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Abstract
The Gay-Lussac (GL) approach is an incompressible-based strategy for
non-Boussinesq treatment of the governing equations for free convection prob-
lems that is established based on extending the density variations beyond
the gravity term. Such a strategy leads to emerging the GL parameter as a
non-Boussinesq prefactor of different terms in the governing equations. In
this article, the GL approach is expressed/discussed in terms of the secondary
variables, that is, vorticity and stream-function, for the first time and a sim-
plified version of this approach is proposed by removing density variations
from the continuity equation. The difference of results under the simplified
and traditional GL approach ranges within a maximum of 1% for different
parameters. The lower computational cost of numerical solution of governing
equations in the secondary variables formula and the corresponding conver-
gence rate is scrutinized for the simplified GL approach showing around 25%
lower computational cost. The performance of this approach is evaluated at
high relative temperature differences against the low Mach number scheme
and the Boussinesq approximations. In this respect, natural convection in an
annulus cavity is numerically simulated using a CVFEM solver under the
aforementioned approximations up to Rayleigh number Ra = 105 at Prandtl
number Pr = 1 and high relative temperature differences (𝜀 = 0.15 and 0.3).
The largest deviations found for either the simplified GL or Boussinesq meth-
ods from the low Mach number scheme solution are less than 20% for velocity
magnitude, 14% for stream function, 6% for vorticity, and 5% for tempera-
ture. Results under the three approximations are also analyzed in terms of
the skin friction and local and average Nusselt number, indicating that the
Gay-Lussac approach requires some revisions to act more accurately than the
classical Boussinesq approximation at high relative temperature differences
in natural convection problems, especially within the convection dominated
regime.
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1 INTRODUCTION

Free convection related problems have myriad scientific and industrial applications, such as metallurgy processes,
solar chimneys and collectors, astrophysical and geophysical phenomena, and so on.1–5 Accurate prediction of the
thermoflow fields within these systems when heat transfer mechanism is free convection dominated is of paramount
importance. Traditionally, free convection problems are simulated numerically under the Boussinesq approximation
that is also known as the Oberbeck–Boussinesq approximation. The Oberbeck–Boussinesq (OB) approximation is orga-
nized based on some basic assumptions: small temperature differences, negligible viscous heat dissipation in the energy
equation, constant thermophysical properties of the working fluid, and small hydrostatic pressure variations across
the height of the system. When these assumptions are satisfied, density variations negligibly affect the flow except
the buoyancy term of the momentum equation. Using the volumetric thermal expansion coefficient, a linear state
equation is derived as a function of temperature that makes the governing equations independent of explicit density
variations.

The OB approximation is designed for natural convection phenomena associated by differential temperature differ-
ence featuring small order of compressibility but there are many situations, where the temperature nonuniformities
generate significant density variations. In such situation, applying the classical OB approximation produces inaccu-
rate results.6 Literature survey indicates a few remedies that were proposed to overcome this issue. Different non-OB
approximations for natural convention phenomena may be split into two major groups capturing compressible and
incompressible approaches.

The first non-OB category is developed based on returning to the original essence of the natural convection phe-
nomena by considering compressibility effects that invokes the Mach number. Generally speaking, actions toward
compressible simulation of the Navier–Stokes equations is performed in two subcategories: fully compressible and weakly
compressible approaches. However, the fully compressible approximation, in theory, is the optimal method for numerical
simulation of free convection phenomena, but numerical complications caused by low-order compressibility ratio is a seri-
ous hindrance to its application. This approach was used by Darbandi and Hosseinizadeh,7 Harish and Venkatasubbaiah,8
and Busto et al..9 The second remedy of the compressible non-OB category is the weakly compressible approach. In
the weakly compressible approach that is often referred to as the low Mach number scheme (LMS), acoustic waves are
filtered from the governing equation, which makes the method suitable for the compressible treatment of natural con-
vection phenomena with small order of compressibility ratio. Under the LMS approximation, the total pressure is broken
into two significant segments. The first segment is a spatially uniform pressure (known as the thermodynamic pres-
sure) that comes from the equation of state by which the density is updated. The second segment is a local pressure
(known as the hydrodynamic pressure) that acts just in the momentum equations. Armengol et al.10 and Wan et al.11

employed this algorithm for free convection phenomena with large temperature differences beyond the validity of the OB
approximation.

The second category of the non-OB approximations rests on an incompressibility assumption. One of the non-OB
strategies in this category is the Gay-Lussac (GL) approach that is established based on incorporating density varia-
tions beyond the gravity term of the momentum equations. This leads to the appearance of a dimensionless parameter,
Ga = 𝛽Δ𝜃, where 𝛽 is the isobaric expansion coefficient and Δ𝜃 a reference temperature. Following the OB approxi-
mation, a linear density state equation is employed to correlate density variations to the temperature differences. As
will be shown later, Ga is equal to twice of the relative temperature difference. Under the GL approach, (1 − GaΘ)
emerges as a prefactor of different terms in the governing equations that acts as a modifier. Increasing Ga (e.g., invok-
ing larger temperature differences) leads to an increase in deviation from the OB approximation. In Reference 12, the
square cavity benchmark problem is studied by this strategy at large temperature differences. A GL-type approach is
also possible by extending density variations just to one of the momentum or energy equations. For instance, Lopez
et al.13 proposed a GL-type approximation valid for rapidly rotating flows, whereby centrifugal contributions due to
background rotation were captured via extension of density variations to the advection terms. Mayeli and Sheard14,15

adopted a similar approach and showed that Ga may be cast in terms of Rayleigh, Prandtl, and Froude numbers, that is,
Ga = RaPrFr.

