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A B S T R A C T   

Horizontal free convection is studied under an extended buoyancy approximation constructed to capture cen-
trifugal effects in strongly rotating regions within buoyancy driven flows. Under this approximation, the Gay- 
Lussac parameter (Ga) arises in the momentum equation to characterise non-Boussinesq behaviour. The 
scaling of average Nusselt numbers (Nuavg) are determined, as is its dependence on Ga. Increasing Ga is found to 
decrease Nuavg when convection dominates the flow, while no influence is detected in the low Rayleigh number 
regime dominated by conduction. The influence of Ga on the onset of the time-dependent regime is investigated 
and the critical Rayleigh number corresponding to different Ga are determined. Results demonstrate that 
increasing Ga stabilises the flow, delaying transition to the time-dependent regime. An Orr–Sommerfeld type 
stability analysis is performed to determine the local stability at different horizontal stations. A zone of 
convective instability is first detected, growing from the hot end of the enclosure, at Rayleigh numbers three 
orders of magnitude lower than the predicted global stability threshold at the maximum investigated Ga value. 
Ga is found to play a key role in determining the preferred orientation of instability roll structures, with 
increasing Ga being accompanied by a bias toward transverse-roll instabilities over longitudinal rolls. The 
Stuart—Landau model is used to reveal that the non-linear characteristics of this unsteady transition are 
consistent with a supercritical Hopf bifurcation.   

1. Introduction 

The Boussinesq approximation (also known as the Oberbeck— 
Boussinesq approximation; OB) is almost universally adopted to model 
buoyancy driven fluid flows. It is predicated on the insight that varia-
tions in fluid density may be neglected except within the gravitational 
(buoyancy) term of the momentum equation. This strictly holds only for 
small temperature gradients that confine its validity to small ranges of 
scientific and industrial applications. In recent decades, several rem-
edies have been proposed to improve the accuracy of the OB approxi-
mation within its incompressible framework over a larger domain of 
applicability. A review of the non-OB approximations and formulations 
adopted within each category may be found in Ref. 1. 

The set of non-OB approximations may be divided into two groups: 
one based on a compressible framework, the other on an incompressible 
framework. The Gay-Lussac approach is built upon the incompressible 
equations, extending consideration of density variations to momentum 
terms beyond the gravitational buoyancy term [2–4]. The Gay-Lussac 
parameter Ga = βΔθ emerges from this treatment, characterising the 

departure from the conventional Boussinesq approximation through a 
factor (1 − GaΘ) modifying the respective advection and convection 
terms of the momentum and energy equations. Ref. [5] proposed an 
approximation in which density variations were extended solely to the 
momentum advection term. This captures centrifugal effects in rapidly 
rotating regions that are absent from the conventional Boussinesq 
approximation [5–7]. In this study, this advective approximation is 
applied for local stability analysis of a special type of free convection 
known as horizontal convection [8]. Horizontal convection (HC) de-
scribes free convection due to non-uniform buoyancy supply across a 
horizontal boundary, and its study is motivated by applications to 
Earth's ocean currents [9], planetary mantles [10] and industrial pro-
cesses such as glass melting [11]. 

A limited number of studies have been conducted to study HC under 
the OB approximation. Hossain et al. [12] explored small aspect ratios of 
height to length down to H/L = 0.001 up to Ra = 1016 at Pr = 6.14. 
Their findings revealed the importance of enclosure depth in dictating 
the flow dynamics, and provided evidence that end-wall effects swamp 
the enclosure when H/L > 0.1. Below this, heating and cooling occur 
only within approximately 4H of each end wall. Mayeli & Sheard [13] 
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used an entropy generation measure under a Gay-Lussac type approxi-
mation to distinguish flows dominated by either convection or con-
duction. They reported that when Ga≳0.5 and Ra ≈ 6× 105, these 
processes were balanced. Tsai et al. [14] examined the non-linear evo-
lution of the Hopf instability breaking the time-invariant symmetry of 
two-dimensional horizontal convection, finding the bifurcation to be 
supercritical. They considered different horizontal temperature profiles, 
finding a step-shaped profile to be more unstable compared to smoother 
variations. Passaggia et al. [15] also considered a step-shaped temper-
ature profile at Pr = 1 in an enclosure with H/L = 0.25. They used a 
global linear stability analysis to determine critical Rayleigh numbers of 
2 × 107 and 1.7 × 108 for no-slip and free-slip boundary conditions, 
respectively. 

Tsai et al. [16] recognised that laminar two-dimensional HC first 
destabilizes within its convective horizontal boundary layer. They con-
ducted an Orr—Sommerfeld type stability analysis for a HC system with 
an aspect ratio of 0.16 and for Prandtl numbers spanning 0.1 ≤ Pr ≤ 10, 
finding that the flow remains locally stable up to Ra = 5× 107. Beyond 
this, a two-dimensional transverse-roll instability emerges, which gives 
way to a subsequent three-dimensional instability comprising stream-
wise longitudinal roll vortices consistent with the three-dimensional 
simulations undertaken in Gayen et al. [17]. 

Recently, Mayeli et al. [18] conducted a global linear stability 
analysis of HC at a unit Prandtl number under the advective buoyancy 
approximation (referred to as centrifugal buoyancy approximation in that 
study) concluding that across the physical range of Ga, the flows are 
unstable to infinitesimal oscillatory three-dimensional perturbations 
beyond Ra ≥ 4.23× 108. 

