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A simplified and efficient Gay-Lussac approach for non-
Boussinesq treatment of natural convection problems

Peyman Mayeli and Gregory J. Sheard

Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia

ABSTRACT
Under the Boussinesq approximation for buoyancy driven flows, density
variations are restricted to the gravity term. In contrast, the Gay-Lussac
(GL) approach is developed based on considering density variations in any
term of the Navier—Stokes equations in which density appears. In both
incompressible approaches, a linear density state equation is adopted to
relate density variations to temperature differences. In this article, a simpli-
fied Gay-Lussac (SGL) approach with a reduced computational cost is pro-
posed in which density variations are omitted from the continuity
equation. It is shown that the SGL approach gives identical results to the
traditional GL approach in both transient and steady states. Then, perform-
ance of the SGL approach at high relative temperature differences up to
e ¼ 0:3 is evaluated against the low Mach number scheme and the
Boussinesq approximations. In this respect, natural convection in square
cavity benchmark problem at three different inclination angles (c ¼ 0 and
6p=6) is simulated up to Ra ¼ 107 at Pr ¼ 1 and results are analyzed in
terms of the local and average Nusselt number, and the skin friction coeffi-
cient. Comparing computational cost of simulations at Ra ¼ 107 indicates
the introduced SGL approach has 17% and 11% less computational cost
using upwind and central schemes, respectively, compared to the trad-
itional GL approach, while the convergence rate is not affected by the pro-
posed simplification. Comparing the Nusselt number shows a negligible
difference between the SGL and the Boussinesq approximations at high
relative temperature differences, both deviating from the low Mach num-
ber scheme. Finally, by comparing the friction coefficient results obtained
by the SGL approach against the weakly compressible approach it is con-
cluded that the GL family approaches require serious revisions to outper-
form the Boussinesq approximation as an incompressible approach for
buoyancy driven flows with high relative temperature differences.
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1. Introduction

The well-known Boussinesq approximation [1] is still the most common approach for the numer-
ical simulation of natural convection (NC) problems. The general idea of treating natural convec-
tion (NC) as incompressible by ignoring density variations except in the buoyancy term first was
proposed by Oberbeck [2], which is why the approximation’s is sometimes referred to as the
Oberbeck—Boussinesq (OB) approximation. Under the OB approximation, a linear state equation
is adopted to relate density variations to temperature differences. The OB approximation due to
its great accuracy of performance for problems associated by differential temperature differences
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has been used as the basis of many benchmark natural convection problems in different geome-
tries such as rectangular [3–8], triangular [9–12] and annulus [13–15] enclosures.

One of the fundamental assumptions of the OB approximation is small temperature differen-
ces, which justifies restricting density variations to the buoyancy term. Indeed, applying the OB
approximation on cases that are featuring large density variations produces inaccurate results
[16]. Foundry processes, astrophysical magnetohydrodynamics [17], thermal insulation systems in
nuclear reactors [18] and solar collectors [19–20] are samples that such a situation may take
place. Numerical techniques that seek to circumvent the limitations of the OB approximation are
less abundant in the literature. In general, non-OB approximations for NC problems occupy two
general categories, compressible and incompressible.

The first category of the non-OB algorithms is developed by retaining compressibility within
the Navier—Stokes equations, which leads to the introduction of the Mach number. This strategy
is seldom used for numerical simulation of NC problems due to instability at small order of com-
pressibility ratio for density-based compressible flow solvers; examples include Vierendeels et al.
[21], Fu et al. [22], Busto et al. [23], and Berm�udez et al. [24]. Small orders of Mach umber in
natural convection problems motivated the use of the low Mach number scheme (LMS). Under
the this approximation developed by Paulucci [25], acoustic waves are removed from the govern-
ing equation and total pressure is split into two main parts a global (uniform) thermodynamic
pressure which is obtained from the equation of state and used for updating the density varia-
tions through the solution procedure, and a local hydrodynamic pressure which acts in the
momentum equations to establish a balance among advection, buoyancy, and diffusion terms.
Vierendeels et al. [26] and Becker & Braack [27] applied this technique for numerical simulation
of the square cavity benchmark problem with large temperature differences beyond the validity of
the OB regime.

The second category of the non-OB approximations are developed under the fundamental
assumption of incompressibility. One of the remedies to avoid the OB approximation in this

Nomenclature

Beave average Bejan number
cf skin friction coefficient
D diffusion operator
eg unit vector in gravity direction
g gravitational acceleration
Ga Gay-Lussac number (bDh )
Lref reference length
N Nonlinear operator
Nuave average Nusselt number
Nuloc local Nusselt number
p pressure
p� modified pressure
P dimensionless pressure
Pth thermodynamic pressure
Pr Prandtl number
R ideal gas constant
Ra Rayleigh number
S surface
T temperature
x coordinate vector
X dimensionless coordinate vector
u velocity vector
U dimensionless velocity vector

a thermal diffusivity
b isobaric expansion coefficient
c cavity inclination angle
e relative temperature difference
g heat capacity ratio
h physical temperature
H dimensionless temperature
l dynamic viscosity
� kinematic viscosity
q density
q0 reference density
sw wall shear stress
/ gravitational potential

