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The wakes behind cylinders having an equilateral triangular cross-section are studied
numerically for various cylinder inclinations and Reynolds numbers. For steady flows, the
development of the recirculation region near the onset of flow separation is described,
and the separation Reynolds numbers mapped for different cylinder inclinations. Cylinder
inclinations that are not reflection symmetric about the horizontal centreline produce
asymmetric recirculation regions which persist until the flow becomes unstable. Flow
separation is observed to initiate on the rear-face of the cylinder and develops in size with
increasing Reynolds numbers until the separation points become defined at the triangular
cross-section's vertices where they remain even at higher Reynolds numbers. Using the
Stuart–Landau equation, the critical Reynolds numbers of the different flow cases are
quantified. The inclination of the cylinder is seen to strongly affect the location of the
separation points, the dimensions of the recirculation region, and ultimately the critical
Reynolds numbers. Increasing the Reynolds number past the instability threshold, a Bé-
nard–von Kármán vortex street is initially observed before the downstream region of the
wake re-aligns to a bi-layered vortex structure. Beyond this regime, the vortex street is
observed to develop variously. At most cylinder inclinations (α < °30 and α ≳ °42 ), the bi-
layered wake re-assembles into a secondary vortex street further downstream. For a small
range of cylinder inclinations ( α° ≤ ≲ °30 38 ), the shedding vortices interact to form a
vortex street similar to that produced by the 2P shedding mode for oscillating circular
cylinders, while inclinations α° ≲ < °38 54 describe the development of a PþS-like vortex
street. The formation of these unsteady wakes are attributed to vortex interactions in the
wake. The drag and lift force coefficients for various cylinder inclinations and Reynolds
numbers are also summarised. Phase trajectories of the force coefficients reveal that the
transition from the bi-layered wake to the 2P-like wake alters its profile significantly,
while the transitions to the other vortex streets observed did not incur such changes.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The study of flows past bluff bodies is an ongoing area of immense research interest in fluid mechanics desiring to
understand the complexities and underlying dynamics of the emerging flow structures. The wakes trailing these bodies
exhibit several known features dependent on the Reynolds number, inducing different force profiles on the body. While
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most wake flow phenomena has been extensively studied for the circular cylinder (Berger and Wille, 1972; Williamson,
1996c), interest in the vortex dynamics of cylinders of prismatic cross-sections have only relatively recently received
growing attention. Prismatic cross-section cylinders lack the smooth contours for flow separation that the circular cylinder
possesses, and instead presents sharp corners to the flow which alters the flow dynamics. Cylinders with triangular cross-
sections in particular find applications in vortex flow meters and turbulence promoters among other applications due to the
sharp corners it exhibits, and are also of practical importance in the field of structural design as it models representative
geometries. The present study takes a fundamental view to understand the development of these wakes at moderate
Reynolds numbers prior to the introduction of complexities from turbulence and chaos.

Studies on the circular cylinder details the following: At low Reynolds numbers, the flow is steady and remains attached
to the body. Taneda (1956) verified this experimentally and reported the onset of flow separation to occur at a separation
Reynolds number, Res¼5, exceeding which two symmetric recirculation bubbles form at the rear-side of the cylinder. More
recently, Sen et al. (2009) utilised finite-element simulations to refine this separation Reynolds number as Res¼6.29, and
determined the recirculation length and vorticity to follow Re1 and Re0.5 laws, respectively. At the limit of the steady flow
behaviour, the system becomes unstable via a Hopf bifurcation which is well described by the Stuart–Landau equation. The
pattern of counter-rotating vortices shed alternately from the cylinder describes the Bénard–von Kármán vortex street, after
Bénard (1908) and von Kármán (1911) who observed and studied the stability of the arrangements of the vortices. Jackson
(1987) conducted a stability analysis on flows past a circular cylinder and reported the critical Reynolds number as 46, which
various other studies found good agreement with (Mathis et al., 1984; Provansal et al., 1987; Sreenivasan et al., 1987).
Further investigation into the vortex-shedding process by Perry et al. (1982) found the formation of instantaneous ‘alley-
ways’ in the streamlines of periodic flows penetrating into an otherwise ‘closed’ cavity observable when the flow is steady.
The instantaneous streamlines also reveal the ‘centre’ and ‘saddle’ critical points in two-dimensional incompressible flows.

A further instability in the far-wake region of two-dimensional flows has also been observed. Early observations by
Taneda (1959) using an aluminium dust visualisation method, and Zdravkovich (1968, 1969) using smoke-visualization
techniques elucidated this secondary vortex street. This secondary shedding is reasoned to be the manifestation of a hy-
drodynamic instability of the mean wake, and appears, initially, as a stationary bi-layered wake which often tends to re-
arrange into a street of vortex structures of a larger scale. Durgin and Karlsson (1971), in an experiment subjecting the
vortex street to a deceleration, showed that the vortex spacing is crucial to the mode of deformation of the shed vortices,
and derived a criterion for eccentricities to develop in the vortices; Karasudani and Funakoshi (1994) later validated this
critical vortex spacing value as 0.365 from their experiments using a circular cylinder. Smoke-wire visualizations and
measurements conducted by Cimbala et al. (1988) later demonstrated the rapid spatial decay of the Bénard–von
Kármán vortex street and the subsequent selective amplification of lower frequency structures in the secondary vortex
street. The lower frequency structures were shown to be non-integer factors of the near-wake shedding frequency, and is
thus not an instability caused by the amalgamation of the primary vortices. Further studies on the secondary vortex street
by Vorobieff et al. (2002), Johnson et al. (2004) and Kumar and Mittal (2012) found the downstream distance of the onset of
these structures to agree to a Re�0.5 law, and suggests that the development of these vortical structures arise from a
convective instability of the time-mean wake.

For other variously shaped bodies, the developing wake region for a two-dimensional flow, while qualitatively similar,
exhibits locally different topologies—the presence of eccentricities or sharp edges on a bluff-body alters the flow dynamics
sufficiently to give rise to these differences. Jackson (1987) conducted a stability analysis for various cylinder cross-section
geometries to determine the effect of geometry on the onset of the periodic flow phenomena, determining the critical
Reynolds numbers and corresponding critical Strouhal numbers for the different geometries tested. Sheard et al. (2003), in a
study of flows past rings, showed some features of the wake to develop differently than those observed for the canonical
circular cylinder where the near wake describes a lack of local symmetry at lower aspect ratios. The separation and critical
Reynolds numbers for ellipses of various aspect ratios and inclinations were determined by Paul et al. (2014). A recent study
by Thompson et al. (2014) investigating the stability of the wakes of elliptical cylinders showed that the secondary vortex
street became increasingly complex with decreasing aspect ratios as the geometry tended to a normal flat plate. They
related the behaviour of the increasingly complex vortex street to the circulation per shedding cycle introduced into the
wake, the value of which increased with decreasing aspect ratio of the elliptical cylinder. The wakes of square cylinders at
incidence have also shown to be an area of considerable interest. Yoon et al. (2010) conducted a parametric study on flows
past inclined square cylinders to map the critical Reynolds numbers and different shedding topologies exhibited by the flow
as the square cylinder inclination varies from a symmetric to an asymmetric alignment about the horizontal centreline. An
investigation on the Res value for a square cylinder at zero incidence was conducted by Sen et al. (2011) and showed the
initiation of the recirculation region to occur on the rear-face of the cylinder instead of the sharp edges.