Presently, our understanding of horizontal convection under the 
Gay-Lussac framework is incomplete. This study seeks to close several 
remaining knowledge gaps. Following the methodology described in § 2, 
verification of the consistency of the centrifugal buoyancy formulation is 
provided in § 3. § 4 will elucidate the two-dimensional kinematics via 
vorticity fields and the fields capturing the non-OB effects. § 5 reveals 
the influence of Ga on the Nuavg-Ra relationships. § 6 details a local 
Orr—Sommerfeld type stability analysis. § 7 elucidates linear and 
nonlinear aspects of the two-dimensional Hopf instability breaking the 
steady solution branch, while § 8 elucidates the corresponding aspects of 
the first three-dimensional instability. Conclusions are drawn in § 9. 

2. Methodology 

Following [6,7], the effect of density variations are considered 
within the momentum advection term in addition to the gravity term 
considered under the conventional OB approximation. The continuity, 
momentum and energy equations may be written as 

∇ • u = 0, (1)  

∂u
/

∂t* +(ρ/ρ0)(u • ∇)u = − (1/ρ0)∇p+ ν∇2u+(ρ/ρ0)eg, (2)  

∂T
/

∂t* +(u • ∇)T = α∇2T. (3) 

As with the OB approximation, here viscous heat dissipation is 
neglected, thermal diffusivity and kinematic viscosity are assumed 
constant, and a linear state equation relating density to temperature is 
assumed, ρ/ρ0 = 1 − βθ. The equations may be non-dimensionalised by 
introducing the following scalings, 

t =
t*α
L2 ,X =

x
L
,U =

uL
α ,P =

p*L2

ρα2 ,Θ =
θ

Δθ
=

T − T0

Th − Tc
. (4) 

The dimensionless equations then reduce to 

∇ • U = 0, (5)  

∂U
/

∂t+(U • ∇)U = − ∇P+Pr∇2U − Θ
(
RaPreg − Ga(U • ∇)U

)
, (6)  

∂Θ
/

∂t+(U • ∇)Θ = ∇2Θ. (7) 

In Eq. (6), Θ is the dimensionless relative temperature. Observe the 
emergence of the Rayleigh number Ra = gβΔθLref

3/να, describing the 
relationship between buoyancy and dissipation, and the Prandtl number 
Pr = ν/α, describing the relationship between viscous and thermal 
dissipation. Eq. (6) differs from the conventional OB approximation 
through the additional term on the right-hand side, which acts on 
strongly accelerating regions in the fluid. The strength of these de-
viations is described by Gay-Lussac parameter Ga, with Ga→0 recov-
ering the classical OB approximation. Ga also appears in the linear 
density state equation, 

ρ/ρ0 = 1 − βθ = 1 − βΔθΘ = 1 − GaΘ, (8)  

and thus for a physical density ratio ρ/ρ0 > 0, regarding the dimen-
sionless temperature bounds ( − 0.5 ≤ Θ ≤ 0.5), the allowable range for 
the Gay-Lussac parameter is 0 ≤ Ga ≤ 2. Numerical results are 
computed up to Ga = 2 as a ceiling on its allowable range. 

This work considers horizontal convection in a rectangular enclosure 
with aspect ratio H/L = 0.16, under the centrifugal buoyancy approxi-
mation. The Prandtl number is fixed at Pr = 1, representative of gases 
such as steam or air. The system is shown in Fig. 1a. All boundaries 
permit no fluid slippage (U = 0). Side and top boundaries are adiabatic 
(∂Θ/∂n = 0), while the bottom boundary features a linear temperature 
profile. This condition creates a buoyancy imbalance along the bottom 
boundary, compelling the fluid to circulate in an anticlockwise direction 
for any non-zero Rayleigh number [19]. 

Nomenclature 

A amplitude of a signal 
D partial derivatives in vertical direction 
Ga Gay-Lussac parameter (βΔθ) 
H height of the enclosure 
k spanwise wavenumber 
L length of the enclosure 
Nu Nusselt number 
Pr Prandtl number 
Ra Rayleigh number 
T Temperature 
x coordinate vector 
X dimensionless coordinate vector 
u velocity vector 

U dimensionless velocity vector 
α travelling wave number along X axis 
β isobaric expansion coefficient 
β travelling wave number along Z axis 
ε a small constant 
θ physical temperature 
Θ dimensionless temperature 
μ eigenvalue 
ν kinematic viscosity 
ρ density 
ρ0 reference density 
σ imaginary part of the eigenvalue 
φ̃ complex eigenfunction 
ω real part of the eigenvalue  
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Eqs. (5–7) are numerically solved using an in-house code employing 
a nodal spectral element method for spatial discretisation, and a third- 
order operator-splitting time integration scheme built upon backwards 
differentiation. The code has been used and validated across numerous 
natural convection studies [12–14,16,18]. The mesh discretising the 
flow domain (Fig. 1b) is constructed with elements concentrated toward 
both bottom boundary and right side-wall, where the HC boundary layer 
and side-wall plume structures are expected to be strongest. Mesh in-
dependence was established previously for this model in Ref. 18. To 
summarise, mesh independence was sought at the ceiling of the explored 
Ra − Ga parameter space, namely Ra = 4 × 108 and Ga = 2. Both h- 
refinement (variation in the number of spectral elements in the mesh) 
and p-refinement (variation in the polynomial order of the elements) 
were conducted. It was determined that a mesh composed of 20 spectral 
elements having a polynomial order of 30 was able to reproduce an 
integral norm of the velocity field to within 2 × 10− 7 % of higher- 
resolution cases. This configuration is used throughout the present 
study. 

3. Verification of the consistency of the centrifugal buoyancy 
formulation 

The formulation employed in this study is specifically the generalised 
formulation for centrifugal buoyancy in the inertial frame proposed in 
Lopez et al. [5] (their eq. 2.12). This section provides evidence to 
demonstrate that this formulation is a consistent approximation of the 
full governing equations, using the formalism developed by Gray & 
Giorgini [20]. 