Subscript

ave average
c cool
h hot
loc local
ref reference
tot total
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category is the Gay-Lussac (GL) approach, which is developed based on considering density varia-
tions beyond the gravity term. Under the GL approximation, buoyancy effects are taken into
account wherever density appears in the governing equations. Such a strategy invokes the GL par-
ameter as a product of the volumetric thermal expansion coefficient and the reference tempera-
ture difference (Ga ¼ bDh). Under the GL approach, a pre-factor of (1� GaH) acts as a modifier
on the aforementioned terms in dimensionless form of the governing equations. The strength of
this pre-factor and its modification effects become more visible by increasing the GL parameter
at high temperature differences. It can also be shown that governing equations under the GL
approach recover the OB approximation as Ga ! 0: For instance, the square cavity benchmark
problem with large density variations was analyzed under the GL approach by Pesso & Piva [28].
A GL-type approximation is also possible by extension of buoyancy effects to one of the advec-
tion or convection terms of the momentum and energy equations, respectively. In this category, a
GL-type approach is proposed by Lopez et al. [29] in which density variations were extended
only to the centrifugal part of the advection term to capture centrifugal effects arising from back-
ground rotation in those rapidly rotating flows. This approach continued by Mayeli & Sheard
[30–31]. They showed that the GL parameter may be expressed in terms of the Rayleigh, Prandtl
and Froude numbers (Ga ¼ RaPrFr). Since the GL parameter appears in the dimensionless form
of the linear density relation, a maximum value Gamax ¼ 2 should be considered to avoid an
unphysical (negative) density. Such a constraint also confines the maximum physical value of the
Froude number at each Rayleigh and Prandtl number to 2=RaPr (Frmax ¼ 2=RaPr). Mayeli &
Sheard [30–31] also established a relation for the GL-type family approach that matches the
Froude number corresponding to a given relative temperature difference (e) at each Ra and Pr
as Fr ¼ 2e=RaPr:

Another incompressible-based strategy to go beyond the OB approximation is considering
nonlinear terms via retention of higher terms (e.g. square and cubic terms) of the density state
relation, that enables the non-OB category to a wider spectrum of temperature difference. A non-
linear density state relation may also justify strange behavior of some fluids at temperatures close
or equal maximum density. For instance, the density-temperature relationship of cold water in
the vicinity of 4 �C does not obey a linear function. In this situation, the linear density state rela-
tion may not be valid anymore even for small temperature differences within valid temperature
difference range of the OB regime. For these types of problems, a dimensionless temperature
known as the inversion parameter is defined which relates the temperature of the maximum
density to the hot and cold reference temperatures. Since for inversion parameter values smaller
than unity the temperature corresponding to the maximum density lies between the hot and cold
reference temperatures, studies in this category are focused on this range and the corresponding
flow patterns due to different inversion parameters. For instance, this strategy was used by Li
et al. [32] for natural convection of water near its maximum density in an eccentric annu-
lus cavity.

Under the OB approximation, dissipated heat due to viscous friction and work of pressure
stress are removed from the energy equation as their effects are supposed to be negligible.
Justification for omission of dissipation and pressure work terms are made based on order of
magnitude arguments, but thermodynamically speaking, removing these items brings a paradox
to entropy generation budget. It should be noted that the momentum equations captures dissipa-
tion of momentum due to fluid friction (diffusion terms) but the equivalent dissipated heat is not
captured in the energy equation under the OB approximation. In addition, absence of the pres-
sure work in the energy equation causes a mismatch between the internal energy and work done
upon the fluid. Using Gibbs and local entropy balance equations, it can be shown that when these
terms are neglected in the energy equation, the thermodynamic system described under the OB
approximation recognizes only heat conduction as a source of irreversibility and neglects irrever-
sibilities due to viscous friction. This inspired development of a more comprehensive form of the
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energy equation under the OB approximation referred to various names such as ’deep convection’
[33], ’thermodynamic’ [34], and ’extended’ [35] Boussinesq approximations. Pons & Le Qu�er�e
[36] applied the thermodynamic Boussinesq approximations for natural convection problems and
concluded that when the dimensionless adiabatic temperature gradient is larger than 0.01, the
pressure work effects are no longer negligible.

In the limit of small temperature differences of the OB operating regime, thermophysical prop-
erties of the working fluid are considered as constant. This is a correct assumption as small tem-
perature differences do not impose significant effects on the thermophysical properties of the
fluid, but as soon as temperature differences become large enough, the assumption of constant
properties may not be valid anymore, especially for working fluids sensitive to temperature differ-
ences. The idea of the variable properties (often as a function of temperature) is considered as a
separate class of approaches beyond the OB approximation, though in this subcategory, still other
fundamentals of the OB approximation are applied. According to Leal et al. [37], the property
variation effects are considerable even well within the OB regime. Many works have been done in
this type of incompressible treatment of the governing equations beyond the OB approximation
that are focused on checking/comparing the thermo-flow field when thermophysical properties
are considered as constant (OB approximation) or treated variable as a function of temperature
or even pressure. This strategy was used by Souza et al. [38] where all properties of the working
fluid including viscosity, thermal conductivity and also heat capacity were considered as functions
of temperature for numerical simulation of NC in an inclined square cavity (including zero lean-
ing angle).

In this article, a simplified Gay-Lussac (SGL) approach is presented for buoyancy driven flows
in which density variations are extended to the advection/convection terms of the momentum
and energy equations, respectively. In other words, under the SGL approach, density variations
are omitted only from the continuity equation. An square cavity benchmark problem is selected
to show that the results of the GL and SGL approaches are consistent in both transient and
steady state levels, but the SGL has a simpler form with cheaper computational cost.
Subsequently, performance of the SGL as an efficient representative of the GL family is tested
against the OB and weakly compressible approximations at high relative temperature differences
in square cavity benchmark problem with different leaning angles.

The rest of the article is organized as follows: Section 2 presents the aforementioned GL and
SGL formulation and also governing equations under the LMS approximation. Section 3 introdu-
ces the geometry and boundary conditions of the problem and concerns about numerical consid-
erations including used code accuracy and mesh size dependency. In Section 4, similar
performance of the GL and SGL approximations with a reduced computational cost for the SGL
approach is proved. In Section 5, the mismatch among SGL, OB and LMS approximations is
scrutinized, and finally conclusions are drawn in Section 6.