Unconfined flows past cylinders with triangular cross-sections, however, have received noticeably less focus despite the
geometry featuring sharper corners and stronger asymmetry to the oncoming flow which may alter the dynamics of the
flow and the bifurcation scenarios. Most reported works on flows past these prismatic structures only focus on symmetric
body orientations where the triangle apex either points directly upstream, or directly downstream. For the cylinder with its
apex facing upstream, a stability analysis by Jackson (1987) reported the critical Reynolds number for the onset of unsteady
flow to range within 34.318–36.370 for triangle aspect ratios of 0.8 and 1.0, respectively (35.002 by linear interpolation to an
equilateral triangle aspect ratio), using a computational domain with a blockage ratio 1/10; while Zielinska and Wesfreid
(1995) and De and Dalal (2006), using domains of blockage ratios 1/15 and 1/20, respectively, detailed a global mode
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analysis on the velocity distribution of the flows and reported the critical Reynolds number as 38.3 and 39.9, respectively.
Zielinska and Wesfreid (1995) also reported that additional simulations on a larger domain with a blockage ratio of 1/40
yielded a higher critical Reynolds number estimate of 39.6. Prhashanna et al. (2011) also reported critical Reynolds numbers
of approximately 40.5 and 36.5 for the apex facing upstream and apex facing downstream cases, respectively. Further
studies investigating the effects of cylinder inclination variations on the wake dynamics are by Iungo and Buresti (2009) on
wind tunnel experiments investigating the aerodynamic forces on finite-span cylinders at ≈ ×Re 1.2 10d

5 (Red being the
Reynolds number scaled by the cylinder side length d); Bao et al. (2010) on a numerical study reporting the force coefficients
at Red¼100 and 150; and Tu et al. (2014) on characterizing the shedding topology on the cylinder body over a range of
Reynolds numbers ≤ ≤Re50 160d . The trends of the force coefficients for increasing cylinder incidence angles reported by
Iungo and Buresti (2009) and Bao et al. (2010) were highly similar despite the different Reynolds numbers the investigations
were conducted at. In both cases, the highest drag forces were recorded when the triangle apex pointed downstream, and
highest lift forces were observed when the triangle base was parallel to the oncoming flow. Variations in the aspect ratio of
the triangular cylinder has also been shown to affect the stability of the flow for the cases where the cylinder apex points
downstream, but does not affect the onset of the instability significantly when the cylinder apex points upstream (Gang-
aPrasath et al., 2014). More recently Agrwal et al. (2016) conducted experiments at Red¼520 for the cylinder at several
different inclinations, reporting on the wake characteristics. Several other studies on flows past the triangular cylinder have
instead focused on the case of a heated cylinder (Zeitoun et al., 2011; Chatterjee and Mondal, 2015).

To the best of the authors' knowledge, an investigation on the development of the wake and its transitions for un-
confined two-dimensional flows past cylinders of triangular cross-sections at various inclinations across a range of Reynolds
numbers has yet to be reported, thereby motivating the present study. The authors are aware that the flow may become
three-dimensional within the range of Reynolds numbers investigated—Luo and Eng (2009) reported for an isosceles tri-
angular cylinder with apex pointing downstream that three-dimensional instability was predicted beyond a Reynolds
number of 164 through an instability consistent with Mode A seen behind circular cylinders (Williamson, 1988, 1996b). The
stability of the two-dimensional flows at other incidence angles remains unknown, though it undoubtedly will vary at
different incidence angles (Sheard et al., 2009; Sheard, 2011). It is paramount therefore that the two-dimensional flows
across all incidence angles are properly characterised, which is the main objective of this paper. This investigation further
stands to deliver fundamental insight into two-dimensional wake dynamics and secondary wake formation.

This paper is structured as follows: Section 2.1 describes the numerical treatment utilised in this study while Section 2.2
presents data acquired from the grid refinement and domain dependence studies before validating some results against
published works. The onset of flow separation, the Hopf bifurcation instability, and vortex shedding and wake patterns at
post-critical Reynolds numbers are discussed in Sections 3.1–3.3, respectively. Resulting lift and drag force coefficients for
the various wake profiles are reported in Section 3.4, and conclusions are drawn in Section 4.
2. Methodology

The system in this study comprises a cylinder with an equilateral triangular cross-section (hereafter referred to as
“cylinder” for brevity) with side length d at incidence α aligned with its axis perpendicular to a uniform freestream flow
with velocity ∞U . For this study, α is defined as 0°when the leading vertex of the cylinder points directly upstream, gradually
increasing in the counter-clockwise direction to α¼60° when the trailing vertex points directly downstream. Flow solutions
for the cylinder at inclinations α < °0 and α > °60 are reflections about the horizontal centreline of the solutions for the
cylinder inclined at α° ≤ ≤ °0 60 . Fig. 1 shows a schematic of the system described.

The reference length taken for this study is the frontal height h projected by the cylinder towards the oncoming flow. As
such, unless mentioned otherwise, the Reynolds number used throughout this study is defined as

ν
= ( )

∞Re
U h

, 1

where ν is the kinematic viscosity of the fluid (μ ρ/ ), μ is the dynamic viscosity, and ρ the fluid density. The cylinder frontal
α

U

h
d

Fig. 1. Geometric properties of the system under investigation.
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height h and side length d are related by

α α= ( ° − | − °|) + (| − °|) ( )
h
d

sin 60 30 sin 30 , 2

and the Reynolds number based on side length d, Red, can be recovered by dividing Eq. (1) by Eq. (2).
2.1. Numerical formulation

The motion of an incompressible fluid is governed by the incompressible Navier–Stokes equations, which, in an inertial
frame of reference, is expressed in its normalised form as

τ
∂
∂

= − ( ·∇) − ∇ + ∇ ( )p
Re

u
u u u

1
, 3a

2

∇· = ( )u 0, 3b

where the lengths are normalised by the projected frontal height h of the cylinder, the normalised velocities u are scaled by
the freestream velocity ∞U , the non-dimensional time τ is scaled by ∞h U/ , and the non-dimensional pressure p is scaled by

ρ ∞U2 .
The numerical simulation evolves Eq. (3) using a spectral-element method for spatial discretization (Karniadakis and

Triantafyllou, 1992) and a third-order accurate time-splitting scheme based on a backward-multistep method (Karniadakis
et al., 1991; Blackburn and Sherwin, 2004); wherein the computational domain is subdivided into quadrilateral macro-
elements onto which is mapped a Lagrangian tensor-product polynomial shape function. The shape function is interpolated
at the Gauss–Legendre–Lobatto quadrature points, enabling the use of the highly efficient quadrature method for in-
tegration of the weak form of Eq. (3) which have been recast using the Galerkin method.

The computational domain (example in Fig. 2(a)) is treated with the following boundary conditions: the left edge was
assigned a uniform freestream inflow condition while the right edge was given a constant reference pressure and a zero
outward normal velocity gradient; the transverse boundaries were treated with a stress-free impermeable boundary con-
dition (slip condition); and imposed on the cylinder surface was a no-slip boundary condition. On all boundaries where a
Dirichlet condition was imposed on the velocity field, a suitable Neumann boundary condition was imposed on the outward
normal gradient of pressure to preserve the overall third-order time accuracy of the numerical scheme (Karniadakis et al.,
1991). The present code has been used and validated in many previous fluid dynamics studies (see Hamid et al., 2015, for
various implementations).
(a) (b)
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Fig. 2. (a) Final computational domain with the cylinder inclined at α = °42 showing the macro-element distribution. Flow direction is from left to right.
(b) Close-up of the cylinder body inclined at (top) α = °0 , (middle) α = °30 , and (bottom) α = °60 detailing the final interpolation grids in the vicinity of the
body.



Table 1

Values of the Strouhal numbers, time-averaged drag and lift force coefficients, and the L2 norm as the spatial resolution N2 is increased. The relative errors

(%) to that using an ( + )N 1 th order polynomial for interpolation are shown in the parentheses.

N2 52 62 72 82 92 102 112

St 0.1702 0.1692 0.1687 0.1686 0.1685 0.1685 0.1685
(0.591%) (0.296%) (0.059%) (0.059%) (0.000%) (0.000%)

CD 1.9984 1.9991 1.9983 1.9993 1.9994 1.9994 2.0003

(0.035%) (0.040%) (0.050%) (0.005%) (0.000%) (0.045%)

CL �1.4875 �1.4887 �1.4861 �1.4873 �1.4879 �1.4885 �1.4895

(0.081%) (0.175%) (0.081%) (0.040%) (0.040%) (0.067%)

L2 norm 7885.27 7892.05 7899.69 7901.33 7902.18 7902.37 7902.37

(0.086%) (0.097%) (0.021%) (0.011%) (0.002%) (0.000%)
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2.2. Grid refinement, domain dependence, and validation

Zielinska and Wesfreid (1995), in comparing their results to Jackson (1987), briefly mentioned that the resolution about
the sharp edges of the triangular cross-section influences the overall accuracy of the data. Considering the case with α = °30
(largest macro-elements of all incidence angles considered owing to mesh construction) and Re¼200 (upper bound of
Reynolds numbers considered for this study), a grid refinement study was conducted by gradually increasing the order of
interpolation of the polynomial shape function N (N2 nodes per macro-element) to ensure that the dynamics of the flow is
adequately resolved. Table 1 shows the results for ≤ ≤N5 11 from the grid resolution study, monitoring the Strouhal
numbers St, the time-averaged drag force coefficients CD, the time-averaged lift force coefficients CL, and the time-averaged
integral of the magnitude of velocity (of the saturated flow solution) over the computational domain (L2 norm). As char-
acteristic of the spectral-element method, the relative errors decrease exponentially with increasing N2 values, but at the
expense of the permitted time-stepping size. The output parameters from the saturated flow solution obtained using N¼8
achieves a precision of less than 0.1% to flow solutions obtained using higher N, and shows a close accuracy to the solutions
obtained at N¼11 (the highest N used for this pre-study). This degree of precision and accuracy is likely smaller than the
error levels found in corresponding laboratory experiments, and is hence used favourably in proceeding with this study.