Nonlinear density state relation,16 temperature-dependent properties of the fluid17 and also considering
viscous friction and work of pressure stress terms of the energy equation (known as the thermodynamic
Boussinesq model18) are other subcategories of the incompressible-based non-OB approximation strategies
but for the sake of brevity, they are not discussed here. Different scenarios for the numerical simulation
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of NC problems beyond the OB approximation in compressible and incompressible categories are reviewed
in Reference 19.

The horizontal concentric annulus enclosure is a known benchmark problem in free convection related research.
A comprehensive coverage was given in Kuhen and Goldstein.20 Numerical contributions have also been made by
References 20–28, where it is consistently reported that the two-dimensional solution remains time-invariant up
to a Rayleigh number Ra = 105 at Prandtl numbers near unity. The interested reader is directed to the review by
Reference 29.

In the present study, the annulus cavity problem is studied at high relative temperature differences under
the three approximations including LMS, GL, and OB approximations. In this respect, governing equations under
the GL approach are presented in secondary variable formulas (vorticity stream-function) for the first time.
The following sections of the article are arranged as follows: Governing equations under the three approx-
imations are presented in Section 2. The geometry, boundary conditions and numerical algorithms used in
this work are introduced in Section 3. In Section 4, mismatches between the three approximations are inter-
rogated via measurements of skin friction, local and average Nusselt number. A brief conclusion is given
in Section 5.

2 THE GAY-LUSSAC AND WEAKLY COMPRESSIBLE APPROACHES

Governing equations under the GL approach are extended beyond the OB approximation by taking into account den-
sity variations in any term of the governing equations in which density appears. Starting with the incompressible
Navier–Stokes equations in the absence of any additional forces,

⎧⎪⎨⎪⎩
(𝜌∕𝜌0)∇ ⋅ u = 0,
𝜕u∕𝜕t∗ + (𝜌∕𝜌0)(u ⋅ ∇)u = −(1∕𝜌0)∇p + 𝜈∇2u + (𝜌∕𝜌0)eg,

𝜕T∕𝜕t∗ + (𝜌∕𝜌0)(u ⋅ ∇)T = α∇2T.

(1)

Following the OB approach, a linear density state relation (𝜌∕𝜌0 = 1 − 𝛽𝜃) is substituted, and the following group of
dimensionless parameters,

t = t∗𝛼
L2 ,X = x

L
,U = uL

𝛼
,P =

p∗L2

𝜌𝛼2 ,Θ = 𝜃

Δ𝜃
= T − T0

Th − Tc
,Ga = 𝛽Δ𝜃 (2)

the dimensionless form of the governing equation under the GL approximation are derived,

⎧⎪⎨⎪⎩
(1 − Ga𝛩)∇ ⋅ U = 0,
𝜕U∕𝜕t + (1 − Ga𝛩)(U ⋅ ∇)U = −∇P − RaPr𝛩eg + Pr∇2U,

𝜕𝛩∕𝜕t + (1 − Ga𝛩)(U ⋅ ∇)𝛩 = ∇2𝛩.

(3)

As seen, as Ga → 0 (Δ𝜃 → 0), the usual OB approximation is recovered. Under the GL approximation, (1 − Ga𝛩)modifies
different terms, and its effect becomes more pronounced by increasing Ga (and consequently Δ𝜃), but in practice Ga
cannot exceed a specified value to avoid an unphysical (negative) density, that is,

𝜌∕𝜌0 = 1 − 𝛽𝜃 = 1 − 𝛽Δ𝜃𝛩 = 1 − GaΘ > 0. (4)

Equation (4) indicates the maximum Ga value in practice cannot exceed 2 (Gamax = 2) based on defined dimension-
less temperature. In Section 4, it is shown that by omitting density variations from the continuity equation, a simplified
Gay-Lussac (SGL) approximation is obtained that yields identical results with the traditional GL approach,

⎧⎪⎨⎪⎩
∇ ⋅ U = 0,
𝜕U∕𝜕t + (1 − Ga𝛩)(U ⋅ ∇)U = −∇P − RaPr𝛩eg + Pr∇2U,

𝜕𝛩∕𝜕t + (1 − Ga𝛩)(U ⋅ ∇)𝛩 = ∇2𝛩.

(5)
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For comparison purposes, the problem is also simulated under the low Mach number scheme. The dimensionless
low-Mach-number governing equations19 are,

⎧⎪⎪⎨⎪⎪⎩

𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌U) = 0,

𝜕(𝜌U)
𝜕t

+ ∇ ⋅ (𝜌U ⊗ U) = −∇P + RaPr
2𝜀

𝜌eg + Pr∇ ⋅ 𝝉 ,
𝜕(𝜌𝛩)
𝜕t

+ ∇ ⋅ (𝜌U𝛩) = ∇2𝛩 +
(

𝛾−1
𝛾

)
dPth

dt
,

Pth = 𝜌𝛩.

(6)

The following parameters have been used for dimensionless analysis of Equation (6),

Θ = T
T0

,Pth =
pth

p0
, 𝜌 = 𝜌∗

𝜌0
, t = t∗𝛼

L2 ,X = x
Lref

,U =
uLref

𝛼
,P =

p∗L2
ref

𝜌𝛼2 . (7)

In Equation (6), Pth is the spatially uniform thermodynamic pressure, 𝜀 is the relative temperature difference
(𝜀 = Δ𝜃∕2T0), and 𝛾 stands for heat capacity ratio (𝛾 = cp∕cv). When Stokes’ hypothesis is applied for the bulk viscosity,
the stress tensor is expressed as follows,

𝝉 = ∇U + (∇U)T − 2∕3(∇ ⋅ U)I. (8)

The relative temperature difference that is applied for compressible simulation of natural convection problems may be
related to the GL parameter by

2𝜀 = (Th − Tc)∕To
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Compressible

