pattern and the region of the flow producing the
unsteady flow features between figures 8(a) and 8(b–d), the two depicted unsteady
branches are different. It will be shown in § 5 that the two-dimensional flows are
unstable to three-dimensional perturbations at Reynolds numbers below those of this
hysteretic zone, so it will not be characterised further here.

4.2. Bubble separation points (steady flows)
Figure 9 shows the Reynolds number dependence of the separation and reattachment
points (expressed by their distance downstream of the bend, xs) on both the bottom
and top walls of the channel for β = 1. The empty circle symbol indicates the
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Re
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Linear
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Linear
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FIGURE 9. A plot showing the Reynolds number dependence of the locations of
separation points (measured by their distances from the bend – left of the origin), xs, for
the base flows. Open circles represent the stagnation points for the primary recirculation
bubbles. Solid circles denote the stagnation points for the secondary recirculation bubbles
which form at Re ≈ 240 and xs ≈ 3.77. Solid and open squares represent the stagnation
points for the third bubble and inner recirculation bubble, respectively, which are formed
at higher Re. The top panel shows the streamlines of the base flow and the separation
points of primary, secondary, inner and third recirculation bubbles at Re = 1100 in the
outlet channel.

limit of the primary recirculation bubble behind the sharp corner. At Re = 240, a
secondary recirculation bubble appears on the top wall at xs= 3.77. At Re≈ 700, two
additional recirculation bubbles appear at the bottom wall; one is a small bubble in
the primary recirculation bubble and the other is near the reattachment point of the
secondary recirculation bubble.

From figure 9, we notice that there are regions where the locations of the separation
and reattachment points are almost linear functions of Re. It can clearly be seen in
figure 9 that when the bifurcation regions around Re= 300 and 750 are excluded, the
locations of both points for all bubbles behave almost linearly with Re. When a new
recirculation bubble appears, the growth of the recirculation bubble just upstream of it
is affected and so is the variation with Reynolds number of its reattachment point. The
same behaviour was also found in the backward-facing step flow by Erturk (2008).

The effect of β on the size of the primary recirculation bubble is illustrated in
figure 10. At small values of β, the main bulk flow is accelerated by the small
jet opening, making the primary recirculation bubble elongated in the streamwise
direction. This causes the bubble to be bigger than that at larger β; LR1 decreases as
β increases, but as β > 1 and Re & 200, the size of the bubble increases due to the
effect of the recirculation bubble at the far end of the bend wall.

Since for β > 1 part of the flow in the bend is trapped in a closed eddy outside
of the through flow taking the bend, Zhang & Pothérat (2013) defined an effective
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FIGURE 10. A plot of the length of the primary recirculation bubble as a function of β
for Reynolds numbers as labelled.

opening ratio βeff based on the horizontal thickness of the flow effectively turning
from inlet to outlet at y = 0; that is, the distance from the inner vertical wall at
the bend to the dividing streamline separating the turning flow from the closed
recirculation. The same definition is used in the present study. For β 6 1, βeff = β
(e.g. see figure 11a), but for β > 1, starting from Re ≈ 30, βeff is smaller than β
(e.g. see figure 11b). At Re > 200, βeff saturated close to 0.7. This degradation of
βeff to values below β, and its saturation behaviour at large Re, can be observed
in figure 11(c). For β = 2 in figure 11(b), the effective β is found to be βeff ≈ 0.8,
which is slightly higher than what was found by Zhang & Pothérat (2013).

5. Linear stability
5.1. Growth rates and marginal stability

This subsection analyses the dependence of the perturbation growth on Reynolds
number Re, spanwise wavenumber k and opening bend ratio β. Figure 12 shows
the predicted growth rates as a function of the Reynolds number and spanwise
wavenumber k for β = 0.2, 0.5, 1 and 2. The primary linear spanwise instability is
obtained via polynomial interpolation to determine the lowest Reynolds number that
first produces σ = 0, and the wavenumber at which this occurs. Both are reported
in table 4. For β > 0.2, at very low wavenumbers k . 0.3, a local maximum is
observed, but the corresponding mode is always stable. Between this local maximum
and the primary maximum, a small range of k produces leading non-real eigenvalues.
Larger wavenumbers that those shown in figure 12 were also studied and found
to decay increasingly fast at large k. This trend of the growth rate as a function
of Re and k shows a good resemblance with that of backward-facing step flow
(Barkley et al. 2002). However, for all β, the critical Re values for the flow to
become three-dimensional are found to be much lower compared to the flow in
backward-facing step (Armaly et al. 1983; Barkley et al. 2002) and partially blocked
channel (Griffith et al. 2007). This finding is not surprising, as the two-dimensional
flow around the sharp bend becomes unsteady at much lower Re compared to those
geometries.
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FIGURE 11. Streamlines of steady two-dimensional flow for Re = 600: (a) β = 1 and
(b) β = 2. A big recirculation bubble appears at the far end of the wall when β > 1,
causing the effective bend opening ratio to be less than the actual opening; βeff (Re) is
plotted in (c) for several values of β.