The dependence of the flow solutions on the domain size was also investigated to quantify the solution uncertainty
arising from the finiteness of the domain. Here, each of the upstream (lu), downstream (ld), and transverse (ltrans) domain
lengths were independently varied from the computational domain size defined (− ≤ ≤h x h30 35 and − ≤ ≤h y h30 30 )
and evolved to a saturated state using α = °30 and Re¼200 (same domain size and parameters used for the grid refinement
study). The changes in the Strouhal numbers and the time-averaged drag and lift force coefficients were quantified, and the
results presented in Table 2. Note that the domain size defined for this study appears to be among the largest compared to
previous works on unbounded flows past cylinders with triangular cross-sections. Hence, the final meshes, examples of
which are shown in Fig. 2(b), contain 1082 mesh nodes (1016 quadrilateral macro-elements) with an 8th order polynomial
shape function imposed through adjoining nodes.

Flows past the cylinder at α = °0 and α = °60 at Re¼100 were computed to validate the current implementation against
the available published data. The results in Table 3 compare well with the most recent study by Wang et al. (2015), where
results differed by less than 1% except for the drag force coefficient at α = °60 . Presumably, the small discrepancies observed
arise from restrictions from the different domain sizes used, and the different numerical methods employed—where the
Table 2
Values of the Strouhal numbers and time-averaged lift and drag force coefficients as the domain lengths were independently varied. The values in the
parentheses quantifies the percentage difference (%) of the values relative to M0.

Mesh M0 M1 M2 M3 M4 M5 M6

lu 30h 10h 20h 30h 30h 30h 30h

ld 35h 35h 35h 15h 25h 35h 35h

ltrans 60h 60h 60h 60h 60h 15h 30h

St 0.1686 0.1738 0.1694 0.1626 0.1672 0.1729 0.1702
(3.084%) (0.474%) (3.559%) (0.830%) (2.550%) (0.949%)

CD 1.9993 2.0878 2.0137 1.9091 1.9794 2.1041 2.0393

(4.427%) (0.720%) (4.512%) (0.995%) (5.242%) (2.001%)

CL �1.4873 �1.5498 �1.4963 �1.4118 �1.4708 �1.5632 �1.5167

(4.202%) (0.605%) (5.076%) (1.109%) (5.103%) (1.977%)



Table 3
Comparison of results to published works, all reported for Re¼100. The values in the parentheses are the relative differences (%) of the results from the
present study to available published data.

Source St CD ′CL

0° De and Dalal (2006) 0.1966 1.7607 0.2968
(1.02%) (3.21%) (4.31%)

Wang et al. (2015) 0.196 1.710 0.285
(0.71%) (0.35%) (0.35%)

Present study 0.1946 1.7041 0.2840

60° Tu et al. (2014) 0.154 2.122 0.742
(0.71%) (3.16%) (1.52%)

Wang et al. (2015) 0.154 2.097 0.733
(0.71%) (2.00%) (0.31%)

Present study 0.1529 2.0550 0.7307
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previous studies implemented a finite-element or finite-volume method, the current study utilises a high-order spectral-
element technique.
3. Results

Having established the accuracy of the present model, we now proceed to describe the results of the present study.

3.1. Onset of flow separation

The first of the flow states considered is the steady flow at very low Reynolds numbers, with particular interest in
understanding the separation of the flow from the body which begins at the separation Reynolds number, Res. Several
studies have considered this flow state for different cylindrical geometries: flow separation past a circular cylinder initiates
at the rear stagnation point, revealing the development of two symmetric counter-rotating recirculation vortices (Taneda,
1956); elliptical cylinders at symmetric cylinder orientations to the incident flow behaves similarly to the circular cylinder,
while asymmetric orientations to an oncoming flow shows the inception of a single recirculation vortex on the rear side of
the ellipse near the separation Reynolds number (Paul et al., 2014); and the recirculation bubble of flows past rings of
certain aspect ratios exhibits a detached recirculation bubble (Sheard et al., 2003).
Fig. 3. Flow past an ellipse of aspect ratio 0.8 with its major axis inclined at 60° clockwise to the downstream flow direction. The plots in (a) show ′LR
against Re when only a single steady vortex is observed (solid line through ▴), ′LR against Re when the secondary vortex has formed (▵), and LR against
Re (– · line through □). Images in (b) are streamlines of the flow for (top) Re¼5.90, and (bottom) Re¼6.35.
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At this juncture, we define for this study that we consider a flow to be separated only when a steady recirculation region
develops at the rear face of the cylinder to circumvent the possibility of flow separation occurring at the cylinder vertices
where the flow faces an intense adverse pressure gradient and may exhibit even a miniscule separation for any finite
Reynolds number. The length of the recirculation region, LR, has in many studies been typically defined as the distance
between the rear stagnation point on the cylinder and the wake stagnation point (also the saddle critical point), which
coincides with the wake centreline in some previous studies making the measurement of LR horizontal. The recirculation
region has also been shown to develop linearly in length with Reynolds number for variously shaped cylinders, and hence a
linear extrapolation of an LR against Re plot to its intersection on the horizontal axis should yield the separation Reynolds
number. However, for flows where separation initiates with a single steady recirculation vortex, the use of LR becomes
invalid as the wake stagnation point remains attached to the cylinder surface. To account for these cases, we propose a
modified length measure representative of the recirculation length by using the ‘centre’ critical point instead – the de-
velopment of the steady recirculation region showing a saddle point in the steady flow implicates the existence of a ‘centre’,
but with the ‘centre’ being observable while the saddle point remains on the cylinder surface for the cases with a single
recirculation vortex, thus allowing for more flexibility near the onset of separation. Hence, we define a ‘recirculation half
length’ ′LR as the horizontal distance between the ‘centre’ critical point on a vortex attached to the cylinder body and the rear
face of the cylinder and proceed with determining the separation Reynolds numbers in a similar fashion to that using LR.

To validate ′LR as the length measure, the separation Reynolds number was determined for a test case comprising an
ellipse of aspect ratio 0.8 with its major axis inclined at 60° clockwise to the downstream flow direction. This elliptical
cylinder geometry was chosen as it is not reflection symmetric about the horizontal centreline and contains a smooth
continuous surface for the flow to separate from instead of the sharp corners of the cylinder vertices. The ′LR and LR measure
yielded Res values of 6.06 and 5.80, respectively (Fig. 3(a)), meaning that the ′LR -based Res estimate is within 4.5% of the
estimate based on the conventional LR measure. The ′LR measure, however, is shown to depart from the linear fit upon the
formation of the secondary vortex, and a linear fit through these points results in a separation Reynolds number of 5.64
which underestimates the Res value, and a polynomial fit through the ′LR against Reynolds number data predicts a se-
paration Reynolds number of 6.14. The streamlines of the flow (Fig. 3(b)) at Re¼5.90 (top) shows no observable recirculation
vortex while the flow at Re¼6.35 (bottom) is separated and shows a single recirculation bubble developing.