2. Gay-Lussac and simplified Gay-Lussac approximations

Under the OB approximation, density variations are ignored except within the gravity term. An
incompressible non-OB treatment of the governing equation is the GL approach that is estab-
lished based on considering the density variations beyond the gravity term. Starting with the
dimensional form of the incompressible Navier—Stokes equations with thermal transport in the
absence of any additional force and negligible viscus heat dissipation,

q=q0ð Þr � u ¼ 0,

@u=@t� þ q=q0ð Þ u � rð Þu ¼ � 1=q0ð Þrpþ �r2uþ q=q0ð Þeg ,
@T=@t� þ q=q0ð Þ u � rð ÞT ¼ ar2T:

8>><
>>: (1)
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Following the OB approach, substitution a linear density state relation (q=q0 ¼ 1� bh) into
the governing equation yields

1� bhð Þr � u ¼ 0,

@u=@t� þ 1� bhð Þ u � rð Þu ¼ � 1=q0ð Þrpþ �r2uþ q=q0ð Þeg ,
@T=@t� þ 1� bhð Þ u � rð ÞT ¼ ar2T:

8><
>: (2)

In Eq. (2), p� is a modified pressure introduced as p� ¼ pþ q0/, where / is the gravitational
potential. Using dimensionless parameters

t ¼ t�a
L2

,X ¼ x
L
, U ¼ uL

a
, P ¼ p�L2

qa2
, H ¼ h

Dh
¼ T � T0

Th � Tc
,Ga ¼ bDh, (3)

one can derive the dimensionless form of the governing equation under the GL approximation,

1� GaHð Þr � U ¼ 0,

@U=@t þ 1� GaHð Þ U � rð ÞU ¼ �rP þ Prr2U � RaPrHeg ,

@H=@t þ 1� GaHð Þ U � rð ÞH ¼ r2H,

H X, 0ð Þ ¼ U X, 0ð Þ ¼ 0:

8>>>><
>>>>:

(4)

Eq. (4) introduces the Prandtl number Pr ¼ �=a characterizing the ratio of the molecular to
thermal dissipation and the Rayleigh number Ra ¼ gbDhLref 3=�a characterizing the ratio of buoy-
ancy to viscous and thermal dissipation. As seen, governing equations under the OB approxima-
tion are recovered as Ga ! 0 (Dh ! 0). Under the GL approximation, 1� GaHð Þ acts as a
modifier on different terms, and its effect becomes more pronounced by increasing Ga (and con-
sequently Dh), but in practice Ga cannot exceed a specified value to avoid an unphysical (nega-
tive) density

q=q0 ¼ 1� bh ¼ 1� bDhH ¼ 1� GaH > 0: (5)

Eq. (5) indicates that the maximum Ga cannot exceed 2 (Gamax ¼ 2) based on the defined
dimensionless temperature. In this study, a simplified Gay-Lussac (SGL) approximation is pro-
posed by omitting density variations only from the continuity equation

r � U ¼ 0,

@U=@t þ 1� GaHð Þ U � rð ÞU ¼ �rP þ Prr2U � RaPrHeg ,

@H=@t þ 1� GaHð Þ U � rð ÞH ¼ r2H,

H X, 0ð Þ ¼ U X, 0ð Þ ¼ 0:

8>>>><
>>>>:

(6)

As seen, the governing equations under the SGL approximation are consistent with the gov-
erning equations under the OB approximation, except for the pre-factors of the advection/convec-
tion terms in the momentum and energy equations, respectively. The roles of these pre-factors
are to modify the strength of the advection/convection terms locally throughout the flow, physics
that is ignored in the OB approximation. Indeed, regions of the thermo-flow field having a higher
magnitude of the non-OB advection/convection described by H U � rð ÞUj j and H U � rð ÞHj j,
respectively, will experience more deviations from the OB buoyancy approximation. The strength
of the pre-factors modification is proportional to Ga, magnitude with Ga ! 0 (Dh ! 0) recov-
ering the classical OB approximation. The GL-parameter is a product of Rayleigh, Prandtl, and
Froude numbers (Ga ¼ RaPrFr) where the Froude number characterizes the ratio of inertia to
gravity. Thus, another form of the governing equations under the SGL approximation may be
expressed as
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r � U ¼ 0,

@U=@t þ 1� RaPrFrHð Þ U � rð ÞU ¼ �rP þ Prr2U � RaPrHeg ,

@H=@t þ 1� RaPrFrHð Þ U � rð ÞH ¼ r2H:

8><
>: (7)

As mentioned earlier, in this study results are compared against the LMS approximation.
Governing equations under the LMS approximation are expressed as [25–27]

@q=@t� þ r � quð Þ ¼ 0,

@ðquÞ=@t� þ r � qu� uð Þ ¼ �rp� þ r � sþ qgeg ,

qcp @T=@t� þ u � rTð Þ ¼ kr2T þ dpth=dt�,
Pth ¼ qRT,

T X, 0ð Þ ¼ T0, pth 0ð Þ ¼ p0,u x, 0ð Þ ¼ 0:

8>>>>>><
>>>>>>:

(8)

In Eq. (8), pthðtÞ is the (spatially uniform) thermodynamic pressure, and cp is the specific heat
at constant pressure, which may be expressed in terms of heat capacity ratio (g ¼ cp=cv) and the
gas constant (R) as cp ¼ gR=ðg� 1Þ: Also, s is the stress tensor that under Stokes’s hypothesis for
bulk viscosity (k ¼ �2=3l) is defined as

s ¼ ruþ ruð ÞT � 2=3 r � uð ÞI: (9)