β Rec kc

0.2 125 3
0.5 278 2.05
1 397 1.98
2 387 1.93

TABLE 4. Critical Reynolds number and corresponding spanwise wavenumber at the
onset of instability for β = 0.2, 0.5, 1 and 2.

Figure 12 shows that β = 0.2 always has an oscillatory leading mode for the
range of Re investigated. Meanwhile, β = 0.5 has a synchronous leading mode
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FIGURE 12. Growth rates of leading eigenmodes as a function of spanwise wavenumber
k for (a) β = 0.2 and Re 6 200, (b) β = 0.5 and Re 6 600, (c) β = 1 and Re 6 700
and (d) β = 2 and Re 6 700. Solid symbols represent real leading eigenvalues, while
hollow symbols represent complex-conjugate pairs of non-real leading eigenvalues. Solid
lines connect all dominant leading eigenvalues from several branches of the same Reynolds
number.

at Re 6 400, before an oscillatory mode becomes dominant at higher Re. On the
other hand, β > 1 always has a synchronous leading mode. The transition from
oscillatory to synchronous behaviour as β increases is similar to what was observed
by Lanzerstorfer & Kuhlmann (2012) in backward-facing step flow, where they found
that the flow with very large step height is destabilised by an oscillatory mode, and
this changes from oscillatory to synchronous if the step height is further decreased.
To clarify the shift of the leading mode from synchronous to oscillatory, several of
the leading eigenvalues have been computed for β = 0.5 at each wavenumber and
three different Reynolds numbers.

The results are shown in figure 13. The curves closely resemble those for the flow
over a backward-facing step (Barkley et al. 2002), which consists of two branches
of real eigenvalues at low wavenumber coalescing into a single branch of non-real
eigenvalues as k increases. In Barkley et al.’s (2002) case, however, the primary
leading eigenvalues appear at higher wavenumbers, and (as with the present study
for β > 0.5) the real branch at high wavenumber is the first to become unstable.
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FIGURE 13. Growth rates of leading eigenmodes plotted against spanwise wavenumber at
β = 0.5 for (a) Re = 200, (b) Re = 400 and (c) Re = 600. Solid symbols represent real
leading eigenvalues, while hollow symbols represent complex-conjugate pairs of leading
non-real eigenvalues.

All branches shift to higher σ as Re increases. However, as Re increases further,
it can be seen that the leading oscillatory mode is more stable than the real one
(figure 13b) before it becomes dominant at Re ≈ 600 as shown in figure 13(c). A
similar observation was made by Natarajan & Acrivos (1993) in flow past spheres
and disks, by Tomboulides & Orszag (2000) in the weak turbulent flow past a sphere,
and by Johnson & Patel (1999) in a numerical and experimental study on flow past
a sphere up to Red = 300.

5.2. Structure of the eigenvalue spectra
Figure 14(a,d,g) show the eigenvalue spectra for three different cases. Each has
a different type of leading eigenmode, and the dashed line indicates the onset of
instability (σ = 0). The real parts of the eigenmodes are visualised via plots of
spanwise vorticity on the plane z= 0 in figure 14(b,c,e, f,h,i). Figure 14(a) depicts the
eigenvalue spectrum for β = 0.2, Re = 120 and k = 2.8, which is near to the onset
of instability. Two complex-conjugate pairs of non-real eigenvalues are the fastest
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Stability of flow around a 180-degree bend 831

growing eigenvalues in the spectrum. The leading pair (e.g. figure 14b) exhibits a
strong growth rate, with strong perturbation structure in the primary recirculation
bubble, while the second pair (e.g. figure 14c) has perturbation structure mainly
localised in the bulk flow near the secondary recirculation bubble.

In contrast to β= 0.2, larger values of β tend to favour synchronous leading modes;
β = 0.5 is particularly interesting because this is the point at which a transition
from synchronous (Re = 400 in figure 14d) to oscillatory (Re = 600 in figure 14g)
leading mode is seen. The leading eigenvalue for Re = 400 is synchronous, while
the second largest eigenmode is oscillatory. However, at higher Re, the oscillatory
mode has higher growth rate compared to the synchronous mode, as can be seen
in figure 14(g). The perturbation fields associated with these modes are strongest
in the same vicinity, which is in the primary recirculation bubble near to the
reattachment point. From the contours represented in figure 14(h,i), we can see
that the contours in figure 14(b,e,i) have a similar synchronous eigenmode structure;
meanwhile figure 14(c, f,h) have a consistent oscillatory eigenmode structure. The
oscillatory mode structure is distinguished from the synchronous mode structure by
the presence of an array of chevron-shaped vorticity structures following the core
flow downstream from the aft end of the primary recirculation bubble.

5.3. Dependence on β and analogy with related flows
From the known influence of the expansion ratio on the three-dimensional character-
istics of the backward-facing step flow (Barkley et al. 2002; Lanzerstorfer &
Kuhlmann 2012), the opening ratio in a partially blocked channel flow (Griffith
et al. 2007) and the two-dimensional characteristics of 180-degree sharp bend flow
(Zhang & Pothérat 2013), we expect that the three-dimensional flow in a 180-degree
sharp bend is also dependent on the same physical parameter (here β).