In Gray & Giorgini, the starting point was the governing continuity, 
momentum and energy equations for a Newtonian fluid with variable 
properties. Linear approximations capturing the pressure and tempera-

ture dependence of density, specific heat capacity, viscosity, thermal 
expansion and thermal conductivity were employed. Following non- 
dimensionalisation, the governing equations were expressed contain-
ing dimensionless constants ε1, …, ε11. The authors explained that the 
traditional Boussinesq approximation is recovered by neglecting the 
terms multiplying these constants on the basis that they are very small. 

The first of these constants, ε1, is the product of the volumetric 
thermal expansion coefficient and the characteristic temperature dif-
ference, or Ga in the present work). In Gray & Giorgini's derivation, 
terms across the governing equations that are pre-multiplied solely by ε1 
are listed in Table 1, along with their equivalents under the present 
notation. 

The formulation employed herein arises if the centrifugal buoyancy 
term Θ (U⋅∇)U is sufficiently large that it cannot be neglected, despite 
being pre-multiplied by ε1 (Ga). To justify the retention of this term 
alone, it must be demonstrated that its magnitude is significantly larger 
than that of the other ε1 terms. 

To verify this, solutions were computed at Ga = 0 and Ra = 4× 105, 
4× 106, 4 × 107 and Ra = 4× 108. The magnitude of each term in 
Table 1 was evaluated and the maximum values were recorded over 
time. The results are plotted in Fig. 2, with the four largest terms being 
visible. It is evident that the centrifugal buoyancy term Θ(U⋅∇)U is 
significantly stronger than the other terms (with the exception of a brief 
time early in the transient startup phase at the lowest Rayleigh number, 
when the Θ∂U/∂t term is prominent). 

Table 2 summarises the maximum magnitudes at steady state for 
each term in Fig. 2. The centrifugal buoyancy term exceeds the next 
largest terms by between one and four orders of magnitude across these 
Rayleigh numbers. This confirms that situations may exist where the 
centrifugal buoyancy term is sufficiently large that it contributes to the 
flow dynamics, while all other ε1 terms remain negligible. Of particular 
importance, note that the terms arising from the mass conservation 
equation, ∂Θ/∂t, (U⋅∇)Θ and Θ∇⋅U, are all much smaller than the cen-
trifugal buoyancy term, confirming that their omission does not violate 
mass conservation under the approximation used herein. 

4. Dependence of flow structure on Ga 

The effect of Ga on the temperature field was already investigated in 
Ref. 18. In this study, its effect on the flow fields across three orders of 
magnitude beyond Ra = 4 × 105 is elucidated. In Fig. 3, solutions are 
visualized via their vorticity fields. Complementing Fig. 3, the magni-
tude of the Gay-Lussac modification to advection, |GaΘ((U • ∇)U ) |, is 
displayed in Fig. 4. 

In horizontal convection, the fluid experiences density variations due 
to imposed temperature differences imposed from the horizontal 
boundary supplying buoyancy (here the bottom boundary). As a result, 
regions with different densities develop, and the fluid begins to circulate 
to equalize these density differences. This process typically leads to the 
formation of an enclosure-scale overturning circulation captured here 
by the vorticity fields plotted at different Rayleigh numbers in Fig. 3. 

Fig. 1. (a) Schematic diagram of the system under consideration, including 
dimensions, coordinate system and applied boundary conditions. (b) The mesh 
employed in this study, having 5 × 4 spectral elements (black lines). Grids (blue 
lines) are drawn through interior quadrature points in this visualisation. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 1 
Terms pre-multiplied by ε1 in the working contained within Gray & Giorgini [20], along with their equivalents under the present notation. Under Gray & Giorgini's 
notation, tildes (~) denote non-dimensional quantities, subscript “0” denotes reference values, and x, t, T and V are the spatial coordinate, time, temperature and 
velocity vector.   

Gray & Giorgini [20] notation Present notation 

Continuity 
− ε1

∂T̃
∂̃t

− ε1Ṽi
∂T̃
∂x̃i

, − Ga
∂Θ
∂t

− Ga (U⋅∇)Θ,

− ε1(T̃ − T̃0)
∂Ṽj

∂x̃j 

− Ga Θ∇⋅U 

Momentum − ε1(T̃ − T̃0)
∂Ṽi

∂̃t
− ε1(T̃ − T̃0)Ṽk

∂Ṽi

∂x̃k 
− Ga Θ

∂U
∂t

− Ga Θ (U⋅∇)U 

Energy − ε1(T̃ − T̃0)
∂T̃
∂̃t

− ε1(T̃ − T̃0)Ṽi
∂T̃
∂x̃i  

− Ga Θ
∂Θ
∂t

− Ga Θ (U⋅∇)Θ   
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At Ra = 4 × 105 (Fig. 3a), there is a main vorticity core that has more 
strength (and consequently stronger circulation) close to the cooling 
section over the left half of the enclosure. This is the region where 
warmer fluid cools and descends to complete the overturning circula-
tion. This core becomes stronger and compressed toward the cooling 
section as Ga is increased. The difference between the vorticity fields at 
the top frame of this figure is of order O

(
102) and has almost a sym-

metric distribution with larger difference along the four sides except for 
four corners. The non-OB effects at this Rayleigh number (Fig. 4a) are 
active in the cooling section and they become stronger with increasing 
Ga, such that the non-OB field at Ga = 2 is larger by an order of 
magnitude than at Ga = 0.5 across the bottom-left region of the 
enclosure. 

Fig. 2. Time histories of the leading terms pre-multiplied by ε1 (Ga) at the Rayleigh numbers as indicated and with Ga = 0.  

Table 2 
Maximum values of the magnitudes of the surviving terms from Fig. 2 at steady 
state. The centrifugal buoyancy term values are shown in bold.  