In natural convection simulation via compressible/weakly-compressible approach, Prandtl
number is introduced as defined earlier, but the Rayleigh number is expressed slightly differently
compared to the incompressible flow, as

Ra ¼ 2ePr
gq0

2L3

l02
: (10)

In Eq. (10), e is the relative temperature difference defined as e ¼ Th � Tcð Þ=2T0, so that Th ¼
T0 1þ eð Þ and Tc ¼ T0 1� eð Þ: Comparing e and Ga definitions gives an interesting relation for
the Froude number at each Rayleigh and Prandtl number, as

2e ¼ Th � Tcð Þ=To|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Compressible

¼ bDh ¼ Ga ¼ RaPrFr|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Incompressible

! Fr ¼ 2e=RaPr: (11)

Another advantage of Eq. (11) is expressing Ga by the relative temperature difference defin-
ition (Ga ¼ 2e). Thus, another form of the governing equations under the SGL approximation
may be obtained using e instead of Ga and/or three dominant dimensionless parameters i.e. Ra,
Pr and Fr as

r � U ¼ 0,

@U=@t þ 1� 2eHð Þ U � rð ÞU ¼ �rP þ Prr2U � RaPrHeg ,

@H=@t þ 1� 2eHð Þ U � rð ÞH ¼ r2H

8><
>: (12)

Finally, it should be noted that the physical range of the relative temperature difference
(0 � e � 1), gives a consistent constraint for physical range of Ga (0 � Ga � 2).

3. Description of the problem and numerical method

A schematic of the considered problem, i.e. square cavity at an inclination angle of c which is
considered equal to 0 and 6p=6 in this study, is depicted in Figure 1. The applied thermal
boundary conditions include two constant temperature and two adiabatic walls with a zero vel-
ocity boundary condition along all surfaces. For this problem, the reference length is equal to one
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side length of the geometry (Lref ¼ L). The physical domain is meshed using quadrilateral ele-
ments. A schematic coarse mesh is shown for illustration purposes in Figure 1.

The local and average Nusselt number along the two constant-temperature surfaces are calcu-
lated from

Nuloc Sð Þ ¼ �@H
@n

����
wall

, (13)

Nuavg ¼
ð1
0
Nuloc dS: (14)

In Eq. (13), n is the unit outward normal vector to the surface. The friction coefficient along
the internal surfaces is calculated from

cf ¼ �2Pr
sxx sxy
syx syy

" #
nx
ny

" #
¼ �2Pr

2@U=@X @U=@Y þ @V=@X

@U=@Y þ @V=@X 2@V=@Y

" #
nx
ny

" #
, (15)

where nx and ny are the horizontal and vertical components of the wall-normal vector, respect-
ively. The friction coefficient magnitude is defined as

cf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cf xð Þ2 þ cf yð Þ2

q
(16)

where,

cf x ¼ �2Pr 2@U=@Xð Þnx þ @U=@Y þ @V=@Xð Þny
� �

, (17)

cf y ¼ �2Pr @U=@Y þ @V=@Xð Þnx þ 2@V=@Yð Þny
� �

: (18)

The governing equations are solved using a control volume finite-element method (CVFEM)
solver employing a fractional step method with second order temporal accuracy (Adams
Bashforth/Crank—Nicolson) for the time dependent equations. The nonlinear advection/convec-
tion terms are Discretized using both 2nd-order upwind and central schemes, while diffusion
terms are Discretized via central schemes. In CVFEM, a unique control volume (as shown in

Figure 1. A schematic representation of the problem including (a) applied boundary conditions and (b) a coarse computational
grid having 40� 40 quadrilateral elements depicted at a positive leaning angle.
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Figure 2(a)) is assigned to each node. The boundaries of each control volume are comprised of a
number of planar panels and an integration point (ip) is assigned at the middle of each panel.
Integration of the diffusion term over the control volume and applying the Gauss divergence the-
orem yields ð

vp

r2Udv ¼
þ
Ap

rU ip � dA ¼
Xn
ip¼1

rU ip � Aip: (19)

In Eq. (19), n is the number of integration points surrounding the main node and Aip is the
normal vector surface at each ip. Using bilinear shape functions (Nj s, tð Þ), any parameter (such as
U) within the element with a local coordinate (s,t) is related to the nodal values via weighted val-
ues provided by shape functions

U ip ¼ U s, tð Þ ¼
X4
j¼1

Nj s, tð ÞU j: (20)

The shape functions relating ip values to the nodal values for a quadrilateral element are
shown in Figure 2(b). The diffusion operator may be expressed as follows

D Uð Þ ¼
Xn
ip¼1

X4
j¼1

xjrNj � Aip: (21)

Since the bilinear shape functions are functions of their local coordinate system, their gradients
with respect to the global coordinate system are calculated using the chain rule. In Eq. (21), the
effect of all nodes surrounding an ip (such as the one shown in Figure 2(b)) are considered by
weighted values. The diffusion operator in the energy equation is calculated in a similar fashion.