Figure 15 illustrates the effect of β on Re and k at the onset of three-dimensional
instability. In the range of β studied, only the case β= 0.2 becomes three-dimensional
through the onset of an oscillatory mode, while all other cases transition through
the onset of a non-oscillatory mode. Apparently, Re3D increases steadily as the bend
opening becomes larger until β ≈ 1; Re3D at β = 2 is lower than at β = 1 because of
the appearance of the recirculation bubble at the far end of the bend wall that limits
the width of the bulk flow in the bend, causing a reduction in the effective value of β.
If we look closely, the value of Re3D at β = 2 is almost the same as that at β = 0.8,
which testifies to the importance of βeff in determining the stability of the flow. In
figure 15(a), Re3D is also plotted against βeff to illustrate this behaviour.

The eigenvector fields at the onset of instability for all synchronous modes (β& 0.3)
have perturbation structure located in the recirculation bubble, similar to what was
found in the backward-facing step flow (Alam & Sandham 2000; Barkley et al. 2002),
partially blocked channel flow (Griffith et al. 2007) and separation flow (Hammond
& Redekopp 1998). Barkley et al. (2002) concluded that the size and shape of the
bubble directly affected the instability. Conversely, Hammond & Redekopp (1998) and
Alam & Sandham (2000) confirmed in their studies that the onset of local absolute
instability depended on the backflow of the bubble. Interestingly, β = 0.8 and β = 2
have comparable bubble size, peak backflow velocity and location of the peak
backflow velocity (with discrepancies of only 4.3 %, 1.0 % and 0.4 %, respectively).
This supports the view that for β > 1, the stability of the flow is characterised by
βeff ; in both of these cases βeff = 0.8.

The dependence of kc on β is also illustrated in figure 15. As β increases from 0.3
to 0.5, the dominant wavelength of the instability increases from λ≈2π/3 to ≈π. This
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FIGURE 14. (Colour online) Eigenvalue spectra for (a) β = 0.2, Re = 120 and k =
2.8, (d) β = 0.5, Re = 400 and k = 3.5 and (g) β = 0.5, Re = 600 and k = 4.5.
(b,c,e, f,h,i) Visualisations of the real part of the complex eigenvector fields via spanwise
vorticity on the plane at z = 0: (b,e,h) show the respective leading eigenvalues, while
(c, f,i) show the corresponding field for the second most dominant eigenmode. In these
vorticity plots, zero vorticity is represented by the mid-level shading, while darker and
lighter shading respectively show negative and positive vorticity.

is perhaps due to the transition from jet-like flow around the bend to a broader turning
flow. The behaviour of kc at β = 0.2 does not follow the trend observed between β =
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FIGURE 15. Critical (a) Reynolds number and (b) wavenumber as a function of the
opening ratio. In (a) the critical Reynolds number is also plotted against the effective
opening ratio βeff . For β data, synchronous modes and oscillatory modes are represented
respectively by ‘@’ and ‘+’. For βeff data, synchronous and oscillatory modes are
respectively represented by ‘6’ and ‘×’.
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FIGURE 16. Marginal stability curves for sharp 180-degree bend flow with β = 0.2, 0.5,
1 and 2. Regions on the right of the curves represent flow conditions that are linearly
unstable to three-dimensional perturbations for that particular β.

0.3 and 0.5, due to the different mechanism. For β > 0.5, the critical wavenumber
exhibits little dependence on β.

Figure 16 shows the marginal stability curves at several values of β. The marginal
curves are obtained by interpolating σ (k, Re) to zero growth rate for each Re from
figure 12. For β 6 1, with increasing β the neutral stability curve shifts to the right
as expected, as the flow with wider bend opening ratio is more stable than those with
smaller opening ratios. Beyond β ≈ 1, the stability curve recesses slightly towards
lower Reynolds numbers, occupying the region between the marginal stability curves
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FIGURE 17. Length of primary recirculation bubble as a function of (a) critical Reynolds
number and (b) critical wavelength.
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FIGURE 18. Parameter space for flow regimes and leading peak eigenvalues of
three-dimensional stability. The onset of three-dimensional instability is represented by
A symbols. Lines are included for guidance and the shaded region shows the parameter
values exhibiting unsteady two-dimensional solutions.

for β = 0.5 and 1. This is explained by the decrease in βeff with β for β > 1 (see § 4).
The stability curves also show a decrease in dominant wavenumber with increasing β.
This is because the instability is scaled with bubble size as discussed by Barkley &
Henderson (1996). The length of the primary recirculation bubble as a function of
critical Reynolds number and critical wavelength is depicted in figure 17. It can be
seen from figure 17(a) that the flow becomes unstable at higher Re at bigger β. For
the synchronous modes (0.3 . β . 1), the critical wavelength increases as the size of
the primary recirculation bubble increases.