= 𝛽Δ𝜃 = Ga
⏟⏞⏞⏞⏟⏞⏞⏞⏟
Incompressible

. (9)

Using the vorticity (𝜔 = 𝜕V∕𝜕X − 𝜕U∕𝜕Y ) and stream-function (U = 𝜕𝜓∕𝜕Y ;V = −𝜕𝜓∕𝜕X) parameters, the secondary
variables form of the governing equations under the SGL approximation become

⎧⎪⎪⎨⎪⎪⎩

𝜕2𝜓

𝜕X2 +
𝜕2𝜓

𝜕Y 2 = −𝜔
𝜕𝜔

𝜕t
+ (1 − 2𝜀Θ)

(
𝜕𝜓

𝜕Y
𝜕𝜔

𝜕X
− 𝜕𝜓

𝜕X
𝜕𝜔

𝜕Y

)
= Pr

(
𝜕2𝜔

𝜕X2 +
𝜕2𝜔

𝜕Y 2

)
+ RaPr 𝜕𝛩

𝜕X
,

𝜕𝛩

𝜕t
+ (1 − 2𝜀Θ)

(
𝜕𝜓

𝜕Y
𝜕𝛩

𝜕X
− 𝜕𝜓

𝜕X
𝜕𝛩

𝜕Y

)
= 𝜕2Θ

𝜕X2 +
𝜕2Θ
𝜕Y 2 .

(10)

Similar to the primitive variables formulas, governing equations under the OB approximation are recovered as 𝜀 → 0.

3 THE ANNULUS ENCLOSURE AND NUMERICAL CONSIDERATIONS

The concentric horizontal annulus enclosure is studied at high relative temperature differences under the three approxi-
mations. Figure 1 shows the system under investigation. ro and ri are respectively the outer and inner enclosure radii. To
be consistent with published benchmark studies,20–24 the aspect ratio is fixed at ro − ri∕ri = 1.6. Applied boundary con-
ditions in both primitive and secondary variables are shown in Figure 1(A). The gap between the two cylinders is filled
with a working fluid with unity Prandtl number. The outer and inner cylinders are fixed at constant cold and hot temper-
atures, respectively. The gap between the two cylinders in the radial direction serves as the reference length, Lref = ro − ri.
The two-dimensional steady flow is computed at Rayleigh numbers 10 ≤ Ra ≤ 105 and relative temperature differences
of 0.15 and 0.3. The computational domain is discretized with quadrilateral elements conforming to the circular domain,
as shown in Figure 1(B). Elements are distributed uniformly in azimuth and are compressed toward the inner and outer
cylinder surfaces to resolve the boundary layers.

Simulations are conducted using a solver employing a control volume finite-element method (CVFEM) for spatial
discretization. In CVFEM, the physical domain is covered by a series of control volumes so that a unique finite volume is
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F I G U R E 1 Concentric annulus enclosure. (A) Applied boundary conditions. (B) A coarse computational grid for illustration purposes
[Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 2 A schematic of quadrilateral elements. (A) A typical finite volume associated with integration points. (B) Local coordinate
(s,t) and bilinear shape functions in a standard element [Colour figure can be viewed at wileyonlinelibrary.com]

allocated to each node as shown in Figure 2(A). Each control volume is encircled by several panels with an integration
point (ip). Integration of Laplacian term over the finite volume yields

∫
vp

∇2𝜔dv = ∮Ap

∇𝜔ip ⋅ dA =
n∑

ip=1
∇𝜔ip ⋅ Aip. (11)

In Equation (11), series counts for the number of ip encircling the main node where Aip is corresponding to the normal
vector of the surface at each ip. Under the CVFEM, bilinear shape functions (Nj(s, t)) are used to attribute the value of
any parameter within the element to the nodal values via the weighted values,

𝜔ip = 𝜔(s, t) =
4∑

j=1
Nj(s, t)𝜔j. (12)

The shape functions relating ip values to the nodal values in a quadrilateral element are shown in Figure 2(B). The
Laplacian operator can be stated as follows

L(𝜔) =
n∑

ip=1

4∑
j=1

𝜔j∇Nj ⋅ Aip. (13)

The effects of all nodes encircling an ip are involved in Equation (13) by weighted values that are identical to a central
scheme. The Laplacian operator acts similarly in other equations.

The lagging technique is used to linearize the nonlinear terms in the governing equations. Integration of the advection
term in secondary variables form over the finite volume and using data of the previous iteration for the lagged values

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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yields

∫
vp

(𝜓y𝜔x − 𝜓x𝜔y)dv = ∮ Ap𝜓y𝜔dAx − 𝜓x𝜔dAy = ∮ Ap𝜔(𝜓ydAx − 𝜓xdAy) =
n∑

ip=1
𝜔ip(𝜓yipAxip − 𝜓xipAyip). (14)

Utilizing shape functions to approximate the integral point values to the nodal values yields

N(𝜔) =
n∑

ip=1

4∑
j=1

𝜔jNj(𝜓yipAxip − 𝜓xipAyip). (15)

Similarly, n in the series counts the number of ip encircling the main node in Equation (15). In linearization scheme,
two storylines are possible to estimate the lagged values. In the first state, lagged values are approximated irrespective of
the flow direction and weighted values determine the share of each node within the element, which leads to a central
scheme. Another possible plan is estimating lagged values according to the flow direction at each ip that leads to the
upwind scheme. It should be noted that velocity components are hidden in the vorticity and energy equations in terms
of the stream-function, that is, 𝜓yip and −𝜓xip for the horizontal and vertical components, respectively.

Solutions are advanced in time to a steady state using a second-order temporal scheme. A maximum difference of
scalar values less than 10−7 during two successive steps is considered as the stop criteria for the iterative solution proce-
dure. The solver has been validated in several previous studies.30–34 A mesh resolution study was conducted on the present
problem; it was determined that a mesh having 181 azimuthal and 91 radial elements provided six significant figures of
accuracy for pertinent measured quantities.