In the governing equations, nonlinear convection/advection terms are linearized using lagged
values from the previous iteration. For instance, integration of the advection term over the con-
trol volume and applying Gauss divergence theorem yieldsð

vp

U � rUdv ¼
þ
Ap

U U � Aip:

� � ¼ Xn
ip¼1

U ip Uip � Aip:

� �
: (22)

Using bilinear shape functions (Eq. (20)) to relate the integral point values to the nodal values
yields

Figure 2. A schematic of unstructured quadrilateral elements: (a) a typical control volume associated with integration points (b)
local coordinate (s,t) and bilinear shape functions in a standard element.
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N Uð Þ ¼
Xn
ip¼1

X4
j¼1

U jNj Uip � Aip:
� �

: (23)

Similarly, in Eq. (23) n is the number of ip surrounding the main node. If the lagged values in
Eq. (23) (which are denoted by an overbar) disrespected of the flow direction to be approximated
from nodal values within the element via weighted values from the, then the approximation is
equivalent to the central scheme. Another possible Discretization is approximating lagged values
considering flow direction, which is known as the upwind scheme. The nonlinear convection
term in the energy equation is calculated in a similar fashion. Iterative solution procedure is
stopped as soon as the maximum difference of variables during two successive iterations becomes
less than 10�7. Accurate performance of the used solver is already tested [39–47] but here it is
further validated against refs. [3, 7, 8] in terms of the local and average Nusselt number of square
cavity with zero inclination angle at four different Rayleigh number, adopting air as the working
fluid (Pr ¼ 0:71) in Table 1. A close agreement is observed.

Accurate performance of the CVFEM solver under the LMS approximation is also validated
against ref. [48] in terms of the average Nusselt number and thermodynamic pressure at two
Rayleigh numbers Ra ¼ 106 and 107 at e ¼ 0:6 with air as the working fluid (Pr ¼ 0:71) in two
states including constant and variable properties (see Table 2). The present simulations recover
published values very well, with discrepancies lower than 1.97%.

Mesh dependence is checked for the CVFEM solver in Table 3 at Ra ¼ 107 and Pr ¼ 1 under
the OB approximation (Ga ¼ 0) and under the GL approach at the highest Ga value in this study
(Ga ¼ 0:6). Results indicate that 124 nodes in each direction is enough for mesh independence
for both incompressible approximations.

Mesh dependence of the CVFEM solver under the LMS approximation is also checked in
Table 4 at the highest Rayleigh number Ra ¼ 107 and Pr ¼ 1 for the highest relative temperature
difference (e ¼ 0:3) in this study. It is found using 124 nodes (nx � ny ¼ 1242) in each direction
guarantees results independence from the mesh size for the weakly compressible approach.
Similar dependence is also found for the inclined cavity cases but for the sake of brevity, they are
not mentioned here.

4. Comparing results under the GL and SGL approaches and computational cost

In this section, results obtained under the GL and SGL approaches are compared. In other words,
it is shown the GL and SGL approaches give similar results in both transient and steady states.
The mismatch in steady state solutions under the two approaches is investigated by calculation of
the absolute difference in temperature and velocity magnitude in the square cavity with c ¼ 0 at

Table 1. Comparison of the present calculated local and average Nusselt number by CVFEM solver (bold) with pub-
lished benchmarks.

Quantity Present study Davis [3] Wan et al. [7] Ashrafizadeh & Nikfar [8]

Ra ¼ 104 Numax (at Y) 3.548 (0.140) 3.53 (0.143) 3.597 (0.13) 3.531 (0.139)
Numin (at Y) 0.589 (1.0) 0.586 (1.0) 0.577 (1.0) 0.584 (1.0)

Nuavg 2.23 2.42 2.25 2.24
Ra ¼ 105 Numax (at Y) 7.778 (0.075) 7.71 (0.08) 7.945 (0.08) 7.720 (0.084)

Numin (at Y) 0.734 (1.0) 0.729 (1.0) 0.698 (1.0) 0.726 (1.0)
Nuavg 4.51 4.52 4.60 4.52

Ra ¼ 106 Numax (at Y) 17.633 (0.038) 17.92 (0.038) 17.86 (0.03) 17.732 (0.039)
Numin (at Y) 0.996 (1.0) 0.989 (1.0) 0.913 (1.0) 0.975 (1.0)

Nuavg 8.82 8.92 8.98 8.83
Ra ¼ 107 Numax (at Y) 40.253 (0.015) N. A. 38.60 (0.015) 39.457 (0.015)

Numin (at Y) 1.286 (1.00) N. A. 1.298 (1.00) 1.315 (1.00)
Nuavg 16.51 N. A. 16.66 16.54
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Ra ¼ 107, Pr ¼ 1 and Ga ¼ 0:6 ðe ¼ 0:3Þ: The results are shown in Figures 3(a) and (b), respect-
ively. The maximum absolute temperature and velocity magnitude differences in Figures 3(a) and
(b) are approximately 0.0025 and 2.5, respectively, which ranges within 0.5% and 0.35% of the
temperature and velocity magnitude values. Interestingly, the largest differences in velocity magni-
tude occur at top-left and bottom-right regions of the cavity. These regions correspond to where
flow traveling adjacent to the hot and cold boundaries deflects horizontally. The longitudinal
transport along the top and bottom walls is then perturbed, resulting in the largest temperature
difference being detected in those regions.

Similar output/behavior of the GL and SGL approximations in the transient state is investi-
gated in Figure 4 in the context of the absolute local Nusselt number and friction coefficient dif-
ferences along the vertical surfaces of the square cavity with c ¼ 0 at Ra ¼ 107, Pr ¼ 1 and
Ga ¼ 0:6: Results indicate the absolute local Nusselt number difference is three orders smaller
than the local Nusselt number magnitude during transient solution O DNulocj j=Nulocð Þ 	 0:001ð Þ:
A similar comparison for the absolute local friction coefficient difference shows a value of five

order smaller value, i.e. O Dcf
�� ��=cf	 


	 10�5:

Computational cost and convergence histories of the GL and SGL approaches are also investi-
gated in Figures 5(a) and (b), respectively. To compare computational cost, CPU-time is calcu-
lated at Ra ¼ 107, Pr ¼ 1 and Ga ¼ 0:6 in two states in which advection/convection terms are
Discretized using upwind or central schemes. Bar charts of Figure 5(a) shows a 17% and 11%
lower computational cost for the SGL compared to the GL approximation for the central and
upwind schemes, respectively. Convergence rates of the two approaches are also checked in terms
of the velocity components and temperature tolerance in Figure 5(b). The tolerance of any scalar
in this study is defined as the maximum alteration of all nodal values during two successive itera-
tions. Results in Figure 5(b) indicate that both approaches have similar convergence rate and
omitting density variations from the continuity equation merely simplifies the formulation and
reduces the computational cost. Having demonstrated that the GL and SGL approximations
exhibit identical behavior, we consider only the SGL approximation hereafter.