In order to consider the three-dimensional stability of these flows in the context
of the underlying two-dimensional flows, figure 18 summarises the (Re, β) parameter
space explored. Within this range, instability to three-dimensional perturbations always
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Stability of flow around a 180-degree bend 835

occurs in the regime where both primary and secondary recirculation bubbles exist.
This agrees with Armaly et al. (1983), who found for the backward-facing step that
three-dimensionality appeared in the flow after the secondary recirculation bubble had
formed. In our study, Re3D increases monotonically with β before slightly reducing
and becoming independent of β as β exceeds unity. The critical eigenvalue for β=0.2
is found to be non-real, while it is real for β = 0.5, 1 and 2. Across all considered
Re values studied at β = 0.2, the dominant eigenvalues are non-real. On the other
hand, for β & 1, the dominant eigenvalues are consistently real. A transition from
real to non-real (from solid to hollow symbol) can be seen at β = 0.5 in figure 18,
which occurs near the regime where the inside recirculation appears in the primary
recirculation bubble.

5.4. Instability mode structure
In this section, the mechanisms by which the three-dimensional infinitesimal
perturbations are amplified are addressed. The obvious mechanism seen in the
two-dimensional flow is Kelvin–Helmholtz instability. Zhang & Pothérat (2013) found
that in regime IV, the shear layers around both bubbles are subject to it, leading
to unsteadiness. However, as this study demonstrates, absolute three-dimensional
instabilities are found at Re� Rec involving different mechanisms.

As mentioned earlier, the structure of instability affecting the primary recirculation
bubble bears a strong similarity to both the flow over a backward-facing step and the
flow in a partially blocked channel. Ghia et al. (1989) suggested that the appearance
of the secondary bubble introduced a concave curvature in the streamlines of
the bulk flow, thus inducing Taylor–Görtler instability. However, this scenario has
been ruled out (Barkley et al. 2002; Griffith et al. 2007) because instability arises
neither in the secondary recirculation bubble nor in the main bulk flow between the
primary and secondary recirculation bubble zones. The leading instability mode from
our analysis is also localised in a different location, although the second leading,
lower-wavenumber eigenmode is found to be located in these regions.

Figure 19 visualises the real part of the leading eigenmode at gap ratios spanning
0.2 6 β 6 2. Three-dimensionality appears at the reattachment and separating points
of the primary recirculation bubble as shown by the spanwise velocity component in
figure 19(b(iii),c(iii),d(iii)). The perturbation is strongest within the closed streamlines
of the primary recirculation bubble (see the isosurface plots in figure 19), with
further perturbation structure also present in the secondary bubble and propagating
downstream into the core jet flow.

Spanwise perturbation vorticity contour plots shown in figure 19 exhibit perturbation
vorticity structures that resemble those arising from an elliptic instability, namely a
pair of counter-rotating vortices inside the recirculation bubble. A similar interaction
of counter-rotating vortices in two-dimensional elliptic streamlines was seen in
Thompson, Leweke & Williamson (2001). Leweke & Williamson (1998) suggested
that when two counter-rotating vortices balance each other, the radial component of
the strain field leads the disturbance to grow exponentially.

Lanzerstorfer & Kuhlmann (2012) observed that the combination of the flow
deceleration near the reattachment point, a lift-up process on both sides of the
bulk flow between the primary and the secondary recirculation bubbles, and an
amplification due to streamline convergence near and in the separated flow regions
is the cause of the flow instability in the flow over a backward-facing step with
an expansion ratio of 0.5. The same observation was made by Wee et al. (2004),
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(a)
(i) (ii)

(iii)

(b)
(i) (ii)

(iii)

(c)
(i) (ii)

(iii)

(d)
(i) (ii)

(iii)

FIGURE 19. (Colour online) Visualisation of the real part of leading eigenmodes at
(a) β = 0.2, (b) β = 0.5, (c) β = 1 and (d) β = 2, consisting of (i) a three-dimensional
visualisation of the streamwise (x-component of) vorticity, (ii) spanwise (z-component of)
vorticity and (iii) spanwise velocity contours overlaid with the base flow streamlines. Dark,
mid and light shading represent negative, zero and positive levels, respectively, while (ii)
and (iii) are plotted on the plane z= 0.

who found that the backward-facing step flow was locally absolutely unstable near
the middle of the primary recirculation bubble. The backflow was found to be high
and the shear layer was sufficiently thick to support an absolutely unstable mode;
hence, an absolute mode was more likely to originate in the middle of the bubble. By
contrast, Marquillie & Ehrenstein (2003) studied a flow behind a bump and observed
that the structural changes near the reattachment point of the primary recirculation
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bubble behind the bump triggered an abrupt local transition from convective to
absolute instability. It is observed that for the flow around a 180-degree sharp bend,
as Re increases, the location of the peak backflow in the primary recirculation bubble
shifts towards the reattachment point. The close gap between the peak backflow and
the reattachment point means that the flow is strongly decelerated upon approaching
the reattachment point. Interestingly, the peak backflow at the onset of instability
in this study for 0.3 . β . 2 is consistently located approximately 0.22LR from the
reattachment point, which is also the same location of the peak perturbation spanwise
velocity from the linear stability analysis (figure 19b(iii),c(iii),d(iii)). This suggests
that as in the other geometries mentioned, the instability in the 180-degree sharp
bend for β > 0.3 is localised near the peak of backflow intensity.