Similar to the elliptical cylinder tested, all cylinder inclinations lacking a reflection symmetry about the horizontal
centreline (hereafter referred to as “asymmetric cylinder inclinations”) marked the onset of flow separation with the in-
ception of a single standing vortex (referred to as the primary vortex in this section) at the rear-side of the cylinder; for
Fig. 4. Streamlines of the separated flow past the cylinder inclined at α = °30 . Images from top to bottom then left to right are for Re¼3.0, 5.0, 6.0, 7.0, 8.0,
9.0, 12.0, and 15.0.
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cylinder inclinations with two faces visible from the downstream direction, this primary vortex forms on the face presenting
a steeper angle to the streamwise direction. For most cylinder inclinations (α ≲ °42 ), as the Reynolds number of the flow is
gradually increased, the streamlines of the flow is observed to deflect more intensely over the primary vortex into the wake
region, eventually sealing off a region of the flow to form the second recirculation bubble (the secondary vortex). Increasing
the Reynolds number further, the secondary vortex is observed to wedge the primary vortex away from the cylinder surface
causing it to ‘float’ in the steady wake. Fig. 4 summarises the scenario of the development of the recirculation region for the
cylinder inclined at α = °30 at several Reynolds numbers within ≤ ≤Re3.0 15.0. In the figure, the primary vortex is shown to
be present through all images (predicted Res¼2.73), and that the secondary vortex forms only at < <Re6.0 7.0. The primary
and secondary vortices are observed to remain attached to the cylinder surface at Re¼8.0, and the primary vortex then
detaches from the cylinder surface by Re¼9.0, initiating the alleyway flow feature. Further increasing the Reynolds number
from Re¼9.0 to Re¼15.0, the alleyway flow feature is observed to increase in width. As this alleyway flow is found to be
present in the steady wakes of cylinders lacking a reflective symmetry about the horizontal centreline, not just in the wakes
of the triangular cross-section cylinder in this study but in those for bluff rings (Sheard et al., 2003), square cylinders (Yoon
et al., 2010), and elliptical cylinders (Park et al., 1989; Paul et al., 2014), it may be deduced that flow fields about any bluff-
bodies lacking this reflective symmetry in its geometry will describe a similar asymmetry in its wake. While for circular
cylinders the symmetric recirculation bubbles in the ‘cavity’ flow classically defines the extent of the recirculation, the
steady flows past asymmetrically aligned bodies show a mass transfer through the recirculation region of wake.

The formation of the secondary steady vortex at higher cylinder inclinations within α° < < °42 60 develop differently to
the scenario described above. Here, the secondary vortex that initially forms on the same cylinder surface, according to the
scenario described previously for cylinder inclinations outside this range, wedges the primary vortex away from the cylinder
surface, causing the secondary vortex to open up into an alleyway flow. The secondary vortex that eventually establishes
itself develops over the other cylinder surface due to an increasingly adverse pressure region as the Reynolds number is
increased. Fig. 5 elucidates this new scenario for the cylinder inclined at α = °48 where the primary vortex and the initial
secondary vortex is shown to have developed by Re¼10.0 and the alleyway flow feature to have formed from separating the
primary vortex away from the cylinder surface by Re¼15.0. Flow separation about the trailing edge of the cylinder is
observed at Re¼20.0, with the steady secondary vortex being well observed by Re¼25.0. In either way the steady secondary
vortex develops, a strong similarity to the starting vortices of airfoils in establishing the Kutta condition is observed as both
the airfoil and the cylinder here presents a sharp trailing edge.

Interestingly, the symmetric cylinder orientation at α = °60 was the only inclination where symmetric counter-rotating
vortices are observed to develop from the onset of separation – the 0° inclination showed flow separation to occur by the
scenario described for the asymmetric cylinders but rapidly develops a counter-rotating vortex that is visually symmetrical
as expected of symmetric cylinder alignments. To address the question as to whether this occurrence was due to a lack of
resolution, the flow with α = °0 was further resolved at an increased resolution of N2¼132, the results showing the same
lack of symmetry. While this does not definitively rule out a resolution-dependence on this asymmetry, it strongly supports
the conclusion that the asymmetry occurs as a natural feature of the flow. Small localised recirculation regions near the
cylinder vertices arising from intense adverse pressure gradients were not observed in any of the results obtained.
Fig. 5. Streamlines of the separated flow past the cylinder inclined at α = °48 . Images from top to bottom then left to right are for Re¼7.0, 9.0, 10.0, 15.0,
20.0, and 25.0.



Fig. 6. (a) Plot of ′LR against Re for the cylinder inclined at α = °48 . The solid line shows the linear function fitted to predict Res and the intersection of the
dashed lines marks the threshold for flow separation. (b) Map of the separation Reynolds numbers, Res scaled by the cylinder side length d (□) and by the
projected height of the cylinder h (▵) as the incidence angle α of the cylinder is varied. The solid line through the data of Res d, is described by Eq. (4). The
Res d2, points (■) approximates the Red where the secondary vortex is initially observed.
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An example of an ′LR against Re plot used to determine the separation Reynolds numbers is shown in Fig. 6(a), which de-
monstrates the almost perfectly linear dependence of the two parameters close to the onset of flow separation.
Fig. 6(b) summarises the separation Reynolds numbers for the various cylinder inclinations considered, and shows the values to
increase monotonically with increasing α. The value of Red where the secondary vortex first makes an appearance is ap-
proximately mapped for several intermediate cylinder inclinations, shown in Fig. 6(b) as Res d2, . These Res d2, values for symmetric
cylinder inclinations α = °0 and 60° were not determined as the former develops a symmetric wake rapidly past the initial
separation while the latter inclination shows the initial separation to manifest with both steady vortices occurring symme-
trically; the Res d, and Res d2, for both inclinations are equal/approximately equal. Intuitively, the increasing resistance to flow
separation for increasing α was expected—the rear faces of the cylinder become less steeply inclined, leading to smaller
impulsive decelerations and momentum losses in the flow around the sharp corner and thus also a smaller pressure drop.
Increasing the Reynolds number past the onset of separation of the flow from the cylinder, the separation points on the cylinder
were observed to move from its point of inception towards the vertices of the cylinder edge where it then remains fixed for any
higher Reynolds number. Interestingly, the gradient of the Res data for increasing α is non-zero at both α = °0 and 60°, despite
the incidence angle smoothly continuing both to α < °0 and α > °60 for redundant inclinations already captured within

α° ≤ ≤ °0 60 . Specifically, α = − °1 is simply a reflection of α = °1 about the horizontal wake centre-plane, and likewise α = °61 is
a reflection of α = °59 . Hence over a full 360° range of rotations, Res is a non-smooth continuous function of α with differ-
entiability class Co, with discontinuous gradients every 60° (or when a triangle vertex points directly upstream or downstream).

The gradual trend of the separation Reynolds numbers for the various cylinder inclinations show that a functional re-
lationship may exist, for which a suitable expression is sought. As observed in Fig. 6(b), the data obtained for the separation
Reynolds numbers scaled by the cylinder side length d, Res d, , shows a smoother variation than the values scaled by the
projected height h particularly at intermediate cylinder inclinations of about α ≈ °30 . A polynomial function was thus fitted
to the Res d, data to describe this trend, and is presented as Eq. (4) with the corresponding coefficients and goodness-of-fit
statistics shown in Table 4.

α α α α α( ) = + + + + ( )Re a a a a a . 4s d, 0 1 2
2

3
3

4
4

Table 4
(Left) Coefficients of Eq. (4), and (right) the goodness-of-fit statistics of the fitted function. SSE is the sum of squares due to error, R2 is the coefficient of

determination, and R̄
2 is the modified coefficient of determination.

a0 4.45573�10�1

a1 7.26661�10�2 SSE 8.32771
a2 4.75047�10�4 R2 0.99949
a3 �1.29131�10�5

R̄2 0.99915

a4 5.97814�10�7



Table 5
Values of the separation Reynolds numbers, Res, with increasing computational domain sizes. The results for M0 are for the original domain size used as
reported in Fig. 6. The values in the parentheses quantifies the percentage difference (%) of the values relative to the results for DS3.