Ra 4× 105 4× 106 4× 107 4× 108 

max|Θ (U⋅∇)U | 3.153× 102 3.194× 104 1.028× 108 1.323× 107 

max|(U⋅∇)Θ | 1.268× 101 7.772× 101 3.520× 102 1.725× 103 

max|Θ (U⋅∇)Θ | 3.094× 100 2.369× 101 1.298× 102 6.331× 102  

Fig. 3. Comparison of vorticity fields at different Ra and Ga values, as stated. 
The top frame of each set shows the absolute difference in vorticity between the 
Ga = 2 and Ga = 0 (OB) cases. Subsequent frames show vorticity fields for 
increasing Ga. Vorticity is scaled by Ra1/2 for consistent levels across the figure, 
and streamlines are overlaid to aid comparison. 

Fig. 4. Contour plots showing fields of the magnitude of the non-OB term 
(|GaΘ(U • ∇)U |) scaled by Rayleigh number, plotted at Ra and Ga values 
as indicated. 
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By increasing the Rayleigh number to Ra = 4 × 106 (Fig. 3b), there is 
a similar but stronger overturning circulation that extends over the 
physical domain. Similar to the previous state, by increasing Ga, this 
circulation becomes concentrated toward the cooling section with a 
slightly more strength in its central region. At this Rayleigh number, the 
difference has a symmetric distribution of order O

(
103) along the hor-

izontal axis in the middle of the physical domain and the difference 
primarily arises from contraction of the main core toward the cooling 
section with increasing Ga. The non-OB effects at Ra = 4 × 106 (Fig. 4b) 
distinct from Ra = 4 × 105 are active in both of the cooling and heating 
sections and they become stronger by increasing Ga. At both Ra = 4 ×

105 and Ra = 4× 106, the leftward shift of the main circulating core 
with increasing Ga is accompanied by the formation of a weak counter- 
clockwise rotation at Ga = 1.5 and 2 over the heating section, which is 
completely absent at Ga ≤ 1. 

At Ra = 4 × 107 (Fig. 3c), there is an overturning clockwise circu-
lation in the plume region at the bottom-right region of the enclosure at 
Ga = 0.5,1 and 1.5 and a strong counter-clockwise circulation over the 
bottom side due to thermal boundary layer. At this Rayleigh number, the 
ascending plume at the right is strong so that the interaction of the fluid 
circulation with the horizontal and vertical sides creates two circula-
tions across the top-right corner of the enclosure. Excitingly, the non-OB 
effects at this Rayleigh number presented in Fig. 4c indicate that, by 
increasing Ga up to unity, the non-OB effects are augmented, but beyond 
that, these effects recede. The net non-OB effects at Ga = 2 causes 
shifting of the main core to the left with a lower strength. Similar to two 
previous cases, a weak counter-clockwise circulation is formed over the 
heating section whose power is so weak compared to the main one. The 
difference of the vorticity fields at Ga = 0 and Ga = 2 at this Rayleigh 
number is of order O

(
104) and as it can be seen, it mainly comes from 

shifting the main core leftward at Ga = 2 compared to Ga = 0. The non- 
OB effects at this Rayleigh number do not follow the previous analysis. 

Finally, at Ra = 4× 108, an overturning plume in the heating region 
is clearly visible. The flow pattern is similar to Ra = 4 × 107 but here the 
fluid has sufficient buoyancy to reach to the top of the enclosure and 
form an overturning circulation at the top-right zone. As seen, the 
strength of the circulations over the plume region at both Ra = 4 × 107 

and 4 × 108 has weakened by increasing Ga. At Ga = 0.5,1 and 1.5, the 
plume interaction with the vertical and horizontal walls has created the 
two counter-clockwise vortices attached to the surfaces across the top- 
right region but at Ga = 2, these vortices are annihilated. The differ-
ence of the vorticity fields at this Rayleigh number is of order O

(
105)

and it mainly happens across X≳0.75. The non-OB effects at this Ray-
leigh number increases with increasing Ga up to Ga = 1.5 but weaker 
non-OB effects are observed thereafter. 

5. Dependence of Nuavg on Ga 

It is apparent from the previous section that these flows can be 
visibly altered by varying Ga, particularly across Rayleigh numbers 
producing convective behaviour. The corresponding effects on heat 
transfer are now considered. The average Nusselt number is computed at 
Ga = 0,0.5, 1,1.5 and 2 for Rayleigh numbers up to Ra = 5× 108. Re-
sults are shown in Fig. 5. Nuavg is seen to remain almost constant up to 
Ra ≈ 105. This is a known behaviour [21], but it is now shown to persist 
for nonzero Ga. Beyond Ra ≈ 106, Nuavg increases as the flow enters the 
convection-dominated regime, and a dependence on Ga also emerges as 
the data sets depart from each other, with larger Ga depressing Nuavg. 
The deviations develop at Rayleigh numbers approximately an order of 
magnitude beyond the Rayleigh number where the Nusselt numbers first 
begin to rise from the low-Ra baseline. Calculations show around 17% 
difference in Nuavg between Ga = 0 and 2 at Ra = 5× 108. The trends 
are highly linear on the log-log axes, indicating a power-law depen-
dence. At Ga = 0, the average Nusselt number beyond Ra ≈ 5 × 106 is 

found to adhere to Nuavg ∼ Ra0.206, while for Ga = 2 presents 
Nuavg ∼ Ra0.257. These exponents are respectively close to 1/5 and 1/4, 
which are notable power law scalings theorised for HC flow [22,23]. 