The oscillatory critical mode at β = 0.2 exhibits strong spanwise velocities at the
upstream end of the primary recirculation bubble and quite strong values around the
intense vortex in the bubble. This is highly consistent with a mechanism involving
a centrifugal instability around the intense vortex. A similar mode was seen by
Lanzerstorfer & Kuhlmann (2012) in the flow over a backward-facing step with a
very small opening. There, the perturbations were found to be a spanwise travelling
wave that displaces the jet and the intense vortex periodically.

The structure of the mode that destabilises the flow at β=0.5, Re=278 and k=2 is
shown in figure 19(b) in the isosurface plots of streamwise vorticity, spanwise vorticity
and w velocity contours. The isosurface consists of positive (light) and negative (dark)
vorticity contours located almost entirely in the primary recirculation bubble, near the
separation and reattachment points. The spanwise vorticity contour plot shows that
there is a pair of counter-rotating vortices in the primary recirculation bubble which
resemble the flow in a partially blocked channel (Griffith et al. 2007). The spanwise
velocity contours are also qualitatively similar to those of the unstable mode in the
flow over a backward-facing step (Barkley et al. 2002), where a ‘flat roll’ (i.e. a roll
in a horizontal plane about a vertical axis) mode structure exists in the bubble near
the reattachment point. Across the opening ratios studied, the same mode structure has
been found for all real primary leading eigenmodes indicated by the solid symbols in
figure 18.

The same type of plots describing the dominant eigenmodes for β = 0.2, Re= 123
and k = 2.8 are shown in figure 19(a). The mode appears to grow in the primary
recirculation bubble near the separation point and upstream of the intense vortex
close to the reattachment point. Both of these modes have a strong x-component of
perturbation vorticity in the upstream part of the primary recirculation bubble, which is
where Zhang & Pothérat (2013) found secondary instability in their three-dimensional
simulation of an unsteady flow at Re = 2000 and β = 1 with a spanwise-periodic
domain of length 2 units (this is equivalent to the case of wavenumber k= π in the
present notation).

The structure of the most unstable eigenmode at very small wavenumber is shown in
figure 20 as a plot of spanwise vorticity and (u, v,w) velocity contours. The structure
consists of spanwise vortices in the main bulk flow located between the primary and
secondary recirculation bubbles. The spanwise velocity contour in figure 20(d) clearly
shows that the bifurcating mode is located in the main bulk flow near the closed
streamlines of both bubbles.

5.5. Two-dimensional instability
Section 5.1 described how for Re<Rec at any β, the flow is stable to two-dimensional
infinitesimal perturbations (k = 0). The linear stability analysis found that all
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(a)

(b)

(c)

(d)

FIGURE 20. (Colour online) Structure of the real part of the leading eigenmode at β=0.5,
Re = 400 and k = 0.2 depicted on the plane z = 0: flooded contours of (a) streamwise
vorticity and (b) u-, (c) v- and (d) w-velocity overlaid with the base flow streamlines.
For clarity, only the vicinity of the bend is shown. Dark, mid and light shading represent
negative, zero and positive levels, respectively.

eigenvalues for k = 0 are real and have negative growth rate. The two-dimensional
flow around a sharp 180-degree bend becomes unsteady at small Re depending
on β, which is almost twice the critical value for the onset of three-dimensional
instability. From two-dimensional simulations, Zhang & Pothérat (2013) observed
that two-dimensional instability starts in the shear layer between the two steady
recirculation bubbles and sheds throughout the whole width of the channel. This
agrees with the mechanism found for the two-dimensional leading eigenmode. As
k→ 0, a leading real eigenmode splits into two complex-conjugate pairs. Figure 21
is plotted similarly to figure 13 in Barkley et al. (2002); log(−σ) will approach
−∞ as σ→ 0 from below. However, the data here show that the eigenmode growth
rate remains negative as the critical Reynolds number is approached, lacking any
evidence of a departure towards −∞. While it was not possible due to computing
time limitations to obtain stability data closer to Rec,upper, this nevertheless suggests
that the transition to unsteadiness of the steady-state two-dimensional solution branch
is not due to a global linear instability. This is supported by our earlier observation
that Rec,upper was resolution sensitive. Similar observations to those shown in figure 21
were made for flow behind a backward-facing step (Barkley et al. 2002) and through
a partially blocked channel (Griffith et al. 2007). The data exhibit a kink at Re≈ 700,
where a sudden steepening in gradient is observed, before the data revert to a nearly
horizontal trend to higher Reynolds numbers. Barkley et al. (2002) observed a similar
behaviour for the backward-facing step flow (in that case occurring at Re ≈ 1250),
and found by inspection of secondary eigenvalues that the kink occurred due to an
‘avoided crossing’ of the two eigenmode branches.