In this study, natural convection in the considered geometry is studied in terms of the Nusselt number and skin friction.
The local and average Nusselt numbers along the walls of the annulus enclosure are obtained from

Nuloc = −𝜕𝛩∕𝜕n|wall (16)

and

Nuave =
1

2𝜋(ri + ro)

[
∫

2𝜋ro

0
Nuloc,ods + ∫

2𝜋ri

0
Nuloc,ids

]
. (17)

The friction coefficient along the surface may be defined based on the dimensionless velocity

cf = − 𝜏w

1∕2𝜌(𝛼∕L)2 = −2Pr𝜕U𝛿

𝜕n
||||wall

. (18)

In the Cartesian coordinate system, the above fundamental definition for friction coefficient may be implemented through
the following 2D shear stress tensor

cf = −2Pr

[
𝜏xx 𝜏xy

𝜏yx 𝜏yy

][
nx

ny

]
= −2Pr

[
2𝜕U∕𝜕X 𝜕U∕𝜕Y + 𝜕V∕𝜕X

𝜕U∕𝜕Y + 𝜕V∕𝜕X 2𝜕V∕𝜕Y

][
nx

ny

]
, (19)

where nx and ny are the components of the wall-normal unit vector, respectively. The overall friction coefficient is then

cf =
√

(cf x)2 + (cf y)2. (20)

4 ANALYZING RESULTS UNDER THE FULL AND SIMPLIFIED
GAY-LUSSAC APPROACHES

In this section, it is demonstrated that the GL and SGL approaches give similar results in both transient and steady states.
In other words, it is shown that the mismatch of the obtained results under the GL and SGL approaches is negligible
with a reduced computational cost for the SGL approach. In this respect, the absolute difference in temperature, vorticity,
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F I G U R E 3 Comparing results under the GL and SGL approaches at Ra = 105,Pr = 1 and Ga = 0.6 for (A) absolute temperature and
velocity magnitude difference and (B) absolute vorticity and stream-function difference. In both figures, solid and dashed lines show
isovalues under the GL and SGL approximations, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

stream-function and velocity magnitude at Ra = 105 and Ga = 0.6 (𝜀 = 0.3), under the two approaches is calculated in
steady state, and results are portrayed in Figure 3.

The maximum absolute temperature and velocity magnitude differences in Figure 3(A) are approximately 0.005 and
0.1, respectively, which ranges within 1% and 0.06% of the temperature and velocity magnitude values. Though the dif-
ferences are very small, the largest differences in velocity magnitude are detected across the plume region and the middle
height of the lower half of the enclosure adjacent to the outer cylinder. The first location corresponds to a strong free
convection region where the working fluid leaves the inner hot cylinder toward a higher location close to the top cold
boundary. The second location of large velocity magnitude differences corresponds to the region where the fluid becomes
ready to start its vertical transport toward the highest location of the enclosure. The same difference pattern is observed
for the stream-function in Figure 3(B) as expected while the vorticity difference has almost a uniform distribution over
the physical domain in the same figure. The maximum absolute vorticity and stream-function differences in Figures 3(B)
are approximately 5 and 0.03, respectively, which ranges within 0.14% and 0.12% of the vorticity and stream-function
magnitude values.

Similar output/behavior of the GL and SGL approximations in the transient state is investigated in Figure 4 in the
context of the absolute local Nusselt number and friction coefficient differences along the outer and inner cylinders at
Ra = 105 and Ga = 0.6. Results indicate the absolute local Nusselt number difference is three orders smaller than the
local Nusselt number magnitude during transient solution (O(|ΔNuloc|∕Nuloc) ∼ 0.001). A similar comparison for the
absolute local friction coefficient difference shows a value of four order smaller value, that is, O(|Δcf |∕cf ) ∼ 10−4. Having
demonstrated that the GL and SGL approximations exhibit identical behavior, we consider only the SGL approximation
hereafter.

5 ANALYZING COMPUTATIONAL COST AND CONVERGENCE
HISTORIES OF THE PRIMARY AND SECONDARY VARIABLES FORMULAS

The secondary variables form of the governing equations are derived as an alternative to resolve the pressure coupling
problem with the flow field. Nevertheless, the advantage of the secondary variables formula is not restricted to establish
a coupling between the pressure and the velocity, but it has also a lower computational cost compared with the primary
variables that are investigated in terms of the convergence rate and CPU time in this section.

To compare the computational cost of the iterative solution procedure, successive substeps at each iteration are
explained for both primary and secondary variables formulas. For a consistent analysis, governing equations in both
primary and secondary variables forms are advanced in time using a second-order Adams–Bashforth/Crank–Nicolson
scheme in the context of a fractional step method having three substeps. For the primary variables, the first substep is

http://wileyonlinelibrary.com
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F I G U R E 4 Comparing transient local Nusselt number and coefficient friction differences along the inner and outer cylinders under
the GL and SGL approximations at Ra = 105,Pr = 1, and Ga = 0.6. (A) Absolute local Nusselt number differences and (B) absolute local
coefficient friction differences. In both figures, solid lines represent data of the inner (hot) cylinder while dash lines represent data of the
outer (cold) cylinder [Colour figure can be viewed at wileyonlinelibrary.com]

computing an intermediate velocity (U∗) by solving the momentum equation in an explicit manner in the absence of the
pressure term,

U∗ − Un

Δt
= −3

2
(1 − 2𝜀Θn)N(Un) + 1

2
(1 − 2𝜀Θn−1)N(Un−1) + Pr

2
L(Un) − RaPrΘn+1eg. (21)

The second substep is applying the intermediate velocity accompanying by the pressure to the continuity equation, which
yields a Poisson equation for the pressure, that is,