5. Results under the SGL, OB, and LMS approximations

In this section, results under the SGL, OB and LMS approximations are compared. Simulations
are performed at Pr ¼ 1 up to Ra ¼ 107 (102 � Ra � 107) and e ¼ 0:3 (0 � e � 0:3). It should
be noted that a relative temperature difference of 0.01 is considered as a differential relative tem-
perature difference and is representative of a OB case. Here, we extend this parameter to 30 times
larger, beyond the validity of the OB approximation. Studying relative temperature differences
exceeding 0.3 is beyond the scope and goals of this article. The considered range for e gives 0 �
Ga � 0:6: For the considered range of the pertinent parameters, it is supposed that the flow field
is 2D, laminar and stable.

For a better understanding of the thermo-flow fields produced under the different approxima-
tions, absolute temperature differences of the weakly compressible approach at Ra ¼ 107 and

Table 2. Comparison of the present calculated local and average Nusselt number by CVFEM solver (bold) with pub-
lished benchmarks.

Quantity Present study Le Qu�er�e et al. [48] jdifferencej%
Ra ¼ 106, e ¼ 0:6
Constant properties

Pth 0.858 0.856 0.23
Nuave 8.895 8.859 0.40

Ra ¼ 106, e ¼ 0:6
Variable properties

Pth 0.921 0.924 0.32
Nuave 8.693 8.686 0.08

Ra ¼ 107, e ¼ 0:6
Variable properties

Pth 0.920 0.922 0.21
Nuave 16.461 16.241 1.33
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Table 3. Mesh resolution study for average Nusselt number at Ra ¼ 107 and Pr ¼ 1:

nx�ny 312 622 1242 2482

OB approximation
(Ga ¼ 0)

Nuave 13.281114 13.812208 13.932074 13.932074
jdifferencej – 0.531094 0.119866 0.000000

SGL approximation
(Ga ¼ 0:6)

Nuave 13.245957 13.772384 13.890921 13.890921
jdifferencej – 0.526427 0.118537 0.000000

Table 4. Mesh resolution study for average Nusselt number and thermodynamic pressure at Ra ¼ 107, Pr ¼ 1, and e ¼ 0:3:

nx�ny 622 1242 2482

LMS approximation Pth 0.9601 0.9677 0.9677
jdifferencej – 0.0076 0.000000

Nuave 13.9613 14.0476 14.0476
jdifferencej – 0.0863 0.000000

Figure 3. Comparing results under the GL and SGL approximations at Ra ¼ 107, Pr ¼ 1, and Ga ¼ 0:6 for (a) absolute tempera-
ture difference and (b) absolute velocity magnitude difference.

Figure 4. Comparing transient local Nusselt number and coefficient friction differences along the vertical walls of the square
cavity with c ¼ 0 under the GL and SGL approximations at Ra ¼ 107, Pr ¼ 1, and Ga ¼ 0:6: (a) absolute local Nusselt number
differences and (b) absolute local coefficient friction differences. In both figures, solid lines represent data of the left (hot) wall
while dashed lines represent data of the right (cold) wall.
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e ¼ 0:3 (Ga ¼ 0:6) against the OB and SGL approximations are depicted in Figures 6(a–f).
Absolute temperature differences under the different approaches shift isotherms, with larger dif-
ferences found for the zero inclination angle cavity compared to the negative and positive inclin-
ation angles. In the zero inclination angle case (Figures 6(b) and (e)), the difference is largest at
the top-left and bottom-right corners, while in the positive inclination angle case (Figures 6(c)
and (f)) it is occurring almost evenly over the interior region with a focus along the two adiabatic
sides. For the negative inclination angle case (Figures 6(a) and (d)), larger differences occur along
the isothermal wall. Regions with smaller temperature differences may be attributed to different
situations of the fluid decelerated with respect to the geometry. For instance, negligible differences
of the temperature fields in the negative inclination angle case across the top-left corer may be
attributed to the enforced downward flow direction by the geometry that is in conflict with the
upward buoyancy-driven flow at that region. The maximum absolute temperature difference in
the square cavity with c ¼ 0 is approximately 12% of the temperature range within the enclosure
(with a slightly larger difference for the SGL approximation), reflecting a mismatch of this magni-
tude between the weakly compressible and incompressible approaches. A similar comparison for
the negative/positive inclination angle cases shows a smaller difference approximately 5% mis-
match between the compressible and incompressible approximations. The SGL approach shows a
better performance in the negative inclination angle case compared to the OB approximation in
the interior while both approaches show a similar deviation from the LMS approximation in the
positive inclination angle case. It is expected that the mismatch between the aforementioned
approaches to be augmented by increasing the relative temperature difference.

