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A B S T R A C T   

An entropy generation analysis is conducted for horizontal convection under the centrifugal buoyancy and the 
Boussinesq approximations in a relatively shallow enclosure at a fixed Prandtl number of unity to characterise 
irreversible losses across the conduction and convection-dominated regimes using the Bejan number (Be). A 
variable irreversibility distribution factor is expressed for the entropy generation analysis as a ratio of the 
Brinkman number (Br) and the Gay-Lussac (Ga) parameter for the first time. Governing equations are solved 
numerically using a high-order nodal spectral-element method. Calculations are performed at a fixed Br = 2 ×
10− 5 over the physical range of the Gay-Lussac parameter 0 ≤ Ga ≤ 2 up to Ra = 5 × 108. As expected, increasing 
the Rayleigh number shifts the flow toward a convection-dominated regime; however it is found that increasing 
the Gay-Lussac parameter draws the heat transfer mechanism back to a conduction-dominated state. In other 
words, advection related buoyancy effects act to keep the buoyancy-driven flow in conduction-dominated 
regime. The entropy generation analysis indicates that at Ga ≳ 0.5 conduction and convection are in balance 
at Ra ≈ 6 × 105, while under the conventional Boussinesq approximation (Ga = 0), heat transfer is convection- 
dominated. The transition of the average Bejan number from conduction to convection-dominated regime fol-
lows closely to a reciprocal scaling against Rayleigh number Beave~Ra− 1 when Ga = 0 but the same process scales 
with Beave~Ra− 0.5 relation at Ga = 2.   

1. Introduction 

Horizontal convection (HC) refers to natural convection in which 
fluid motion is invoked by non-uniform buoyancy long a horizontal 
buoyancy. In HC, the fluid is overturning at any Rayleigh number due to 
horizontal non-uniformity in buoyancy [1]. This type of convection is of 
interest due to its contribution in geological applications such as oceanic 
[2] and atmospheric [3] flow patterns as well as industrial application 
such as glass melting [4]. 

Some studies have been conducted for HC. One of the pioneering 
studies in HC is Rossby’s Nu~Ra1/5 scaling [5] in the convection 
dominated regime. The same scaling for the average Nusselt number 
against the Rayleigh number is reported up to Ra = O(109) by Siggers 
et al. [6] and Sheard and King [7]. Shishkina et al. [8] adapted the 
scaling theory developed by Grossmann and Lohse [9] for Ray-
leigh–Bénard convection to a HC system where global averaged kinetic 
and thermal dissipation rates are decomposed into boundary layer and 
bulk contributions. Their theory verifies Rossby’s scaling [5], charac-
terised by the thermal boundary layer being thicker than the kinetic 

layer, and both thermal and kinetic dissipation being dominant in the 
boundary layers. A fairly comprehensive review about different aspect 
of HC has been provided by Hughes and Griffiths [10]. 

In the literature, HC systems have been studied under the classical 
Boussinesq approximation where density differences are considered 
only in the gravity term. This assumption impedes application to prob-
lems featuring large temperature differences, rapid rotation, etc. [11]. 
One approach that extends this treatment is the Gay-Lussac (Ga) 
approach in which the density variations are reintroduced wherever 
density appears in the governing equations [12–14]. The Gay-Lussac 
parameter Ga = βΔθ, as a product of temperature difference and 
isobaric expansion coefficient emerges from this treatment. The cen-
trifugal approximation [15–16] is a subcategory of the Gay-Lussac 
approach in which the density variations are extended to the advec-
tion terms of the momentum equation as well as the gravity term. This 
approach is suitable for flows having either localised or global rapid 
rotation. The interested reader is directed to a recent review of buoyancy 
models within and outside the Boussinesq approximation [17]. More 
recently, Mayeli et al. [18] studied HC under the centrifugal buoyancy 
approximation, finding that in the range of 4.23 × 108 ≤ Ra ≤ 6.5 × 108 
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there exists a physical Ga that beyond which the buoyancy-driven flow 
becomes unstable. 