∇2P = 1
Δt

(∇ ⋅ U∗). (22)

The third substep is modifying the intermediate velocity using a pressure that satisfies a divergence-free condition for an
incompressible flow field in an implicit manner,

Un+1 − U∗

Δt
= −∇P + Pr

2
L(Un+1). (23)

Equation (21) requires temperature information from the next time step in the buoyancy term. Thus, before updating the
velocity field at each time step, the energy equation is advanced in time in the following two substeps,

𝛩∗ − 𝛩n

Δt
= −3

2
(1 − 2𝜀𝛩n)N(𝛩n) + 1

2
(1 − 2𝜀𝛩n−1)N(𝛩n−1) + 1

2
L(𝛩n), (24)

𝛩n+1 − 𝛩∗

Δt
= 1

2
L(𝛩n+1). (25)

Similar to the primary variable, for the secondary variables formulas, the solution procedure at each time step starts
with solving the energy equation in the two substeps explained by Equations (24) and (25). Then, the solution procedure
continues with solving the vorticity and stream-function equations in the following substeps

𝜔∗ − 𝜔n

Δt
= −3

2
(1 − 2𝜀Θn)N(𝜔n) + 1

2
(1 − 2𝜀Θn−1)N(𝜔n−1) + Pr

2
L(𝜔n) + RaPr𝜕𝛩∕𝜕Xn+1, (26)

𝜔n+1 − 𝜔∗

Δt
= Pr

2
L(𝜔n+1), (27)

D(𝜓n+1) = −𝜔n. (28)

http://wileyonlinelibrary.com
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In general, solving Navier–Stokes and energy equations in the primary variable form with a second-order temporal accu-
racy requires solving seven equations for a 2D problem while the same problem may recast in five equations via the
secondary variables.

Computational cost and convergence histories of the primary and secondary variables are compared in Figure 5.
An inverse matrix of the Laplacian operator with appropriate boundary conditions is constructed for each of the
equations that are being solved in an implicit manner to speed up the solution procedure. For instance, an inverted
Laplacian matrix ([D]−1) is multiplied by the vorticity vector at the right-hand side of Equation (28) to update the
stream-function values in each iteration. CPU-time for a sample case having 121× 81 elements is measured to com-
pare the computational cost. Calculations were performed at Ra = 105 and 𝜀 = 0.3 in two states in which the nonlinear
operator acts based on upwind or central schemes. Bar charts of Figure 5(A) show an almost 25% lower computational
cost for the secondary variables formulas compared with the primary one for both upwind and central
schemes.

F I G U R E 5 Computational cost and convergence histories of the computations at Ra = 105 and 𝜀 = 0.3 using primitive and secondary
variables. (A) CPU-time, (B) convergence rate of the secondary variables, central scheme; (C) convergence rate of the secondary variables,
second-order upwind scheme; (D) convergence rate of secondary variables, second-order upwind; (E) convergence rate of the primitive
variables, second-order upwind. A global time-step of 10−6 (dt = 10−6) is used for calculations for all cases [Colour figure can be viewed at
wileyonlinelibrary.com]
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Convergence rates of the two approaches are also checked in terms of the variables tolerance during the iterative
solution procedure through Figure 5(B–E). The tolerance of any parameter in this study is defined as the maximum
alteration of all nodal values during two successive time-steps. Comparing convergence histories of the two approaches
indicate that secondary variables form of the governing equations converges to a steady state with fewer oscillations. In
addition, since both central and upwind schemes are applied in the second-order form, the differences in the convergence
histories are not much different in each category.

6 ANALYZING RESULTS UNDER THE LOW MACH NUMBER SCHEME,
SIMPLIFIED GAY-LUSSAC, AND OBERBECK–BOUSSINESQ
APPROXIMATIONS AT HIGH RELATIVE TEMPERATURE DIFFERENCES

Results under the three aforementioned approximations are analyzed in terms of the skin friction and local and aver-
age Nusselt number, in this section. For a deep analyze of the thermoflow fields, temperature, stream-function, velocity
magnitude and vorticity fields under the LMS approximation are compared against the incompressible approaches in
Figure 6(A–D), respectively, at Ra = 105 and 𝜀 = 0.3 (Ga = 0.6). It is apparent from the similar patterns traced by the
solid and dashed contour lines, corresponding respectively to the weakly compressible and incompressible approaches,
that both approaches correctly capture the essential thermal and kinematic features of the system. The largest devia-
tions found for either the GL or OB methods from the LMS solution are less than 20% for velocity magnitude, 14% for
stream function, 6% for vorticity and 5% for temperature. Local measurements are notoriously sensitive to small changes
in the location and strength of structures within a flow; in support of the efficacy of the tested approaches, it will be
shown later that integrated quantities obtained from these solutions, including Nusselt number, exhibit even smaller
differences. Figure 6(D) demonstrates that the vorticity field is captured exceptionally well using both the GL and OB
methods. The largest deviations are experienced in both cases within a layer of fluid just outside the boundary layer on
either side of the inner cylinder. The contour lines in Figure 6(C) reveal that this layer corresponds to fast-moving fluid
entrained in buoyant jets ascending around each side of the cylinder. Both the GL and OB methods produce deviations
in velocity magnitude that are greatest on the outer side of these fast-moving jets. These deviations extend upward from
the top of the inner cylinder, straddling the buoyant plume that rises on the vertical centerline of the cavity. The GL
approach exhibits slightly stronger velocity magnitude deviations than the OB approach in the jet, while the OB approach
deviates more toward the sides of the outer cylinder, in the part of the flow that descends adjacent to the cooler outer
cylinder.