To appreciate the role of non-Boussinesq term effects in the advection/convection terms of the
governing equation under the SGL approximation, the magnitude of H U � rð ÞUð Þj j and
H U � rð ÞHð Þj j under the OB approximation is portrayed for the square cavity with different
inclination angels at Ra ¼ 107 in Figures 7(a–f). As seen, the magnitude of the non-Boussinesq
term in the momentum equation is stronger along the isothermal walls and especially at the four
corners of the cavity, though weaker effects are found within the central regions of the enclosure.
Stronger non-Boussinesq effects in the momentum equation along the isothermal walls may be
attributed to larger velocity gradients since fluid adjacent to the wall is accelerated by buoyancy
force as it reaches to the wall during circulation and decelerated as it gets close to the end of the
path parallel to the isotherm wall. Stronger non-Boussinesq effects in the momentum equation at
the four corners is attributed to fluid rotation to adjust its motion with respect to the geometry

Figure 5. Comparing convergence rate and computational cost of the GL and SGL approximations at Ra ¼ 107, Pr ¼ 1, and
Ga ¼ 0:6: (a) elapsed time under the two approaches using central and upwind schemes and (b) convergence history. In conver-
gence history plot, solid lines represent the GL approach while dashed lines show the SGL approach.
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corners. It is found that the non-Boussinesq term magnitude in the momentum equation is
smaller for the negative inclination angel cavity compared to the zero and positive inclinations
cases. The magnitude of the non-Boussinesq term in the energy equation has a similar pattern, as
it is stronger along the isothermal walls and especially at top-right and bottom-left corners.
Stronger non-Boussinesq effects in the energy equation in these regions may be attributed to the
larger temperature gradients. This is clear from Figure 6, where isotherm lines are accumulated
across the top-right and bottom-left corners that result in larger temperature gradients across
those regions. Results also indicate that, the magnitude of the non-Boussinesq term in the
momentum equation ( H U � rð ÞUð Þj j) is larger than the non-Boussinesq term in the energy equa-
tion ( H U � rð ÞHð Þj j), though, a fair comparison should be made based on the magnitude of the
mentioned terms in their equations. For the square cavity with zero inclination angle at Ra ¼
107, the maximum dimensionless velocity magnitude obtained is approximately 715. Comparing
the maximum magnitude of H U � rð ÞUð Þj j (that is portrayed in Figure 7(b)) to the maximum
dimensionless velocity magnitude gives a value of approximately 840. Similarly, dividing the max-
imum value of H U � rð ÞHð Þj j in the energy equation (that is portrayed in Figure 7(e)) to the
maximum dimensionless temperature yields a value of approximately 480, concluding that under
the Gay-Lussac approach, velocity is more affected by the corresponding non-Boussinesq term
rather than temperature field. In this respect, vorticity absolute differences under the three
approximations at Ra ¼ 107 and e ¼ 0:3 are portrayed for the square cavity with different inclin-
ation angles in Figure 8. Comparing obtained results from different approaches reveals that when
the buoyancy driven flow is simulated via the weakly compressible approach for large relative
temperature difference, the same pattern of vorticity field is formed and the difference mainly
comes from vortices (with different strengths) stretching or location shifting through the flow
field. In these figures, large values of the vorticity absolute differences are primarily elongated
adjacent to the isotherm walls where flow accelerates due to buoyancy force. Finally, vorticity

Figure 6. Results at Ra ¼ 107, Pr ¼ 1, and e ¼ 0:3 (a, b, c): absolute temperature difference between the SGL and LMS approxi-
mations (d, e, f) and absolute temperature difference between the OB and LMS approximations. Solid lines represent the LMS
approximation isotherms, while dashed lines show the compared approach.
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differences results of different approaches indicate even larger non-Boussinesq term that results
in significant modifications in the momentum equation does not create a considerable superior
results for the SGL approach compared to the OB approximation.

5.1. Local Nusselt number

The local Nusselt number distribution along the isothermal walls under the different approximations
are plotted in Figure 9 at Ra ¼ 107, Pr ¼ 1 and e ¼ 0:3 for square geometry with the different lean-
ing angles. As seen, the local Nusselt number distributions versus surface length is reversed between
the two isothermal walls for all cases. This may be attributed to the increasing and decreasing thermal
boundary layer thickness along the isothermal walls in flow direction for the hot and cold walls,
respectively. For the square cavity with zero and negative inclination angles (Figures 9(a) and (b)),
there is a monotonic distribution of the local Nusselt number with a local optimum at the bottom-
left and top-right corners, but for the positive inclination angle case (Figures 9(c)) this changes to an
oscillating behavior having smaller local Nusselt number value resembling the Rayleigh–B�enard con-
figuration. Comparing the local Nusselt number distributions along the isothermal walls for the zero
and negative inclination angles cases show a clear mismatch between the incompressible and com-
pressible approximations across the bottom-left and top-right corners while the difference is visible
along almost all of the two isothermal surfaces for the positive inclination angle case. Results indicate
that the SGL approach has a better performance across the bottom-left corner while the OB approxi-
mation gives more accurate results across the top-right region.

5.2. Average Nusselt number

The variations of the average Nusselt number across 102 � Ra � 107 is studied at e ¼ 0:15 and
0.3 under different approximations in Figure 10. Average Nusselt number under the LMS

Figure 7. Magnitude of the non-OB advection/convection terms obtained from simulation under the OB approximation for
square cavity with different inclination angle (a, d) c ¼ �30� , (b, e) c ¼ 0� , and (c, f) c ¼ 30�:
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approximation for different inclination angles is plotted at e ¼ 0:15 and 0.3 in Figures 10(a) and
(b), respectively. As expected, the average Nusselt number increases with increasing Rayleigh
number. Since the values of the average Nusselt number under the different approximations are
similar, the absolute average Nusselt number differences between the LMS and the two consid-
ered incompressible approximations are plotted in separate frames in Figures 10(c–f). Due to neg-
ligible difference of the average Nusselt number between the OB and SGL approximations that
comes from the close results of their local Nusselt number distributions, their difference are not
shown here. Comparing the average Nusselt number slope versus the Rayleigh number in Figures
10(a) and (b) reveals that negative inclination angle decreases the total heat transfer rate. It is
also found that a zero inclination angle square cavity has a larger average Nusselt number com-
pared to the both positive and negative inclination angles.