6. Nonlinear analysis of the bifurcation to three-dimensional state
In this section, three-dimensional direct numerical simulation (DNS) is performed

to assess the linear stability analysis predictions and to understand the nature of the
bifurcation arising from the predicted linear instability modes. The three-dimensional
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–2

–3

–4
400 600 800 1000 1200

Re

FIGURE 21. Leading two-dimensional (k= 0) eigenvalues for β= 1. Due to the hysteresis,
there are two Rec for this flow: Rec,lower is the lowest Re at which the flow can become
unsteady, while Rec,upper is the highest Re for which the flow remains steady. The leading
eigenvalues remain to have finite value of log(−σ) as Re→ Rec. Note that the flow will
become linearly neutrally stable when σ→ 0− and log(−σ)→−∞.

algorithm exploits the spanwise homogeneity of the geometry, combining the two-
dimensional spectral-element discretisation in the x–y plane with a Fourier spectral
method in the out-of-plane z-direction (for more details see Sheard et al. 2009 and
Ryan, Butler & Sheard 2012). The span of the domain in z may be specified, and
periodic boundary conditions are naturally enforced in the z-direction.

Tests were conducted to determine the dependence of computed three-dimensional
solutions on the number of Fourier modes Nf included in the simulations. In these
tests, the spanwise wavenumber was selected to match a predicted linear instability
mode above the critical Reynolds number, and a superposition of the two-dimensional
base flow and three-dimensional eigenvector field of the predicted linear instability
was used as an initial condition. The three-dimensional flow was then evolved in
time until it saturated, at which point measurements of the domain integral of |w|
and a point measurement of the w-velocity were taken. Results are shown in table 5,
demonstrating that the solution having 8 Fourier modes has converged to within at
least 2 and 3 significant figures to the result obtained with 16 modes. This is deemed
sufficient to capture the nonlinear growth behaviour and the saturated state of the
mode, so 8 Fourier modes is employed hereafter.

6.1. Nonlinear evolution of the unstable modes
Three-dimensional simulations were subsequently performed at selected β and Re
combinations. The spanwise wavenumber in each case is deliberately set to match
the corresponding linear instability eigenmode. It is acknowledged that this choice
excludes long-wavelength features that may or may not arise. However, it facilitates
an isolation of the instability mode under scrutiny. Figure 22 shows the time history
of the spanwise velocity in these three-dimensional simulations for (a) β = 0.2,
Re= 160, k= 4 and (b) β = 1, Re= 600, k= 4.5. The oscillatory and the synchronous
behaviour in figures 22(a) and 22(b), respectively, agree well with the behaviour of
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FIGURE 22. (Colour online) Time histories of w-velocity measured at a local point
(x, y, z)= (−2, 0.52, 1). Because w is zero in the underlying two-dimensional base flow,
non-zero w is an indicator of three-dimensional flow development. In (a) β=0.2, Re=160
and the three-dimensional spanwise domain wavenumber is k= 4. In (b) β = 1, Re= 600
and k= 4.5.

Nf
∫
Ω
|w| dΩ ε1 (%) Point w-velocity ε2 (%)

2 0.343542421 2.01 −0.044052007 42.4
4 0.350601512 1.91 −0.030932087 7.52
8 0.344016047 1.11 −0.028768317 0.04

16 0.347868534 — −0.028780194 —

TABLE 5. Convergence of the saturated three-dimensional DNS solution with the number
of Fourier modes included in the simulation (Nf ) for a test case having Re= 400, β = 0.8
and k = 2.0. Percentage differences between successive

∫
Ω
|w| dΩ and point w-velocity

measurements are ε1 and ε2, respectively.

β Re/Re3D k σ (LSA) σ (3D DNS) Percentage difference (%)

0.2 1.12 3 0.06648 0.06667 0.27
0.4 1.16 3.2 0.09877 0.09909 0.3
0.5 1.22 2 0.03131 0.03133 0.011
0.8 1.03 2 0.01454 0.01455 0.043
2 1.55 4.5 0.20032 0.20102 0.35262

TABLE 6. Comparison between the growth rates calculated from linear stability analysis
(LSA) and three-dimensional DNS.

the leading eigenmodes predicted using linear stability analysis (figure 12). From the
time history of the w-velocity, the growth rate of the perturbation can be calculated.
Table 6 shows strong agreement between the growth rates of the perturbation
field obtained from the linear stability analysis and from the three-dimensional
DNS for five different cases. The combination β = 2 and k = 4.5 is chosen to
demonstrate the accuracy of the predictions on flow with fast-growing perturbations.
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(ii)

(a)

(i)

(ii)

(b)

(i)

FIGURE 23. (Colour online) Visualisation of the three-dimensional disturbances via
isosurface plots of the (streamwise) x-component of vorticity for (a) β=0.2, Re=160, k=
4 and (b) β= 1, Re= 600, k= 4.5. In each case (i) shows the leading eigenmode predicted
by the linear stability analysis and (ii) shows the saturated state of a three-dimensional
DNS solution. The saturated solution in panel (a(ii)) is oscillatory, and that in (b(ii)) is
steady state.