The most visible differences between the GL and OB methods may be found in the stream-function fields plotted in
Figure 6(B). The stream-function is zero along the vertical plane of symmetry and on both cylinder surfaces, and rises
in the interior of the fluid on both sides of the cavity. This reflects the circulating flow generated by the natural con-
vective transport of heat from the inner cylinder, up to the top of the cavity, before cooling and descending adjacent
to the outer cylinder toward the bottom of the cavity. Both the GL and OB approaches show the largest deviations in
stream-function in the upper quadrants of the cavity, close to the core of the circulations. The GL approach exhibits
deviations extending down to the side of the cylinder, outside the fast-moving jet around the inner cylinder, while
the OB method is relatively weaker in that region, instead manifesting a stronger zone in the lower quadrant of the
cavity.

Finally, the temperature deviations are qualitatively similar between the GL and OB approaches. The GL approach
exhibits slightly larger differences within the large overturning natural convection cell. By contrast, stronger deviations
are seen under the OB approach at the top of the plume near the upper surface of the outer cylinder. It becomes apparent
that under high-temperature differences, neither the OB nor the GL method is universally superior; care must be taken to
determine which quantity(s) of interest may be better captured by which method. The distributions of the local Nusselt
number and skin friction coefficients presented in the sections to follow provide further insights as to which approach
may be more suitable, depending on the governing parameter values and local features of a flow.

The magnitude of the non-OB terms in the momentum and energy equations in secondary variable formulas are
portrayed in Figure 7. These are indeed the terms that are appeared by taking into account density variations beyond the
gravity term. The magnitude of the non-OB term in the momentum equation, that is, |𝛩(𝜕𝜓∕𝜕Y𝜕𝜔∕𝜕X − 𝜕𝜓∕𝜕X𝜕𝜔∕𝜕Y )|
in Figure 7(A), is larger across the upper half of the inner cylinder and end of the plume region colliding the highest
height of the cavity. These are the regions that isovorticity lines are accumulated in Figure 6(D) leading to larger vorticity
gradients. A similar distribution of the non-OB term in the energy equation, that is, |𝛩(𝜕𝜓∕𝜕Y𝜕𝛩∕𝜕X − 𝜕𝜓∕𝜕X𝜕𝛩∕𝜕Y )| is
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F I G U R E 6 Absolute differences of results under the LMS, GL, and OB approximations at Ra = 105 and 𝜀 = 0.3 for (A) temperature,
(B) stream-function, (C) velocity magnitude, and (D) vorticity. In all figures, the left half shows the difference between the LMS and GL
approximations while the right half depicts the difference between the LMS and OB approximations. Solid lines in all figures represent the
isovalues of the parameter under the LMS approximation while dash lines show the incompressible approach [Colour figure can be viewed at
wileyonlinelibrary.com]

observable in Figure 7(B). Regions having larger temperature gradients amplify the non-OB term in the energy equation.
Accumulation of the isotherm-lines in Figure 6(A) is in agreement with the regions having stronger non-OB term in the
energy equation, however, a comparison of the result against the LMS approximation reveals that the non-OB terms are
not efficiently modifying thermoflow field at larger temperature differences.

6.1 Local Nusselt number

The local Nusselt number under the three approximations is investigated at the highest Rayleigh number (Ra = 105) and
respective relative temperature differences 𝜀 = 0.15 and 0.3 in Figure 8(A,B), respectively. As seen, the two incompress-
ible approaches show similar behavior, both deviating from the LMS approximation. Along the outer cylinder, the SGL
approach shows more accurate results compared with the OB approximation at about 𝛿 ≈ 170 with 𝜀 = 0.3 (Figure 8(B))
compared with 𝜀 = 0.15 (Figure 8(A)). For the inner cylinder, there is a visible gap among the local Nusselt number val-
ues at smaller 𝛿 under the incompressible and LMS approximations that becomes more visible by increasing 𝜀. Also by
increasing 𝜀, the SGL approach shows more deviation from the LMS approximation at about 0 ≲ 𝛿 ≲ 25◦ compared with
the OB approximation.
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F I G U R E 7 The magnitude of the non-OB terms at Ra = 105 in secondary variable form of the governing equations in (A) vorticity
equation and (B) energy equation [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 8 Comparing the local Nusselt number under the LMS and incompressible approximations along the inner and outer
surfaces at Ra = 105 and (A) 𝜀 = 0.15, (B) 𝜀 = 0.3 [Colour figure can be viewed at wileyonlinelibrary.com]

6.2 Average Nusselt number

The average Nusselt number was calculated from the simulations spanning 101 ≤ Ra ≤ 105, and is plotted in Figure 9(A,B)
for 𝜀 = 0.15 and 0.3, respectively. Equation (12) is evaluated by Simpson’s one-third rule. Below Ra ≈ 102, Nusselt number
was found to be approximately constant at both relative temperature values. In this regime, thermal conduction domi-
nates. As Rayleigh number increases to Ra ≈ 103, the flow evolves into a state dominated by thermal convection, beyond
which Nusselt number follows approximately to a power-law going as Nu ∼ Ra4.