The power-law exponents for the Nuavg-Ra relationships in the 
convective regime for each Ga are given in Table 3. The scaling at Ga =

0 is consistent with the Rossby's 1/5 scaling for the average Nusselt 
number [24] and the exponent monotonically rise to ∼ 1/4 with 
increasing Ga. Lower Nuavg values at higher Ga may be attributed to the 
local Nusselt number behaviour [18]. In the conduction-dominated 
regime, Ra = 105 for example (Fig. 3b), Nuloc along the bottom surface 
is symmetric and there is almost no difference among different Ga. 
However, in the convection-dominated regime, Ra = 4 × 108 for 
instance (Fig. 3c), Nuloc is decreased by increasing Ga value except for a 
small range of 0.45≲X≲0.75. 

A possible explanation for the reduction in Nusselt number with 
increasing Ga may be developed from Eq. (6), in which the advection 
term on the LHS is eroded by positive Θ at non-zero Ga due to the last 
term on the RHS (i.e. effectively there is a 1 − GaΘ prefactor on the 
advection term). As velocities and gradients are strongest in the 
boundary layer at the hotter end of a horizontal convection flow, 
increasing Ga may act to dampen the action of advection in this region, 
which in turn would reduce thermal gradients, reducing the Nusselt 
number. 

6. Local stability under the centrifugal buoyancy approximation 

In a recent global linear stability analysis of this system [18], the 
predicted instability modes were predominantly located in the vicinity 
of the ascending plume at the hot end of the enclosure. However, the 
literature provides evidence that instability may be seeded by the 
convective boundary layer adjacent to the horizontal boundary sup-
plying buoyancy to the flow [17]. To address the question as to whether 
the horizontal convection boundary layer is the source of instability, and 

Fig. 5. Average Nusselt number against the Rayleigh number at different Ga.  

Table 3 
Exponents (n) for the power-law scalings Nuavg ∼ Ran captured in the 
convection-dominated regime at different Ga.  

Ga 0 0.5 1 1.5 2 

n 0.206 0.214 0.223 0.238 0.257  
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the role, if any, of non-OB effects, consideration is now given to the local 
stability of the two-dimensional base flows. The basis of this analysis is 
to extract one-dimensional flow profiles at discrete horizontal stations 
along the breadth of the enclosure. A key underpinning assumption of 
this analysis is that the flow is approximately horizontal (i.e. ∂/∂x,
∂/∂z≪∂/∂y). This permits the problem to be constructed as an Orr- 
Sommerfeld type stability analysis to reveal the local stability at each 
station to small three-dimensional time-dependent perturbations. To 
derive the eigenvalue problem, a base flow containing perturbations is 
defined in the general form 

φ = φb(y)+ εφ̃(y)ei(αX+βZ− ωt), (9)  

in which φ is any of the flow variables, ε is a small constant and φ̃ is a 
complex eigenfunction. The perturbation comprises travelling wave-
numbers α and β in the respective X and Z directions, and a frequency 
and growth rate described by ω. Here, the flow under investigation is not 
strictly parallel, thus, we restrict local stability analysis to the regions 
where the one-dimensional flow assumption is approximately valid. This 
region is found by comparing the absolute ratio of the base flow velocity 
components. In general, regions where the ratio of vertical to horizontal 
velocity is below 10% are considered as appropriate regions for this 
analysis. The same criterion is considered for horizontal velocity gra-
dients as further support for a one-dimensional flow assumption in the 
region of interest. 

The eigenvalue problem is derived by substituting Eq. (9) into the 
governing eqs. (5–7), and retaining terms of order O(ε). The resulting 
equations are 

iα
[
(1 − GaΘ)U′′ − (1 − GaΘ)U

(
D2 − k2)+(1 − GaΘ′)(U′ − uD)

]
Ṽ

+Pr
(
D2 − k2)2Ṽ − k2RaPrθ̃ = − iω

(
D2 − k2)Ṽ,

(10)  

Θ′Ṽ +
[
iαu −

(
D2 − k2) ]θ̃ = iωθ̃, (11)  

where D and (′) represent partial derivatives and differentiation with 
respect to the vertical direction, respectively. The wave number is 
expressed by k2 = α2 + β2. Eqs. (10− 11) yield an eigenvalue problem in 
a general form of Axk = ωkBxk, where eigenvector xk contains the 
perturbation Ṽ and θ̃ coefficients, while matrices A and B contain the 
respective left and right side of Eqs. (10–11). 

The complex eigenvalue ω = ωRe + iσIm evolves as 
exp(σIm)[cos(ωRe) + isin(ωRe) ]. Hence the imaginary part σIm expresses 
the exponential growth rate of the instability, and the real part ωRe yields 
its angular frequency. Typically, perturbations are considered that are 
invariant in either the streamwise (X) direction or the spanwise (Z) di-
rection [16]. These are conventionally termed longitudinal-roll or 
transverse-roll instabilities, respectively, due to the orientation of 
perturbation vortices they describe. They are respectively investigated 
by setting α = 0 or β = 0 and seeking the value of the alternate wave-
number maximising σIm. 

A pseudo-spectral method is employed to solve this eigenvalue 
problem, following Ref. [16] and references therein. Accurate perfor-
mance of the solver was verified by computing the well-established 
critical eigenmode in plane Poiseuille flow [25]. The exact critical 
Reynolds number Recr = 5772.22 and wavenumber αcr = 1.02056 were 
obtained. An additional test was conducted on a buoyancy-driven 
problem, Rayleigh—Bénard convection, where the expected critical 
Rayleigh number Racr = 1707.76 and wavenumber αcr = 3.177 [26] 
were obtained. 