Figure 23 shows three-dimensional isosurface plots of streamwise vorticity for the
same parameters as in figure 22, comparing the predicted three-dimensional eigenmode
in each case with the actual three-dimensional state produced once the flow saturates
following instability growth. The streamwise vorticity from the linear stability analysis
(figure 23a,b(i)) has a strong resemblance to that obtained from the three-dimensional
DNS (figure 23a,b(ii)). The strong agreement seen between the predicted eigenmode
structure and the resulting saturated three-dimensional structure verifies that the linear
stability analysis provides meaningful predictions of the three-dimensional nature of
the flow. The Reynolds numbers in figures 23(a) and 23(b) are 28 % and 51 % higher
than the critical Reynolds numbers for β= 0.2 and 1, respectively. Both cases produce
non-zero Fourier mode energy at saturation of magnitude 10−2 relative to the base
flow energy, which is very small. The smaller the disturbance energy compared to the
base flow energy, the closer the saturated state will be to the predicted infinitesimal
eigenmode because the contribution of nonlinear terms is weaker.

From the three-dimensional DNS, we found that the unsteady saturated state for
β=0.2 persists to at least Re=160; three-dimensional simulations were not conducted
beyond Re = 160, though it might be anticipated based on the close agreement
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between the saturated three-dimensional flow structure and the corresponding predicted
linear instability mode that a similar behaviour would extend to higher Reynolds
numbers: linear stability analysis was performed up to Re= 200, continuing to capture
this mode. Meanwhile, for β = 0.5, as Re increases, the saturated state changed from
a steady state at Re = 300 and 400 to an unsteady saturated state at Re = 500 with
k= 4.5. The same is predicted in figure 12, demonstrating the applicability of linear
stability analysis to this flow and the rich tapestry of flow regimes across the Re–β
parameter space.

6.2. Stuart–Landau model analysis
In this subsection, analysis of the nonlinear features of the instability mode evolution
is performed using a truncated Stuart–Landau equation. The Stuart–Landau model
is valid in the vicinity of the transition Reynolds number, and has found wide
application for classification of the nonlinear characteristics of bifurcations in fluid
flows. Examples include analysis of the Hopf bifurcation from steady-state flow past
a circular cylinder producing the classical Kármán vortex street (Provansal, Mathis &
Boyer 1987; Duŝek, Le Gal & Fraunié 1994; Schumm, Berger & Monkewitz 1994;
Albarède & Provansal 1995; Thompson & Le Gal 2004), the regular (steady-to-steady)
bifurcation breaking axisymmetry in the flow behind a sphere (Thompson et al.
2001) and three-dimensional transition behind a cylinder (Henderson & Barkley 1996;
Sheard, Thompson & Hourigan 2003), staggered cylinders (Carmo et al. 2008) and
rings (Sheard, Thompson & Hourigan 2004a,b). The model describes the growth and
saturation of perturbation as (Landau & Lifshitz 1976)

dA
dt
= (σ + iω)A− l(1+ ic)|A|2A+ · · ·, (6.1)

where A is the complex amplitude of the evolving instability as a function of time,
and the right-hand side of the equation represents the first two terms of a series
expansion. The growth rate and angular frequency of the mode in the linear regime
(|A|→ 0) are respectively denoted by σ and ω, while weakly nonlinear properties are
determined by the second term on the right-hand side. The sign of l dictates whether
the mode evolution is via a supercritical (l> 0) or subcritical (l< 0) bifurcation, and
any frequency shift is described by the Landau constant c (Duŝek et al. 1994; Le
Gal, Nadim & Thompson 2001; Thompson et al. 2001). A common treatment (Le Gal
et al. 2001; Thompson et al. 2001) is to decompose A(t) into magnitude and phase
components as

A(t)= ρ(t)eiφ(t), (6.2)

where ρ(t)=|A(t)| and φ(t)= arg(A(t)). Substitution of (6.2) into (6.1), separation into
real and imaginary parts, and simplification yields separate equations for amplitude
and phase, i.e.

dρ
dt
= σρ − lρ3, (6.3)

dφ
dt
=ω− lcρ2. (6.4)

It is convenient to then manipulate (6.3) as

d(log ρ)
dt

=
1
ρ

dρ
dt
= σ − lρ2. (6.5)
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FIGURE 24. (Colour online) The time derivative of the mode amplitude logarithm plotted
against the square of the amplitude for (a) β = 0.2, Re = 160, k = 4 and (b) β = 0.5,
Re = 400, k = 3.5, demonstrating supercritical behaviour. The solid circle represents the
growth rate predicted by linear stability analysis.