In the low-Ra regime, the average Nusselt number is indistinguishable between the three methods. This follows from
the conduction-dominated nature of this regime, where advection, convection, and buoyancy contribute negligibly to the
flow, this suppressing the very components of the respective sets of governing equations that differ between the three
methods. In the higher-Ra regime, the results obtained for 𝜀 = 0.15 are differed by a smaller amount between the three
methods when compared with the results at 𝜀 = 0.3. Interestingly, at both 𝜀 = 0.15 and 0.3, the OB and SGL approxima-
tions yield almost the same results, with both slightly over-estimating the Nusselt number when compared with the LMS
method. At Ra = 105 and 𝜀 = 0.3, respective mismatches in average Nusselt numbers of 4.8% and 4.2% for the SGL and
OB approximations are found when compared with the LMS method.
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F I G U R E 9 Comparing the average Nusselt number under the low Mac number scheme and two incompressible approximations at
101 ≤ Ra ≤ 105 and (A) 𝜀 = 0.15, (B) 𝜀 = 0.3 [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 10 Comparing the local coefficient friction results under the two incompressible and LMS approximations along the inner
and outer surfaces at Ra = 105 and (A) 𝜀 = 0.15, (B) 𝜀 = 0.3 [Colour figure can be viewed at wileyonlinelibrary.com]

6.3 Skin shear stress

The coefficient of friction is the final considered parameter in this study. Results are plotted for the inner and outer cylin-
ders at Ra = 105 and 𝜀 = 0.15 and 0.3 in Figure 10(A,B), respectively. Both incompressible approaches show a visible
mismatch against the LMS approximation. For the inner (hot) cylinder, the mismatch is larger at 50 ≲ 𝛿 ≲ 170 but for the
outer (cold) cylinder the mismatch is detected at 10 ≲ 𝛿 ≲ 110. The results indicate that increasing the relative tempera-
ture difference from 0.15 to 0.3 leads to the SGL approach deviating from the LMS approximation compared with the OB
approximation. This deviation (also detected in the Nusselt number data) may be ascribed to the inappropriate density
state equation that is used to extend density variations beyond the gravity term under the SGL approximation.

7 CONCLUSION

Free convection in a concentric annulus enclosure is studied numerically at high relative temperature differences
(𝜀 = 0.15 and 0.3) up to Rayleigh number Ra = 105 and a fixed Prandtl number of unity under the low Mach number
and an incompressible non-Boussinesq approximation known as the Gay-Lussac approach. The non-Boussinesq approx-
imation is established based on extending density variations beyond the gravity term of the momentum equations. In
this respect, governing equations under the Gay-Lussac approach are presented in vorticity stream-function form. The
problem is also simulated under the classical Oberbeck–Boussinesq approximation and results are evaluated in terms
of the absolute differences in temperature, stream-function, velocity magnitude, and vorticity fields. These comparisons

http://wileyonlinelibrary.com
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show a considerable mismatch among the compressible and incompressible approximations at high relative tempera-
ture differences, even for the applied non-Boussinesq approach. In other words, obtained results under the Gay-Lussac
approach do not show a clear superiority compared with the Oberbeck–Boussinesq approximation. Results of the incom-
pressible approaches are also compared against the weekly compressible approach in terms of the skin friction and local
and average Nusselt number, confirming that the Gay-Lussac approach requires further treatments/revisions to surpass
the performance of the Boussinesq approximation. Finally, a computational cost analysis confirms that solving governing
equations in the presented secondary variable formulas reduces the computational cost by around 25% compared with
the primary variables formulas.
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NOMENCLATURE
cf skin friction coefficient
Ga Gay-Lussac parameter (𝛽Δ𝜃)
L Laplacian operator
Lref reference length
n unit normal vector to the surface
N nonlinear operator
Nuave average Nusselt number
Nuloc local Nusselt number
p* modified pressure
P dimensionless pressure
Pth thermodynamic pressure
Pr Prandtl number
r radius
Ra Rayleigh number
T temperature
u velocity vector
U dimensionless velocity vector
x coordinate vector
X dimensionless coordinate vector
𝛼 thermal diffusivity
𝛽 isobaric expansion coefficient
𝛾 heat capacity ratio
𝜀 relative temperature difference
𝜃 physical temperature
Θ dimensionless temperature
𝜌 density
𝜈 kinematic viscosity
𝜏w wall shear stress
𝜓 stream-function
𝜔 vorticity
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SUBSCRIPT
ave average
loc local
0 reference value
SUPERSCRIPT
n current time-step
n − 1 previous time-step

— refers to a lagged value
ORCID
Peyman Mayeli https://orcid.org/0000-0003-4084-2627

REFERENCES
1. Buchberg H, Catton I, Edwards DK. Natural convection in enclosed spaces—a review of application to solar energy collection. ASME

J Heat Transf . 1976;98(2):182-188.
2. Tonui JK, Tripanagnostopoulos Y. Performance improvement of PV/T solar collectors with natural air flow operation. Sol Energy.

2008;82(1):1-12.
3. Phiraphat S, Prommas R, Puangsombut W. Experimental study of natural convection in PV roof solar collector. Int Commun Heat Mass

Transf . 2017;89:31-38.
4. Van Dam RL, Simmons CT, Hyndman DW, Wood WW. Natural free convection in porous media: first field documentation in groundwater.

Geophys Res Lett. 2008;609:111-137. https://doi.org/10.1029/2008GL036906
5. Sparrow EM, Patankar SV, Ramadhyani S. Analysis of melting in the presence of natural convection in the melt region. ASME J Heat

Transf . 1977;99(4):520-526.
6. Paillere H, Viozat C, Kumbaro A, Toumi I. Comparison of low Mach number models for natural convection problems. Heat Mass Transf .

2000;36:567-573.
7. Darbandi M, Hosseinizadeh SF. Numerical study of natural convection in vertical enclosures using a novel non-Boussinesq algorithm.