To initiate the stability analysis, it is necessary to first determine the 
region where the one-dimensionality assumption is valid. The parallel 
flow assumption is tested using measures that reduce to zero as parallel 
flow is achieved for the extracted base flow velocity profiles at Ra = 109 

in Fig. 6a and b. Results indicate that in the region 0.4≲X≲0.85 both 
∑

|U|/
∑

|V| and 
∑

|∂U/∂X|/
∑

|∂U/∂Y| are below 10%, so the local stability 
analysis is restricted to this region in this study. 

Fig. 6. Verification of the parallel flow assumption at Ra = 109 at different Ga. (a) A comparison of vertical and horizontal velocity magnitude summing over the 
depth of the enclosure. (b) Comparison of the horizontal velocity gradients in the X and Y-directions summing over the depth of the enclosure. (c) Horizontal velocity 
profile at X = 0.8. (d) Temperature profiles at X = 0.8. The horizontal dashed lines in (a) and (b) represents the 10% level appropriate for 1D stability analysis. 
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Regarding the eigenvalue problem, a mesh independency test is 
performed for the number of quadrature points required and it is found 
that Chebyshev polynomial basis function of order 30 are sufficient to 
keep the stability results independent of further resolution. The hori-
zontal velocity and temperature profiles at an arbitrary location from 
the considered range (here X = 0.8 for example) are plotted in Fig. 6c 
and d. These profiles serve as the base flow shown with an overbar in 
Eqs. 10 and 11. 

The first step is to determine where and when the flow first becomes 
locally unstable. In this Fig. 7, growth rates corresponding to the 
transverse (β = 0) and longitudinal (α = 0) roll instabilities are plotted 
from stations X = 0.70,0.75,80 and 0.85, and Ga = 0, 1 and 2. Local 
convective instability is indicated by positive growth rates. These results 
show that the flow becomes more unstable as the horizontal station is 
moved to the right, and increasing both Ga and Ra also promotes an 
elevation in growth rate. Up to Ra = 5× 106, the flow is locally stable to 
both transverse and longitudinal roll instabilities at Ga = 0 and 1 
(Fig. 7a and b) over the considered length but the growth rate of the 
perturbations at Ga = 2 and X = 0.85 (Fig. 7c) exceeds σ = 0 at wave-
number k = 19 for the first time. Linear stability analysis for this prob-
lem [18] indicates that flow becomes globally unstable at 
Ra = 4.23 × 108 and Ga = 2. Fig. 7c indicates that the flow becomes 
locally unstable two orders of magnitude lower than the reported critical 
Rayleigh number for the global stability analysis at Ga = 2. At this 
Rayleigh number, there is no preference between the transverse and 
longitudinal roll instabilities in crossing σ = 0 but there is clear differ-
ence between the two roll types at higher Rayleigh numbers. 

Figs. 7d-f present local stability analysis results at one order of 
magnitude higher Rayleigh number, i.e. Ra = 5× 107. As seen, at this 
(and higher) Rayleigh numbers, perturbations growth rates corre-
sponding to the transverse rolls are higher than the longitudinal rolls in 
the σ − k space, which indicates the precedence of the transverse rolls 
instabilities compared to the longitudinal ones. The data in Fig. 7d also 
indicates that at Ra = 5 × 107 and Ga = 0, transverse roll instabilities 
become neutrally stable at X = 0.85. For comparison, the critical Ray-
leigh number at Ga = 0 predicted by the global linear stability analysis 

of Ref. 18 was an order of magnitude higher at Racr = 6.46× 108. 
Presented local stability results at the same Rayleigh number at Ga = 1 
(Fig. 7e) reveals that a band of longitudinal roll instability wavenumbers 
have become unstable (σ > 0), while a wider band of wavenumbers 
corresponding to the transverse roll instability have already passed this 
threshold. Similar to Ga = 0, this shows one order of magnitude lower 
value for the critical Rayleigh number at Ga = 1 compared to the pre-
dicted critical Rayleigh number from the global linear stability analysis 
[18]. 

As previously mentioned, global linear stability analysis for this 
problem under the centrifugal approximation predicted critical Rayleigh 
numbers over Ra ≥ 4.23 × 108 for three-dimensional perturbations over 
all Ga. Fig. 8 shows the local stability analysis results conducted at 
selected Rayleigh numbers and their corresponding critical Ga predicted 
by global linear stability analysis [18]. The Rayleigh numbers are Ra =

4.23× 108,5.5× 108 and 6.46 × 108 that are neutrally stable at Ga = 2,
1 and 0, respectively. As seen, at Ga = 2 the maximum of the pertur-
bation growth rates at all X-locations exceed the neutral stability 
threshold in Figs. 7c,f,i, but the optimum of the perturbation growth 
rates at X = 0.7 remains in the stable region (σ < 0) for Ga = 0 and 1. A 
feature of the data in Fig. 8 is the location of the maximum wavenumber 
of the transverse and longitudinal rolls at high Rayleigh numbers. Re-
sults indicate that by increasing Ga in the convection-dominated regime, 
transverse roll are preceded to unstable region but the maximum of the 
perturbation growth rates occur at a higher wavenumber compared to 
the longitudinal rolls. Local stability analysis results also show a larger 
dominant wavenumber for the transverse rolls with increasing Rayleigh 
number. A reduction in distance between transverse rolls was observed 
in three-dimensional simulations of HC performed by Gayen et al. [17], 
consistent with the present analysis. 