In this study, the centrifugal approximation provides the basis for an 
entropy generation analysis in HC. A literature survey indicates that 
entropy generation analysis has not been applied to any HC problem 
before, but there are a vast number of studies in which different thermo- 
flow fields have been analyzed in terms of entropy generation. Interested 
readers are referred to the recent review paper [19] for a detailed dis-
cussion of entropy generation of nanofluid and hybrid nanofluid flow in 
thermal systems. In ref. 19 it is concluded that for microchannel systems, 
entropy generation decreases with decreasing nanoparticle size or 
increasing concentration. Also for open cavities, the entropy generation 
decreases by increasing both the Hartmann number and volume fraction 
at horizontal magnetic field, thus application direction of magnetic field 
is important to minimize the entropy generation. 

Tayebi et al. [20–23] performed entropy generation analysis of 
natural convection in different setups such as square cavity with a 
conducting hollow cylinder [20] concluding that inserting a hollow 
conducting cylinder plays an important role in controlling flow char-
acteristic and irreversibilities within the cavity. An entropy generation 
analysis in an annular enclosure fitted with fins under magnetic field 
effects [21], led to concluding irreversibility related to thermo-effects is 
predominant at low Rayleigh numbers, while at high Rayleigh numbers, 
the irreversibility due to heat transfer is no longer the main contributor 
of overall entropy production. Their results indicate that the in the 
presence of magnetic, increase the share of heat transfer irreversibility 
in total entropy generation. Tayebi and Oztop [22] investigated free 
convection in horizontal confocal elliptic cylinders filled with Al2O3-Cu/ 
water hybrid nanofluid. An important contribution of their work was 
finding the average Bejan number is not affected by the addition of 
hybrid nanoparticles. Tayebi et al. [23] studied free convection in 
annular elliptical cavity filled with Al2O3-Cu/water hybrid nanofluid 
with an internal heat generator/absorber. They found that in the case of 
heat absorption, reduction of the average Bejan number by increasing 
Rayleigh number is more gradually and adding nanoparticles doesn’t 
apply much effect on the average Bejan number. Dutta et al. [24] ana-
lysed free convection heat transfer in a rhombic enclosure using Cu- 
water working nanofluid under the magnetic field effects. Findings of 
their study indicates that the rate of total entropy generation has a revers 

relation with Hartman number and leaning angles of the geometry. 
Many entropy generation analysis is also preformed in the sister class 

of free convection i.e. mixed convection under the Boussinesq approxi-
mation. Alsabery et al. [25] studied entropy generation analysis in an 
enclosure with wavy horizontal walls having different number of un-
dulations and a rotating cylinder at the center of chamber. They found 
that for different number of undulations, the Bejan number is the highest 
for the case involving a nearly stationary inner cylinder. Hussein [26] 
performed an entropy generation analysis due to the transient mixed 
convection in a 3D right-angle triangular cavity concluding that the flow 
field inside the cavity is influenced significantly with the direction of the 
moving wall. It is also found that the Bejan number decreases as the 
Richardson number increases. Al-Rashed et al. [27] conducted an en-
tropy generation analysis in a 3D heated up cubical open cavity con-
taining a central isothermal block using vorticity-velocity approach. 
Their simulations were performed over Richardson number 0.01–100 
and percentage of Al2O3 nanoparticles 1–5%, concluding that the ther-
mal entropy generation increases by increasing the concentration of 
nanoparticles for all Richardson numbers, but the variation of viscous 
entropy generation with concentrations depends on Richardson number 
value. Ghachem and co-workers [28] performed a numerical simulation 
of 3D double-diffusive free convection and studied irreversibility effects 
in a solar distiller. They found that all kinds of entropy generations 
present a minimum value when buoyancy forces due to density and 
concentration differences are equal. They reported total entropy rises 
considerably by increasing buoyancy forces ratio. Hussein et al. [29] 
studied unsteady laminar 3D natural convection and entropy generation 
in an inclined cubical trapezoidal air-filled cavity for 103 ≤ Ra ≤ 105 and 
different inclination angle from 0o to 180o. They found that the incli-
nation angle has almost no effect on the total entropy generation in 
conduction-dominated regime. Al-Rashed, et al. [30] investigated en-
tropy generation for air in a 3D cubical cavity with partially active 
vertical walls and four different arrangements of heating and cooling 
section up to Ra = 106. They found that the arrangements of heating and 
cooling regions have a significant effect on the entropy generation. They 
also reported cases corresponding to minimum and maximum Bejan 
number among four considered cases for their study. 