α M0 DS1 DS2 DS3

0° 0.434 0.436 0.438 0.439
(1.139%) (0.683%) (0.228%)

60° 11.503 11.544 11.560 11.564
(0.527%) (0.173%) (0.035%)
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Several prior studies on the circular cylinder have shown that the size of the computational domain used affects the
reliability of the results when modelling the unconfined flow condition, particularly on the evaluation of the force coeffi-
cients (Lange et al., 1998; Kumar and Mittal, 2006; Posdziech and Grundmann, 2007; Sen et al., 2009). In these studies, it is
noted that the results appear to be increasingly affected at lower Reynolds numbers for a given computational domain. It
then becomes essential to obtain an estimate of these domain-related uncertainties for the results of Res reported in this
paper. While the domain dependence study in Section 2.2 has quantified the associated errors using a test case of Re¼200,
the domain study here focuses on the steady flow regime and bears importance to the credibility of the results in this
section. Similar to Posdziech and Grundmann (2007), the initial mesh resolution was retained while the extent of the
computational domain was increased by adding additional elements around it to reach the desired domain length. Three
square computational domains of dimensions = ( )DS h1001

2, = ( )DS h2002
2 and = ( )DS h3003

2 with the cylinder placed
centrally were used to predict the Res values for α¼0° and 60° (extremes of the Res curve shown in Fig. 6), and the
uncertainties of each case quantified relative to the results of Res for DS3. The results (provided in Table 5) show little
variation in the Res values predicted, being approximately 1.1% at worst.

3.2. Transition from steady to time-dependent flow

The first instability in the flow occurs at a critical Reynolds number above which the flow past the body becomes
oscillatory in nature. This instability is of a Hopf type and the evolution of the equivalent instability in other bluff body wake
flows has been shown to be well-described by the Stuart–Landau equation, which describes the non-linear behaviour of a
perturbation about the transition (Provansal et al., 1987; Sreenivasan et al., 1987; Sohankar et al., 1998; Sheard et al., 2004;
Paul et al., 2014). Briefly, following Provansal et al. (1987) and Sheard et al. (2004), the Stuart–Landau equation is written as

τ
σ ω= ( + ) − ( + )| | + … ( )

A
i A l ic A A

d
d

1 , 5
2

where A is the complex mode amplitude ( = | | ΦA A ei ), | |A the signal magnitude,Φ the phase of the mode, s is the infinitesimal
growth rate, l and c are coefficients describing the non-linear departure of the mode evolution from the linear regime, andω
the angular frequency of the signal in the linear regime; can be decomposed into its real and complex components as

τ
σ( | |) = ( − | | ) + ⋯ ( )

A
l A

d log
d

, 6a
2

Φ
τ

ω= ( − | | ) + ⋯ ( )lc A
d
d

. 6b
2

For supercritical bifurcations ( >l 0), the first two terms of Eq. (6a) (which considers only the real components of the de-
composed Eq. (5)) should sufficiently describe the transition behaviour near the onset of the instability. τ( | |)Ad log /d against
τ

C
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Fig. 7. Typical plots of (a) the transient lift force signal where τ¼0 corresponds to the instant the Reynolds number was reduced and (b) the variation of
τ( | |)Ad log /d against | |A 2. The plots provided are examples using α = °48 .
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| |A 2 should thus relate linearly and intercept the vertical axis at the signal growth rate s. Gathering s at several Reynolds
numbers, and extrapolating to a zero growth rate yields the critical Reynolds number, Rec. Strictly speaking, the validity of
the analysis described above applies only to Reynolds numbers close to the instability threshold. The approach taken for this
analysis was to impulsively decay a base flow (evolved to saturation at a Reynolds number exhibiting unsteady flow) to
obtain the growth rate of its lift force signal (example in Fig. 7(a)) which was subsequently used to obtain the critical
Reynolds number (Sohankar et al., 1998; Thompson and Le Gal, 2004; Yoon et al., 2010; Hussam et al., 2011). The base flows
were at Re¼50 for all cylinder inclinations, which was chosen from a set of initial simulations as the critical Reynolds
numbers were not known a priori. It was observed for all cases that the data obtained for the growth rates at various
Reynolds numbers (example shown in Fig. 8(a)) did not adhere precisely to a linear profile as was reported in previous
studies (Provansal et al., 1987; Sreenivasan et al., 1987). To facilitate better estimations of the critical Reynolds numbers, an
inverse polynomial function was fitted to the data for the extrapolation. The decay of the base flow was confined within

< − ≤Re Re0 10c to ensure the validity of the analysis used (Sohankar et al., 1998).
A plot of the critical Reynolds numbers against α is shown in Fig. 8(b). The cylinder inclined at α = °0 yields a critical

Reynolds number of 40.45, which compares well to previously published values of 39.9 (De and Dalal, 2006), 39.6 Zielinska
andWesfreid (1995), and approximately 40.4 (Prhashanna et al., 2011). A discontinuity in the gradient is observed at α = °30 ,
corresponding to when a triangle vertex is pointing vertically upward. This discontinuity arises from the α| − °|30 in the h d/
mapping function described by Eq. (2). Interestingly, no such non-smoothness is seen when Rec is rescaled by the side
length d to Rec d, . This smoothness, combined with the property that the data over α° ≤ ≤ °60 120 will be a reflection of the
data over α° ≤ ≤ °0 60 invites the use of a Fourier series to describe the data. The fitted function is shown in Eq. (7) with its
corresponding coefficient values and the goodness-of-fit statistics presented in Table 6, and recovers the original data to
within 0.2% of Rec d, . The function describing the Rec data for increasing cylinder inclinations can then be obtained by
multiplying Eq. (7) by Eq. (2).

∑α π α( ) =
( )=

= ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟Re a icos
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Table 6
(Left) Coefficients of Eq. (7) and (right) the goodness-of-fit statistics of the fitted function. Here χ2 is the standard chi-square goodness of fit test.

a0 4.07437�101

a1 2.27251�100 SSE 0.02939
a2 �2.86780�100 R2 0.99973
a3 3.90843�10�2 χ2 0.02939
a4 3.22403�10�1



Fig. 9. Streamlines of the steady flow at Re¼35 for the cylinder inclined at: (a) 0°, (b) 24°, (c) 30°, (d) 36°, (e) 48°, and (f) 60°. The light and dark regions
denote negative and positive streamwise velocities, respectively.
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As observed in Fig. 8(b), the cylinder inclined at α ≈ °28 showed the highest Rec d, value, and the lowest being found at
α = °60 . A simple explanation for the peak Rec d, value is that the cylinder inclined at α ≈ °30 presents the smallest frontal
height h to the oncoming flow compared to the other cylinder inclinations, making it more stable as it is a ‘smaller’ geo-
metry and has a smaller effective Reynolds number. The Rec curve, however, seems to describe several interesting un-
derlying trends. Rec is almost independent of cylinder inclination over α° ≤ ≲ °0 18 , but produces a strong dip in the critical
Reynolds numbers for α° ≲ ≤ °18 30 . Over both of these inclination ranges, the cylinder presents a single surface of the
cylinder to the downstream flow. Observations of the pre-critical flows at Re¼35 at these cylinder inclinations (Fig. 9(a–c))
show the recirculation region forming only over this single side, limiting the width of the wakes produced (and thus also the
wake length), justifying the similar critical Reynolds numbers obtained for cylinder inclinations α° ≤ ≲ °0 18 . The drop in the
critical Reynolds numbers for the cylinder inclined at α° ≲ ≤ °18 30 is caused by the inception of a small negative
streamwise velocity bubble on the steeper leading edge of the cylinder which disturbs the impinging flow making these
cases more susceptible to the instability (visible in Fig. 9(b,c)). Over α° < ≤ °30 60 , the cylinder presents two sides of the
cylinder to the downstream flow, and demonstrates a small critical Reynolds number peak to occur at α ≈ °34 . The
Fig. 10. Map of the different vortex streets exhibited by the unsteady flow. Regime (I) describes the Bénard–von Kármán vortex street, (II) shows the bi-
layered wake arrangement, (III) bounded by the dotted line shows the secondary vortex street, (IV) bounded by the (−··) line observes the PþS-like wake,
and (V) bounded by the (– ·) shows the 2P-like wake. Saturated solutions obtained for this map are dotted in.
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difference between the two sides of this peak is that over cylinder inclinations α° < ≲ °30 34 , the recirculation region de-
velops over a single side of the cylinder, while the recirculation region of the cylinder at inclinations of α° ≲ ≤ °34 60
develops over the two downstream facing sides of the cylinder (see Fig. 9(e,f)) as explained in Section 3.1. The wakes
produced from the former inclination range are thus restricted to a smaller width compared to the latter range of incidences
which expands over both downstream facing edges of the cylinder.