Marginal stability was determined across the parameter space, and 
the resulting curves are plotted in Fig. 9 for different X-locations and 
Ga = 0, 1 and 2. Transverse rolls are found to be slightly more unstable 
than longitudinal rolls. At Ga = 0 and 1, precedence of the transverse 
rolls is clear against the longitudinal ones at X = 0.85 and lower X-lo-
cations, but at Ga = 2, transition of the transverse and longitudinal 

Fig. 7. Orr-Sommerfeld stability analysis results at different X locations and Ga as stated at (a, b, c) Ra = 5 × 106 (d, e, f) Ra = 5× 107. Solid lines represents 
transverse roll instability (β = 0) and the dashed line corresponds to longitudinal instability (α = 0). 
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instability rolls to the unstable zone occurs together and remains unal-
tered up to Ra≲9× 107. It is also found that, for Ra≳109 (especilly for 
Ga = 1 and 2), the transverse rolls from a relatively more stable region 
farther from the hot end-wall corner exceed the longitudinal instability 
rolls from a location closer to the right side wall, which reflects the 
strength of the non-Boussinesq effects in the fully convection-dominated 
regime. This is in agreement with [17], where transverse roll features in 
the HC boundary layer were overwhelmed by longitudinal rolls. 

7. 2D instability: Insights from the nonlinear Stuart—Landau 
model 

In this section, nonlinear simulations are used to investigate the 
transition to time-dependent two-dimensional flow. A useful tool is the 

Stuart–Landau equation [27,28] which describes the growth and satu-
ration of a complex amplitude measure of an instability A(t), 

dA
/

dt = (σ + iω)A − l(1+ ic)|A|2A+…, (12)  

where σ and ω are respectively the amplitude growth rate and angular 
frequency at asymptotically small amplitudes. Coefficients l and c serve 
to describe the weakly nonlinear departure of the mode evolution from 
the linear regime. Higher-order terms are truncated from the right hand 
side of Eq. (9). If A(t) takes the form |A|exp(iϕ) with magnitude |A| and 
phase angle ϕ, it is possible to decompose Eq. (9) into real and imaginary 
parts 

d(log|A|)
/

dt = σ − l|A|2 +…, (13) 

Fig. 8. Orr-Sommerfeld stability analysis results at different X locations and Ga as stated at (a, b, c) Ra = 4.23 × 108 (d,e, f,) Ra = 5.50 × 108 (g, h, i) Ra = 6.46×

108. Solid lines represents transverse roll instability (β = 0) and the dashed line corresponds to longitudinal instability (α = 0). 
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dϕ
/

dt = ω − lc|A|2 +…. (14) 

Therefore, if we record A(t) for a growing or decaying instability 
mode, insight may be gleaned by considering Eq. (13), specifically the 
relationship between d(log|A|)/dt and |A|2. At |A|2 = 0, d(log|A|)/dt ex-
presses the linear growth rate σ, while its gradient yields − l. The sign of 
this constant reveals the weakly non-linear characteristics of a devel-
oping instability mode, where positive and negative slopes (− l > 0 and 
− l < 0) respectively describe subcritical and supercritical bifurcations. 
A supercritical bifurcation permits only a stable branch below the crit-
ical parameter, whereas a subcritical bifurcation permits the unstable 
branch below the critical parameter. This technique has been exten-
sively used for external flows over bluff-bodies such as toroidal bodies 
[29], cylinder with square cross-section flow [30] and wakes behind a 
sphere [31]. 

Here the envelope of the time-periodic fluctuation of the average 
Nusselt number is used as the amplitude measure. The procedure used to 
determine the stability threshold is as follows: first a time-periodic so-
lution at an unstable Rayleigh number is obtained for each considered 
Ga value. Each of these solutions forms the initial conditions for several 
subsequent simulations conducted at several incrementally smaller 
Rayleigh numbers. Nusselt number time histories are obtained until the 
flows stabilise. The envelopes are then determined, giving |A(t) |, from 
which the growth rates may be found. Fig. 10 shows a representative 
case of Stuart–Landau analysis at Ga = 0.5. In this case, Ra = 3 × 109 

yields a time-periodic state which is used as an initial condition. An 
evolution of the average Nusselt at Ra = 2.75 × 109 is plotted in 
Fig. 10a. Fig. 10b shows the corresponding plot of d(log|A|)/dt against 
|A|2 that reveals the decay rate of σ as |A|2→0. The process is repeated for 
other Rayleigh numbers and the decay rate is calculated for each case 
and plotted in Fig. 10c. A linear extrapolation of the obtained data to 
zero growth rate provides an estimation of the critical Rayleigh number 
equal to Racr = 2.87 × 109 at Ga = 0.5. 

The critical Rayleigh number for other Ga are calculated similarly, 
and the results are reported in Table 4. As seen, by increasing Ga, the 
critical Rayleigh number is also increased. In other words, it is 
concluded that the non-OB effects captured by Ga act to stabilise the 
buoyancy driven flow transition to the time-periodic regime. 

Another means of estimating the critical Rayleigh number is to re-
cord the amplitude of oscillation in the Nusselt number time histories 
after the instability has saturated at several Rayleigh numbers beyond 
the threshold, and extrapolating these back to zero amplitude. This was 
conducted, and the results are compared in Table 4. The close agreement 

between these methods suggests that finite-amplitude unstable states 
cannot persist below the critical Rayleigh number. This is consistent 
with a supercritical bifurcation [27]. 

Returning to Fig. 10(b), the gradient exhibited in the vicinity of the 
vertical axis (|A| ≈ 0) is negative. This corresponds to a positive coeffi-
cient l > 0, and therefore indicates that this two-dimensional instability 
is supercritical. This is in agreement with the findings of Tsai et al. [14], 

Fig. 9. Marginal stability charts at different X locations and Ga including (a) Ga = 0 (b) Ga = 1 (c) Ga = 2. Solid lines represents transverse roll instability (β = 0) 
and the dashed line corresponds to longitudinal instability (α = 0). 