Numer Heat Transf A. 2007;52:849-873.
8. Harish R, Venkatasubbaiah K. Numerical investigation of instability patterns and nonlinear buoyant exchange flow between enclosures

by variable density approach. Comput Fluids. 2014;96:276-287.
9. Busto S, Tavelli M, Boscheri W, Dumbser M. Efficient high order accurate staggered semi-implicit discontinuous Galerkin methods for

natural convection problems. Comput Fluids. 2020;198:104399.
10. Armengol JM, Bannwart FC, Xaman J, Santos RG. Effects of variable air properties on transient natural convection for large temperature

differences. Int J Therm Sci. 2017;120:63-79.
11. Wan ZH, Wang Q, Wang B, Xia SN, Zhou Q. On non-Oberbeck–Boussinesq effects in Rayleigh–Bénard convection of air for large

temperature differences. J Fluid Mech. 2020;889:A10.
12. Pesso T, Piva S. Laminar natural convection in a square cavity: low prandtl numbers and large density differences. Int J Heat Mass Transf .

2009;52(3–4):1036-1043.
13. Lopez JM, Marques F, Avila M. The Boussinesq approximation in rapidly rotating flows. J Fluid Mech. 2013;737(2013):56-77.
14. Mayeli P, Sheard G. A new formulation for Boussinesq-type natural convection flows applied to the annulus cavity problem. Int J Numer

Methods Fluids. 2021;93(3):683-702.
15. Mayeli P, Sheard G. Natural convection and entropy generation in square and skew cavities due to large temperature differences: a

gay-Lussac type vorticity stream-function approach. Int J Numer Methods Fluids. 2021;93(7):2396-2420.
16. Lee CH, Hyun JM, Kwak HS. Oscillatory enclosed buoyant convection of a fluid with the density maximum. Int J Heat Mass Transf .

2000;43(19):3747-3751.
17. Zhong ZY, Yang KT, Lioyd JR. Variable property effects in laminar natural convection in a square enclosure. ASME J Heat Transf .

1985;107:133-138.
18. Pons M, Le Quéré P. Modeling natural convection with the work of pressure-forces: a thermodynamic necessity. Int J Numer Methods Heat

Fluid Flow. 2007;17(3):322-332.
19. Mayeli P, Sheard GJ. Buoyancy-driven flows beyond the Boussinesq approximation: a brief review. Int Commun Heat Mass Transf .

2021;125:105316.
20. Kuhen TH, Goldstein RJ. An experimental and theoretical study of natural convection in the annulus between horizontal concentric

cylinders. J Fluid Mech. 1976;74(4):695-719.
21. Abu-Nada E, Masoud Z, Hijazi A. Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int

Commun Heat Mass Transf . 2008;35:657-665.
22. Ashrafizadeh A, Nikfar M. On the numerical solution of generalized convection heat transfer problems via the method of proper closure

equations–part II: application to test problems. Numer Heat Transf B. 2016;70(2):204-222.
23. Ashorynejad HR, Mohamad AA, Sheikholeslami M. Magnetic field effects on natural convection flow of a nanofluid in a horizontal

cylindrical annulus using lattice Boltzmann method. Int J Therm Sci. 2013;64:240-250.

https://orcid.org/0000-0003-4084-2627
https://orcid.org/0000-0003-4084-2627
https://doi.org/10.1029/2008GL036906


MAYELI and SHEARD 3279

24. Wu YL, Liu GR, Gu YT. Application of Meshless local Petrov-Galerkin (MLPG) approach to simulation of incompressible flow. Numer
Heat Transf B. 2005;48(5):459-475.

25. Shadlaghani A, Farzaneh M, Shahabadi M, Tavakoli MR, Safaei MR, Mazinani I. Numerical investigation of serrated fins on natural
convection from concentric and eccentric annuli with different cross sections. J Therm Anal Calorim. 2019;135:1429-1442.

26. Afrand M, Sina N, Teimouri H, et al. Effect of magnetic field on free convection in inclined cylindrical annulus containing molten
potassium. Int J Appl Mech. 2015;7(4):1550052.

27. Rozati SA, Montazerifar F, Ali Akbari O, et al. Natural convection heat transfer of water/Ag nanofluid inside an elliptical enclosure with
different attack angles. Math Methods Appl Sci. https://doi.org/10.1002/mma.7036

28. Malvandia A, Safaei MR, Kaffash MH, Ganji DD. MHD mixed convection in a vertical annulus filled with Al2O3–water nanofluid
considering nanoparticle migration. J Magn Magn Mater. 2015;382:296-306.

29. Dawood HK, Mohammed HA, Sidikb NAC, Munisamy KM, Wahid MA. Forced, natural and mixed-convection heat transfer and fluid
flow in annulus: a review. Int Commun Heat Mass Transf . 2015;62:45-47.

30. Mayeli P, Hesami H, Besharati-Foumani H, Niajalili M. Al2O3-water nanofluid heat transfer and entropy generation in a ribbed channel
with wavy wall in the presence of magnetic field. Numer Heat Transf A. 2018;73(9):604-623.

31. Hesami H, Mayeli P. Development of the ball-spine algorithm for the shape optimization of ducts containing nanofluid. Numer Heat
Transf A. 2016;70(12):1371-1389.

32. Mayeli P, Nikfar M. Temperature identification of a heat source in conjugate heat transfer problems via an inverse analysis. Int J Numer
Methods Heat Fluid Flow. 2019;29(10):3994-4010.

33. Mayeli P, Nili-Ahmadabadi M, Pirzadeh MR, Rahmani P. Determination of desired geometry by a novel extension of ball spine algorithm
inverse method to conjugate heat transfer problems. Comput Fluids. 2017;154:390-406.

34. Mayeli P, Nili-Ahmadabadi M, Besharati-Foumani H. Inverse shape design for heat conduction problems via the ball spine algorithm.
Numer Heat Transf B. 2016;69(3):249-269.

How to cite this article: Mayeli P, Sheard GJ. An efficient and simplified Gay-Lussac approach in secondary
variables form for the non-Boussinesq simulation of free convection problems. Int J Numer Meth Fluids.
2021;93:3264-3279. doi: 10.1002/fld.5033

https://doi.org/10.1002/mma.7036