3.3. Vortex street variations in the unsteady flow regime

For cylinders with triangular cross-section, Tu et al. (2014) characterised the topological features of the flow shedding
from the cylinder to either be via a main separation pattern (MS), single secondary vortex pattern (SSV), or a vortex merging
pattern (VM), with clear descriptions of these patterns provided by Yoon et al. (2010). This part of the present study focuses
instead on the structure of the vortex street and the characteristics of the wake. A map of the different vortex streets
observed for the various cylinder inclinations and Reynolds numbers tested is provided in Fig. 10. The different wakes
observed broadly implies the MS, SSV, and VM shedding patterns affect the structure of the vortex streets produced.

All cylinder inclinations initially exhibit the Bénard–von Kármán vortex street showing an orderly array of counter-
rotating vortices alternately shed into the wake. This is Regime (I) in the map presented in Fig. 10, which extends from Rec
(see Fig. 8(b)) up to the onset of regime (II) at a Reynolds number within < <Re80 90 at α = °0 through a Reynolds number
within < <Re120 130 at α ≈ °30 , and retreating to < <Re90 100 at α = °60 . At sufficient Reynolds numbers, the advecting
vortices at some distance downstream of the cylinder begin to deform and eventually aligns into a bi-layered wake,
identified as Regime (II) in Fig. 10. This regime is similar to the scenario described by Durgin and Karlsson (1971) who
showed that the vortices deform exceeding a critical vortex spacing ratio. The downstream position of the alignment of the
vortices decreases closer towards the cylinder as the Reynolds number is increased. Further increases in the Reynolds
number for most cylinder inclinations observes the bi-layered wake to re-arrange itself into a vortex street of a larger scale:
the secondary vortex street (Regime III). The onset of these larger-scale vortical structures, first reported by Taneda (1959),
introduce incommensurate frequencies into the wake for reasons other than the merging of primary vortices (Cimbala et al.,
1988). An example of the development of the vortex street from Regime I through to Regime III is shown in Fig. 11, which
will soon be discussed in further detail. For the vortex street observed in Regime IV (bottom two frames in Fig. 12(right)), the
cross-wake vortex spacing appears to be much larger than those in Regime I and Regime II, fully separating the dual rows of
opposite-signed vortices. A distinctive feature of this regime is the presence of a small single vortex ‘riding’ along one of the
rows of vortices in the wake. The vortex street in Regime IV is also observed to be susceptible to developing a meandering
profile in the downstream regions of the wake. In Regime V, the vortex street describes an appearance periodic to two pairs
of counter-rotating vortices shed into the wake (bottom frame in Fig. 12(left)). This vortex street features pairs of opposite-
signed vortices (not those shed successively but from every alternate pair) to propel away from the wake centreline. As the
appearance of the vortex streets observed in Regime IV and Regime V in the figure show a visual similarity to the PþS and
Fig. 11. (Left) Flows past the cylinder inclined at α = °24 at Reynolds numbers Re¼80 (I), 140 (II), and 200 (III) from top to bottom, with the corresponding
wake regimes indicated in the parentheses. Dark and light shading denote negative and positive vorticities, respectively. (Right) Spectral densities of the
transverse velocity signals at positions x¼3 h, 20 h, and 35 h describing the frequencies of the wake as it decays.



Fig. 12. Flows past the cylinder inclined at (left) α = °36 and (right) α = °42 for Reynolds numbers Re¼80, 140, 170, and 200 from top to bottom. For the
sequence on the left, the regimes traversed correspond to Regimes I, II, II, and V, while the sequence of the regimes on the right correspond to Regimes I, II,
IV, and IV. Dark and light shading denote negative and positive vorticities, respectively.
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the 2P shedding modes of the oscillating circular cylinder (Williamson and Roshko, 1988), these regimes are referred to as
the PþS-like and 2P-like modes. The difference between these modes observed in this study and those for the oscillating
cylinder will be discussed.

Fig. 11 describes the development of the wake for the cylinder inclined at α = °24 . In the figure (from top to bottom), the
Bénard–von Kármán vortex street (Regime I in Fig. 10) is clearly observed for the flow at Re¼80. The flow at Re¼140 in the
middle frame then shows the vortices to have developed spatially into the dual-layered wake (Regime II in Fig. 10), while the
secondary vortex street (Regime III in Fig. 10) is clearly observed to develop far downstream in the final frame. The onset of
the bi-layered wake profile and the secondary vortex street may possibly be observed at lower Reynolds numbers than
predicted as its formation is spatially dependent, and may develop further downstream than the computational domain
extent.

Thorough examination of the frequency spectra and velocity distribution in the far wake of the circular cylinder by
Cimbala et al. (1988) have described the rapid de-amplification of the dominant Kármán shedding frequency as the vortices
traverse further downstream, and the subsequent growth of a broad spectrum of incommensurate frequencies. To de-
termine whether the evolution of the spatial frequency response of the wake of the cylinder geometry in this study agrees
well with that reported by Cimbala et al. (1988), a spectral analysis of the transverse velocity signal at 5 positions in the
wake of the cylinder (x¼3 h, 9 h, 20 h, 30 h, and 35 h) inclined at α = °24 was performed. The spectral density for the flow at
Re¼200 (shown in Fig. 11 for positions x¼3 h, 20 h, and 35 h, and amplitudes normalised by the dominant spectral peak
observed in position x¼3 h) demonstrates that a similar scenario unfolds for the cylinder geometry in this study—the
Kármán shedding frequency with a Strouhal number of approximately 0.187 dominates the near wake along with its as-
sociated harmonics but rapidly decays to less than 5% of the initial strength by x¼20 h where the bi-layered wake is
observed. The velocity signals measured at x¼30 h and 35 h where the secondary vortex street has formed shows multiple
spectral peaks of comparable strengths over a large frequency band and are non-harmonic. The spectral densities of the flow
at Re¼80 and 140 (not shown) both show a similar decay of the dominant shedding mode, with the latter decaying at a
higher rate.

The wakes of flows past the cylinder inclined at α° ≤ < °30 38 and α° < ≲ °38 48 , however, develop differently to the
scenario described for the other cylinder inclinations. The vortex streets produced at these cylinder inclinations are re-
miniscent of those found for the oscillating circular cylinder (Williamson and Roshko, 1988) despite the cylinder in the
present study being stationary. For cylinder inclinations α° ≤ < °30 38 , increasing the Reynolds number from where the



Fig. 13. Vorticity contours of the flow past the cylinder inclined at (left) α = °36 and (right) α = °39 , both at a Reynolds number Re¼200. The sequence of
images from top to bottom describes one complete shedding cycle for the 2P-like mode (left), and the PþS-like mode (right) at 7 equi-spaced frames per
cycle. Dark and light contours show negative and positive vorticities, respectively.
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wake had developed a bi-layered profile shows the vortex street to first deflect away from the wake centreline before
abruptly developing a multi-pair vortex street similar to the 2P wake of an oscillating cylinder (Fig. 12(left) for the cylinder
inclined at α = °36 ). The 2P mode in the wake of an oscillating cylinder shows a periodicity to two pairs of like-signed
vortices successively shed into the wake region (Williamson and Roshko, 1988), while the 2P-like wake observed in the
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present study appears to have a periodicity to two pairs of counter-rotating vortices being shed into the wake with alter-
nate-signed vortices shed successively. The mechanism for the formation of the 2P-like mode here is similar to the vortex-
interactions in the near wake that lead to the 2P mode—the development of a vortex while still attached to the body is
interrupted by the developing opposite-signed vortex, leading to splitting and subsequent shedding of the older vortex
(Govardhan and Williamson, 2000). For the cylinder inclined at α = °30 , the solution for the flow at Re¼200 describes the
strongly deflected vortex street, and a quick check for the flow at Re¼300 showed the 2P-like wake to have developed. The
shedding frequencies associated with this mode are half those of the lower Reynolds number cases, indicating periodicity of
the solutions to two shed counter-rotating vortex pairs. Higher cylinder inclinations ranging over α° < ≲ °38 48 showed the
vortex streets to be of a PþS-like mode. The PþS mode observed for the oscillating circular cylinder sheds a pair of like-
signed vortices and a single opposite-signed vortex into the wake per shedding cycle (Williamson and Roshko, 1988). The
PþS-like mode takes a remarkably similar appearance to the PþS mode. Most cases showing this vortex street further
develops a meandering profile downstream similar to the secondary vortex street (Fig. 12(right) for the cylinder inclined at
α = °42 ). The meandering wake profile presumably develops for all PþS-like wakes (and perhaps even for the 2P-like
wakes), with the downstream position of its formation exceeding the computational domain length for most cases.