Fig. 10. (a) Time history showing the decay of an oscillation in the average 
Nusselt number obtained at Ra = 3 × 109 when evolved at the lower Rayleigh 
number Ra = 2.75× 109. Here Ga = 0.5. (b) A plot of d(log|A|)/dt against |A|2 

(c) Instability decay rate against Ra at Ga = 0.5. The linear fit reveals the 
critical Rayleigh number where it intersects σ = 0. 
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Table 4 
Comparison of critical Rayleigh numbers estimated from the growth rates from the Stuart—Landau modelling and from an extrapolation of the Nusselt number 
oscillation amplitudes computed beyond the critical Rayleigh number.  

Ga 0 0.25 0.50 0.75 1.00 

Racr (Stuart–Landau) 1.90 × 109 2.16 × 109 2.87 × 109 3.29 × 109 5.57 × 109 

Racr (Nusselt amplitude) 1.98 × 109 2.24 × 109 2.77 × 109 3.39 × 109 5.46 × 109  

Fig. 11. Time histories of 
∫
|w|dΩ and time derivative of the amplitude logarithm against the square of the amplitude oscillations for (a, b) Ga = 2 and Ra = 5 × 108 

with k = 45.51 (c, d) Ga = 1 and Ra = 6.5 × 108 with k = 48.25 and (e, f) Ga = 0 and Ra = 7.25 × 108 with k = 61.63, demonstrating a supercritical behaviour. The 
solid black circles in (b, d, f) represent the growth rate predicted by the Stuart–Landau model. 
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as their study showed the OB unsteady transition in HC to also occur via 
a supercritical bifurcation. 

In the next section, the Stuart—Landau model will be used to probe 
the nonlinear properties of the three-dimensional instabilities arising in 
these flows. 

8. 3D instability: Insights from the nonlinear Stuart—Landau 
model 

In the recent linear stability analysis conducted for three- 
dimensional disturbances in HC under the centrifugal buoyancy 
approximation [18], critical Rayleigh numbers were determined beyond 
Ra ≥ 4.23 × 108 across the available range of Ga. The instability 
consistently led to an oscillatory three-dimensional state, though the 
non-linear properties of this instability are yet to be determined. In this 
section, the instabilities predicted in Ref. 18 are subjected to the 
Stuart–Landau model to elucidate their weakly non-linear properties at 
Ga = 0,1 and 2. 

The envelope of the domain integral of w-velocity oscillations ob-
tained from direct numerical simulation (DNS) are recorded. The sim-
ulations employ a Fourier spectral treatment in the spanwise (Z) 
direction, and the same 2D nodal spectral element discretisation in the 
X–Y plane as used earlier in this study. The 3D solutions are then 
naturally periodic over same prescribed Z-wavelength, and resolution is 
controlled by specifying the number of Fourier modes employed. The 
number of Fourier modes required for independency had been deter-
mined in Ref. 18 to be 8, which is adopted herein. 

Figs. 11a,c,e represent the integral of the absolute spanwise (Z di-
rection) velocity oscillations of three unstable modes including Ra = 5 ×

108 with Ga = 2, Ra = 6.5 × 108 with Ga = 1 and Ra = 7.25 × 108 with 
Ga = 0, respectively. Minimum and maximum of the oscillations are 
specified by two dashed lines in the integral of absolute w-velocity plots. 
In all cases, the spanwise wavenumber (stated with k in each figure) is 
set correspond to the maximum perturbation growth rate obtained by 
linear stability analysis [18]. These evolutions are computed between 
12% and 18% beyond the critical Rayleigh numbers at each considered 
Ga value. 

Results from the Stuart–Landau analysis are presented in Figs. 11b,d, 
f. From these figures, extrapolation to |A|2 = 0 yields growth rate σ. The 
nearly linear trends having a negative slope toward small |A|2 is evi-
dence that the instability bifurcation is consistently supercritical. 
Growth rates are also estimated by separately monitoring the time his-
tory of kinetic energy in the Fourier mode associated with the under-
lying linear instability mode. These growth rates are reported for 
comparison in Table 5, with close agreement being observed. 

9. Conclusions 

Horizontal convection is studied under the advective buoyancy 
approximation within a rectangular enclosure having a ratio of height to 
length of 0.16 at a Prandtl number of unity. The average Nusselt number 
was scaled against the Rayleigh number at different Gay-Lussac pa-
rameters, concluding that by increasing Ga, the average Nusselt number 
decreases in the convection-dominated regime (Ra≳2× 106), while no 
difference is seen at lower Rayleigh number. A one-dimensional stability 
analysis was conducted under the centrifugal buoyancy approximation 
to investigate local stability to both the transverse and longitudinal roll 
instability modes. This analysis indicates that the buoyancy-driven flow 
becomes locally unstable two orders of magnitude lower compared to 
global stability analysis at Ga = 2. This difference reduces to one order 
of magnitude for the lower values Ga = 1 and 0. This may serve to 
explain why the global linear stability threshold predicted in [18] 
advanced to a lower Rayleigh number as Ga increased. The local sta-
bility analysis results also show that as Rayleigh number is increased, 
the flow becomes locally unstable to a transverse-roll mode ahead of a 

longitudinal-roll mode. The effect of Ga on the flow transition to the 
time-dependent regime was investigated via a truncated Stuart–Landau 
analysis. Critical Rayleigh number of the horizontal convection system 
were calculated and reported for different Ga and verified against the 
third order accuracy in time solver. Results indicate that the flow be-
comes unsteady for the first time at Ra = 1.95 × 109 with Ga = 0. It was 
found that Ga acts as a stabiliser and delays the transition to the time- 
periodic regime. The Stuart–Landau results indicate that the 
buoyancy-driven flow transition to the time dependent regime in hori-
zontal convection occurs through a supercritical bifurcation. The 
Stuart–Landau model was also applied to the evolution of global 3D 
linear instabilities, indicating that the flow transitions occur via a su-
percritical Hopf bifurcation. 
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