Hence a positive slope (−l) in a plot of d(log |A|)/dt against |A|2 will indicate a
subcritical bifurcation, while a negative slope corresponds to a supercritical bifurcation.
Whether a supercritical bifurcation is of pitchfork or Hopf type is dependent on
whether the growing mode is synchronous or oscillatory.

The envelope of energy in the non-zero spanwise Fourier modes of the three-
dimensional simulations was taken as a global amplitude measure (|A|2) of the
growing three-dimensional instabilities. Figure 24 plots the time derivative of
amplitude logarithm against the square of the amplitude for two different cases:
(a) β = 0.2, Re = 160 and k = 4, which grows from an oscillatory mode, and
(b) β = 0.5, Re = 400 and k = 3.5, which grows from a synchronous mode. The
behaviour shown for β = 0.5 is consistent with that found at larger β. The nearly
linear variation with a negative gradient towards small |A|2 shown in both plots
indicates that the transition in both cases occurs through a supercritical bifurcation.
This is consistent with other types of confined flow featuring recirculation bubbles,
such as the flow past a backward-facing step (Kaiktsis, Karniadakis & Orszag 1991),
through a sudden expansion in a circular pipe (Mullin et al. 2009) and past a sphere
(Tomboulides & Orszag 2000). The oscillatory and synchronous behaviour of the
modes in (a) and (b) reveal them to occur through supercritical Hopf and pitchfork
bifurcations, respectively.

In addition to the aforementioned sub- and supercritical bifurcation scenarios,
another possibility is that of a transcritical bifurcation. A dynamical system producing
transcritical behaviour takes the form

dρ
dt
= σρ − lρ2, (6.6)

which differs from the amplitude part of the Stuart–Landau model (6.3) by the
replacement of ρ3 with ρ2 in the nonlinear term on the right-hand side. Under an
analogous manipulation,

d(log ρ)
dt

= σ − lρ = σ − l
√
ρ2. (6.7)
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The
√
ρ2 term indicates that an infinite gradient would occur at |A|2 = 0 in a plot

of d(log |A|)/dt against |A|2. The absence of such behaviour in figure 24 rules out a
transcritical bifurcation. Similarly, a transcritical dynamical system expressed in terms
of the complex amplitude A,

dA
dt
= (σ + iω)A− l(1+ ic)A2, (6.8)

features a real component that simplifies to
d(log ρ)

dt
= σ − l

√
ρ2[cos φ − c sin φ]. (6.9)

In the limit |A| = ρ→ 0, the oscillation described by the trigonometric term produces
gradients in d(log |A|)/dt as a function of |A|2 that approach infinity; the absence
of this behaviour in figure 24 again supports the present classification of these
bifurcations as being supercritical.

7. Conclusions
We conducted a linear stability analysis to characterise the onset of unsteadiness in

the flow around a 180-degree sharp bend. We considered a range of opening ratios β
spanning all regimes from a jet-like flow through a small aperture to flow topologies
involving a recirculation within the turning part (Zhang & Pothérat 2013). In all
cases, we found the base flow with steady bubble in the outlet to be unstable to
infinitesimal perturbations at a finite critical Reynolds number Rec, which increases
monotonically with the effective opening ratio βeff ; βeff measures the actual width
of the main stream in the turning part. Consequently Rec increases monotonically
with the geometric opening ratio β so long as the mean stream occupies the whole
turning part (up to β ∼ 1). By contrast, for high opening ratios, Rec(β) decreases
asymptotically to Rec(βeff ' 0.8), because the recirculation in the turning part reduces
the effective width available to the main stream.

The linear stability analysis revealed three types of leading eigenmodes. In the
subcritical range, the leading eigenmode is reminiscent of long-wave Taylor–Görtler
vortices localised in the main stream between the two recirculation bubbles attached
to either outlet wall. This mode was, however, never found to become unstable. As
Re was increased, two unstable branches emerged that were respectively associated
with a real eigenvalue and a complex-conjugate pair of eigenvalues. The former
dominates for β > 0.3. The corresponding perturbation has a spanwise wavenumber
k ' 2 and is confined within the first recirculation region, with maximum intensity
where the backflow is most intense. For β = 0.2, by contrast, unsteadiness sets in
via the second branch in the form of a spanwise oscillating mode, akin to that found
in backward-facing step flows with small opening ratios (Lanzerstorfer & Kuhlmann
2012).

In all cases, the critical modes were three-dimensional. Accordingly, locally unstable
two-dimensional modes (i.e. having zero spanwise wavenumber) are only found at
higher Reynolds numbers than three-dimensional modes, but do not grow through
a global instability. They drive a Kelvin–Helmholtz instability in the main stream
between the two recirculating bubbles that is consistent with the DNS of Zhang &
Pothérat (2013).

Analysis of the nonlinear evolution of dominant instability modes using three-
dimensional DNS and the Stuart–Landau equation demonstrated that transition
from two-dimensional to three-dimensional flow consistently occurred through a
supercritical bifurcation: a supercritical Hopf bifurcation at small β and a supercritical
pitchfork bifurcation at large β.
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