Snapshots of the vorticity contours over a complete periodic cycle for the 2P-like wake (Fig. 13(left)) and PþS-like wake
(Fig. 13(right)) reveals the interaction of the vortices to occur most intensely near the cylinder surface, affecting the vortices
prior to it being shed. The effect of the asymmetric geometry is apparent—the steep streamwise inclination of the rear top-
face of the cylinder presents a (sufficiently) low pressure region causing the flow over the top of the cylinder to sweep (or
beat) into the wake region and interfere with the development of the positive vortex over the bottom surface of the cylinder.
It appears that the factor deciding the formation of either the 2P-like wake or the PþS-like wake lies in the extent of the
formation of the strained positive vortex on the cylinder surface (light contours in the figures) prior to an interference by the
negative vortex (dark contours in the figures) sweeping into the low pressure region, and if the developing vortices interact
with the intense vorticity field attached to the rear-side of the cylinder surface prior to being shed (the vortex-merging
mode, VM, as mapped by Tu et al. (2014)). For the PþS-like wake (Fig. 13(right)), this interference occurs when the positive
vortex has already formed well over the rear top-side of the cylinder prior to being shed (frame (i)) which is then wedged
out into a highly strained form upon the negative vortex sweeping into the low pressure region (frames (i)–(iii), observing
the vortex pair attached to the cylinder). The developing positive vortex is observed to interact with the positive vorticity
field attached to the rear top-side of the cylinder (frame (v)), leading to the development of a new positive vortex (frames
(v)–(viii)). After being shed from the cylinder, the strained positive vortex is further affected by the action of the adjacent
negative vortex downstream causing it to split (observe the positive vortex just shed in frame (i) as it continues to stretch
and eventually split by frame (viii)), thus leading to the observation of a pair of like-signed unequal-strength vortices about
the single negative vortex. The 2P-like wake (Fig. 13(left)), however, shows this wedging out and straining of the positive
vortex by the sweeping of the negative vortex into the low pressure region to occur only every alternate pair of counter-
rotating vortices shed into the wake (frames (i)–(ii)); the other counter-rotating vortex pair shows the developing positive
vortex to interact with the positive vorticity field attached to the rear top-side of the cylinder preventing the developing
negative vortex from wedging the positive vortex away from the cylinder (frames (v)–(viii)), allowing the positive vortex to
be shed off without as much strain introduced in its form.
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Fig. 14. (a) Plot of the time-averaged drag force coefficients, CD d, , against the cylinder inclination α at a Reynolds number Re¼200. The solid lines are linear
functions—one fitted through the data for the 2P-like mode (⋄) and the other fitted through the data for the PþS-like mode (○), while the dashed line
marks the estimated threshold between the 2P-like wake (Regime V) and the PþS-like wake (Regime IV). (b) Vorticity contours of the flow past the
cylinder inclined at α = °38 and at Re¼200 showing the wake transition from the 2P-like mode to the PþS-like mode, where the bottom image occurs one
counter-rotating vortex-pair apart from the top image. Dark and light contours correspond to negative and positive vorticities, respectively.
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The transition from the 2P-like mode to the PþS-like mode for a flow at Re¼200 occurs at an incidence angle of ap-
proximately 38° as predicted by a change in the trends of the drag force coefficients as shown in Fig. 14(a). At this incidence
angle, a wake develops with features consistent with both modes. The vortex street initially takes a strong resemblance to
the 2P-like wake, but splits the second positive vortex in the pair, which already is in a strained form, into two weaker ones.
Increasing the incidence angle further presumably alters the timing of the interaction of the shedding vortices and also leads
to sufficient imbalance in the vorticity distribution about the wake centreline, thereby suppressing the 2P-like form. The
flow then begins to develop the PþS-like wake as described earlier. Extra care was taken to ensure the flows were evolved
to a saturated state, precluding the possibility that the different vortex streets observed are transient features of the flow.

The authors recognise that some of the regimes mapped out in this study may be inherently three-dimensional. Nu-
merical simulations of the 2P vortex mode in the wake of an oscillating circular cylinder by Blackburn et al. (2001) appeared
three-dimensional in nature, while for the isosceles triangular cylinder with its apex pointing downstream (α = °60 ), Luo
and Eng (2009) reported the flow to develop a three-dimensional instability mode consistent with the Mode A instability
seen behind circular cylinders (Williamson, 1996a) beyond Re¼164. However, the two-dimensional planes show the
spanwise vortex loops to persist, agreeing with various experimental visualisations (Williamson and Roshko, 1988). As such,
the 2P-like mode found in this study could perhaps be three-dimensional as well, as may several of the other regimes
mapped in Fig. 10.

3.4. Flow-induced forces on the stationary cylinder

The magnitude of the forces reported in the following discussion have been scaled by the cylinder side length d to
facilitate a comparison with results from Bao et al. (2010), unless specifically mentioned otherwise. At the low Reynolds
number range about the onset of flow separation, the lift forces obtained were negligible relative to the drag forces induced
on the cylinder (Fig. 15(a) (inset)). In such a laminar state and despite the asymmetry of most cylinder inclinations, the
transverse momentum imbalance introduced into the flow by the cylinder is rapidly diminished, leading to the low lift force
coefficients described.

The drag force coefficients induced on a circular cylinder is known to be approximately inversely proportional to low
Reynolds numbers (Stokes, 1851; Oseen, 1910; Lamb, 1911). Neglecting the transverse forces (lift) induced on the cylinder,
the functional relationship between the drag force coefficients and the Reynolds numbers ( ≲Re 15) for various cylinder
inclinations were determined in the form of =c m ReD

p, with a plot of the drag force coefficients against the Reynolds



α

C
L,

d

0 10 20 30 40 50 60-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Re
C

L,
d

40 60 80 100 120-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Fig. 16. Variations of the time-averaged lift force coefficient as (a) α and (b) Re are varied. In (a), lines depict Re¼30 (– · line), Re¼50 (– – line), Re¼80 (−··
line) and Re¼120 (solid line). In (b), lines are given for cylinder inclinations α = °24 (– – line), 30° (– · line), 54° (−·· line), and 0° and 60° (thin solid line and
thick dashed line respectively, which overlap in the plot at ≈C 0L d, ). For both plots, the data obtained are marked with □ symbols.

Z.Y. Ng et al. / Journal of Fluids and Structures 63 (2016) 302–324 319
number being shown in Fig. 15(a). The coefficients m and p predicted for each cylinder inclination are summarised in Fig. 15
(b). A similar curve fit was performed for cD h, against Re across all cylinder inclinations as Fig. 15(a) suggests a general form
in the drag force coefficient profile for low Reynolds numbers. The general fit to the data (ĉD h, as a function of Re) yielded the
coefficients ^ =m 10.6316 and ^ = −p 0.5817 (solid lines in the corresponding plots in Fig. 15(b)). Fig. 15(a) shows the fitted
function (shown as a solid line) to compare well to the data obtained for the drag force coefficients (data marked by ▵) at
these low Reynolds numbers.

The time-averaged lift force coefficients induced on the cylinder at each Reynolds number tested described a similar
trend where the maximum lift force coefficient occurred at α ≈ °30 , and increases only in magnitude with the Reynolds
α
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number (Fig. 16). As mentioned earlier, this trend relates to the cylinder inclination presenting the largest asymmetry;
symmetric cylinder inclinations α = °0 and 60° shows a negligible time-averaged lift force coefficient value for all Reynolds
numbers reported. Fig. 16(b) also shows a small change to occur in the lift force coefficient trends upon the onset of the
unsteady flow regime (ReE40 in the plot).