For the average Nusselt number, some of the difference between the compressible and incom-
pressible approximations are nullified by opposite behavior of the local Nusselt number distribu-
tions. For instance, in the square cavity with zero inclination angle (Figures 9(a) and (b)), the
approximation that has a lower local Nusselt number distribution along 0 � S � 0:5 has a larger
value at 0:5 � S � 1 and vice versa. This diminishes the difference of the local Nusselt number
distribution and gives a smaller difference of the average Nusselt number for the compressible
and incompressible approaches. However, the total differences of the average Nusselt number for
both incompressible approximations increases by increasing the Rayleigh number, but it does not
exceed 2 in the considered range of c, e and Ra in this study. Besides, by increasing the relative
temperature difference, the difference of the average Nusselt number is increased. Results indicate
both positive and negative inclination angles show a considerable average Nusselt number differ-
ence in the range of Ra 
 104 with an almost linear growth rate while for the zero inclination
angle case, the difference grows rapidly in the range of Ra 
 105:

Figure 8. Absolute vorticity differences at Ra ¼ 107, Pr ¼ 1, and e ¼ 0:3: (a-c) SGL and LMS approximations (d-f) OB and LMS
approximations. In all figures, solid lines represent vorticity under the LMS approximation while dashed lines show vorticity
under the other approach. Minimum and maximum of contour levels are equal in each column.
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5.3. Skin friction

Local friction coefficient along the isothermal walls is investigated at Ra ¼ 107, e ¼ 0:15 and e ¼
0:3 under the different approximations in Figure 11. Results show a considerable mismatch
between the weakly compressible and incompressible approximations. A comparison among cf
results at e ¼ 0:15 (Figures 11(a), (c) and (e)) and e ¼ 0:3 (Figures 11(b), (d) and (f)) reveals that
this discrepancy increases with an increase in the relative temperature differences. Indeed, by
increasing the relative temperature difference, incompressible approximations show more devia-
tions from the compressible approach. Presented results in Figure 11 indicate that extending the
density variations to the advection/convection terms via the linear density state equation does not
impose a significant impact on the local friction coefficient as cf results of the incompressible
approximations are attached together in most of the regions.

For the zero inclination angle (Figure 11(a)) at e ¼ 0:15, results of the local coefficient friction
indicate that the SGL approach works slightly better than the OB approximation along the hot
wall. By increasing the relative temperature difference to 0.3, cf along the hot wall under the SGL
approach deviates from the LMS approximation, especially over 0:55 � S � 0:85, but it achieves
a better performance than the OB approximation at 0:45 � S � 0:55: For the cold wall, by
increasing the relative temperature difference, a slightly better prediction is observed for the OB
approximation in this case. For the negative inclination case (Figures 11(c) and (d)), a similar
behavior is observed so that in most of the isotherm surfaces, cf values predicted by the

Figure 9. Local Nusselt number distribution along the isothermal walls at Ra ¼ 107, Pr ¼ 1, and e ¼ 0:3 in square with different
inclination angles (a) c ¼ 0� , (b) c ¼ �30� , and (c) c ¼ þ30�:
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incompressible approaches do not show a consider mismatch but as it can be seen, result under
the SGL approximation deteriorate as the relative temperature difference is increased. For the

Figure 10. Average Nusselt number against Rayleigh number at Pr ¼ 1 in square cavity with different inclination angles as
stated: (a) e ¼ 0:15 and (b) e ¼ 0:3: Absolute average Nusselt number differences between the SGL and LMS approximations: (c)
e ¼ 0:15 and (d) e ¼ 0:3: Absolute average Nusselt number differences between the OB and LMS approximations: (e) e ¼ 0:15
and (f) e ¼ 0:3:
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positive inclination angle (Figures 11e and f), a better performance is observed for the SGL
approach across the hot wall while the OB approximation works slightly better across the cold
wall at both e ¼ 0:15 and 0.3.

Figure 11. Local friction coefficient distributions along the isotherm walls at Ra ¼ 107, e ¼ 0:15, and e ¼ 0:3: (a, b) zero inclin-
ation angle, (c, d) negative inclination angle (c ¼ �30�), and (e, f) positive inclination angle (c ¼ 30�).
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6. Conclusion

In this study, a simplified and efficient form of the Gay-Lussac approach is proposed for non-
Boussinesq treatment of the governing equations for the buoyancy driven flows. It is shown that
removing density variations from the continuity equation brings no difference to the produced
results compared to the traditional Gay-Lussac approach that is established based on considering
density variations in any term of the governing equations in which density appears. This can be
attributed to the density pre-factor to the velocity divergence in the mass conservation equation
having no influence on the results in an incompressible framework. Results indicate that the pro-
posed simplification reduces the computational cost of the traditional Gay-Lussac approach by
17% and 11% by applying the upwind and central schemes, respectively, while having no adverse
impact on the convergence rate. Performance of the simplified Gay-Lussac approach is compared
against the conventional Oberbeck—Boussinesq and weakly compressible approaches at high rela-
tive temperature differences in terms of the local and average Nusselt number and skin friction.
In this respect, natural convection in square cavity with zero, negative and positive inclination
angles is numerically simulated under the aforementioned approaches up to Ra ¼ 107 at Pr ¼ 1:
Compared results show a considerable mismatch between the compressible and incompressible
approaches at high relative temperature differences. Therefore, it is concluded the Gay-Lussac
family of approaches require serious revisions to act more accurately than the Oberbeck—
Boussinesq approximation at high relative temperature differences as an incompressible approach
for buoyancy driven flows.
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