Fig. 17 describes the time-averaged drag force coefficient variation with both cylinder inclination and Reynolds numbers.
The plot of the drag force coefficient against cylinder inclination in Fig. 17(a) shows that the drag force coefficient con-
sistently reaches a minimum when the cylinder is inclined at approximately 30° for most Reynolds numbers, appearing
consistent for both the steady-state regime (shown for Re¼30) as well as for the unsteady flow regimes. For all Reynolds
numbers shown, the time-averaged drag force coefficients for the symmetric cylinder inclination α = °60 are observed to be
much larger than the symmetric cylinder inclination α = °0 . This arises from the larger wakes that are observed to develop
for the cylinder inclination α = °60 compared to those developed for the cylinder inclined at α = °0 . Observation of this
broader wake at higher cylinder incidence angles has been reported by Iungo and Buresti (2009) for = ×Re 1.2 10d

5 flows



Fig. 19. Power spectral density plots showing the lift force coefficient frequency responses at Reynolds numbers Re¼80 (−··), 160(– –), and 200 (solid line).
Plots are shown for cylinder inclinations α = °24 , 36°, 42°, and 60° from left to right then top to bottom. Amplitudes are normalised by the peak response of
each Reynolds number. (inset) Phase plots of the force coefficients at the corresponding cylinder inclination and Reynolds number. The plots axes are
defined such that − ≤ ≤C2.5 1.5L d, and ≤ ≤C1.5 3.0D d, .
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past finite-span triangular cylinders. The strong dip in the trend of the drag force coefficients at the various cylinder in-
cidence angles observed in Fig. 17(b) again relates to the transition from a steady to an unsteady flow.

Fig. 17(a) also shows the drag force coefficients reported by Bao et al. (2010) from simulations of a similar system at
Red¼100 ( ≲ <Re86 100). The results from the present study compares well against the published data for cylinder in-
clinations α < °30 , but shows an increasing deviation for α > °30 such that by α = °60 , the results from the present study is
approximately 3.5% less than the drag force coefficient predicted by Bao et al. (2010). This difference in the values predicted
may possibly be due to the different computational domain size used and the boundary conditions employed—the published
study utilised a smaller domain (see Section 2.2 for domain related uncertainties quantified for this study), and a towing
tank boundary condition. These factors together with the fact that higher cylinder inclinations produce broader wakes
which may lead to even higher domain related uncertainties provides sufficient confidence in the data obtained in the
present study.

Fig. 18 describes the time-averaged force coefficients, the corresponding root mean square (r.m.s.) values about the time-
averaged quantities, and the fluctuation extremes as the Reynolds number is increased for flows past the cylinder at in-
clinations α = °0 , 36°, 42°, and 60°. Generally, the r.m.s. values are observed to follow the trends of the time-averaged force
coefficients as the Reynolds number is increased. However, this quantity fails to observe the sudden increase in the fluc-
tuations of the force coefficients at Re E170 for the cylinder inclined at α = °36 corresponding to the transition to the 2P-
like wake (Fig. 18(b)). A change in the slope of the time-averaged drag force coefficient is observed at Re E110 for the
cylinder inclined at α = ° ≈Re0 , 135 for the cylinder inclined at α = °42 , and Re E120 for the cylinder inclined at α = °60 ,
but these changes do not correspond to the transitions between regimes I and II (from the Bénard–von Kármán vortex
street to the bi-layered wake profile) as predicted in Fig. 10. Despite mentioning earlier that the time-averaged lift force
coefficients for symmetric cylinder inclinations appear negligible, the fluctuations for these cases are clearly significant, with
the cylinder inclined at α = °60 exhibiting the largest fluctuations in the force profiles which may be detrimental to
overlook.

Spectral analysis of the lift force coefficients induced on the cylinder at various Reynolds numbers (Re¼80, 160, and 200)
reveals the different frequency responses of the various unsteady wakes, as shown in Fig. 19. For the cylinder inclined at
α = °24 and 60° (for the transition from the Bénard–von Kármán vortex street to the secondary vortex street), and also for
the cylinder inclined at α = °42 (for the transition to PþS-like mode), the frequency responses of the lift coefficients appear
highly similar through all wake regimes as expected due to the dominance of the Kármán shedding frequency in the
proximity of the cylinder. It is only in the transition to the 2P-like mode, as shown for the cylinder inclined at α = °36 , that it
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exhibits multi-frequency components. At Re¼200, the dominant frequency measured in the spectrum was again due to the
Kármán shedding with =St 0.151BvK , while the following two dominant frequencies are subharmonic with =St 0.0761 and

=St 0.2272 . This agrees well with the findings in Section 3.3. The phase plots shown in the inset of each spectral density plot
is further evidence that only the case for the 2P-like mode transition results in a complete shift in the frequency response—
all other wake regimes encountered as the Reynolds number is increased for each case shows a similar trend aside the
increase in amplitudes.
4. Conclusions

The various wake regimes of two-dimensional flows past a cylinder of triangular cross-section have been described in
this paper. The classical view of steady separated flows past a bluff-body having a closed ‘cavity’ with two symmetric
recirculation bubbles is shown to be valid only for cylinder inclinations with a reflection symmetry about the horizontal
centreline. Cylinder inclinations lacking this reflection symmetry (asymmetric inclinations) showed the onset of flow se-
paration to begin with the formation of a single stationary vortex on the rear face of the cylinder, eventually developing the
secondary vortex as the Reynolds number is increased but never describing a symmetric recirculation region about the wake
centreline. An ‘alleyway’ flow feature is observed to penetrate the steady recirculation region preventing the symmetry. A
simple modified length measure representative the recirculation bubble extent, the recirculation half length ′LR, is proposed
and validated, and then used to determine the separation Reynolds numbers, Res. The effect of the cylinder inclination on
the separation Reynolds number is pronounced, with the value at α = °60 being an order of magnitude higher than the
separation Reynolds number for the cylinder inclined at α = °0 .

The critical Reynolds numbers for the transition to an unsteady periodic flow have also been determined using the
Stuart–Landau equation. For the critical Reynolds numbers re-scaled by the cylinder side length d, the cylinder inclined at
α = °28 showed the greatest resistance to instability, while the cylinder inclined at α = °60 was least stable. Observations of
the flow in a pre-critical state (all at Re¼35) shows the presence of a localised negative streamwise velocity bubble on the
steeper upstream facing side of the cylinder at incidence angles α° ≲ ≤ °18 30 to affect the stability of the steady flow
strongly, while the rapid decline in the Rec and Rec d, values for cylinder inclinations α° ≲ ≤ °34 60 showed a rapid broad-
ening of the wake.

For unsteady flows in the range of Reynolds numbers tested, the Bénard–von Kármán vortex street is observed to
dominate the near wake for most cases. At sufficient Reynolds numbers (generally Re E100), the shed vortices develop
eccentricities in its form, which in most cases align with other like-signed vortices forming a dual-layered vorticity wake
structure some distance downstream of the cylinder. Also, the position where this vortex alignment begins approaches
closer to the cylinder as the Reynolds number is increased. Proceeding from this state, further increasing the Reynolds
number leads to the observation of several distinct vortex streets depending on the cylinder inclination (Fig. 10). For most
cases, the bi-layered wake is observed to re-arrange itself into a secondary vortex street which consists of larger vortical
structures than the Bénard–von Kármán vortex street, and with it introducing incommensurability of the wake (Taneda,
1959; Durgin and Karlsson, 1971; Cimbala et al., 1988; Karasudani and Funakoshi, 1994). The cylinder inclined at

α° ≤ ≲ °30 38 instead developed a vortex street similar to the 2P wake of oscillating circular cylinders, while cylinder in-
clinations α° ≲ ≲ °38 48 developed a PþS-like wake. The PþS-like wake further develops a meandering profile downstream
similar to the secondary vortex street.

The force coefficients for the various wakes have also been quantified. The mean drag coefficient of the cylinder at
various inclinations for a flow at Re¼100 shows a good agreement with results reported by Bao et al. (2010), and the time-
averaged drag and lift force coefficients show trends similar to results from wind tunnel experiments by Iungo and Buresti
(2009) despite the latter study being at much higher Reynolds numbers. Transition to the 2P-like wake regime shows the
fluctuations of the force coefficients to become stronger with increasing Reynolds numbers, which is not observed for the
transition to the secondary vortex street and the PþS-like wake. The phase trajectories of the force coefficients further
reflect this by showing the transition to the 2P-like mode to produce a complete shift in its profile, while the other wakes
only describe increases in the force amplitudes while maintaining a similar trajectory.

The authors appreciate that the flows may possibly develop three-dimensional instabilities within the range of Reynolds
numbers investigated in the present study as Luo and Eng (2009) reported for an isosceles triangular cylinder with apex
pointing downstream. The stability of the two-dimensional flows at other cylinder inclinations is still unknown, but has
been shown to vary at different incidence angles (Sheard et al., 2009). The onset of the three-dimensional instability across
the range of cylinder inclinations may be an interesting direction for a future study.
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