Entropy generation is also investigated for buoyancy-driven flows in 
porous medium. For instance, Dutta et al. [31] surveyed variation of 

Nomenclature 

Beave average Bejan number 
Beloc local Bejan number 
Br Brinkman number 
eg unit vector in gravity direction 
g gravitational acceleration (m/s2) 
Ga Gay-Lussac parameter (βΔθ) 
k thermal conductivity (W/m.K) 
Lref reference length (m) 
n normal vector of the surface 
p Pressure (Pa) 
p* modified pressure 
P dimensionless pressure 
Pr Prandtl number 
q Heat (W) 
qcond. conducted heat 
qvisc. dissip. dissipated heat due to viscosity 
Ra Rayleigh number 
SΘ entropy generation due to heat transfer 
Sψ entropy generation due to fluid friction 
T Temperature (K) 
x Cartesian coordinate (m) 

X dimensionless Cartesian coordinate 
u velocity vector (m/s) 
U dimensionless velocity vector 
α thermal diffusivity (m2/s) 
β isobaric expansion coefficient (1/K) 
θ physical temperature (K) 
Δθ reference temperature difference (K) 
Θ dimensionless temperature 
ε relative temperature difference 
μ dynamic viscosity (Pa.s) 
ρ density (kg/m3) 
ρ0 reference density (kg/m3) 
τw wall shear stress (Pa) 
χ irreversibility distribution ratio 

Subscript 
ave average 
c cold 
h hot 
loc local 
tot total 
0 a reference value  
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entropy generation in a porous quadrantal enclosure with non-uniform 
thermal condition. Their findings indicates entropy generation due to 
heat transfer is the significant contributor of irreversibility at low values 
of Darcy number, while for larger values of Darcy number and Rayleigh 
number viscous dissipation becomes dominant part of total entropy 
generation. A similar study is also performed on a porous rhombic 
enclosure [32]. Bhardwaj et al. [33] studied free convection in a porous 
triangular enclosure with a wavy vertical wall using vorticity stream- 
function approach. Their numerical results indicates that by increasing 
the Darcy number, conduction dominates heat transfer mechanism. 
They also reported that entropy generation in the presence of un-
dulations is significantly higher compared to the situation with a flat 
wall, while irreversibilities due to heat transfer is almost equal for both 
scenarios. 

In all aforementioned works [20–33], the Boussinesq approximation 
for buoyancy-driven flows serves as a fundamental assumption for 
governing equation. In this study, findings of the stability analysis of HC 
under the centrifugal buoyancy approximation [18] are extended by 
determining different conduction and convection-dominated regimes 
and the effect of Ga on the local and global entropy generation. In the 
next section, the governing equations under the centrifugal approxi-
mation are introduced. Section 3 deals with the numerical set up and 
treatment of the irreversibility distribution ratio. Results are presented 
in Section 4, and in Section 5, a short conclusion is drawn. 

2. Governing equations under the centrifugal buoyancy 
approximation 

The centrifugal approximation follows fundamentals of the classic 
Boussinesq approximation but it extends the density variations to the 
advection term in addition to gravity term of the momentum equation, 
offering an improved description of rotation in a buoyancy-driven flow 
[15–16]. The dimensional form of the governing equations under the 
centrifugal approximation may be expressed as, 

∇∙u = 0, (1)  

∂u
/

∂t* +(ρ/ρ0)(u∙∇)u = − (1/ρ0)∇p+ v∇2u+(ρ/ρ0)geg, (2)  

∂T
/

∂t* +(u∙∇)T = α∇2T, (3)  

where using the following non-dimensionlised quantities, 

t =
t*α
L2 ,X =

x
Lref

,U =
uLref

α ,P =
p*Lref

2

ρα2 ,Θ =
θ

Δθ
=

T − T0

Th − Tc
,Ga = βΔθ,

(4)  

accompanied by a linear density state relation (ρ/ρ0 = 1 − βθ), yields the 
dimensionless form of the governing equations, 

∇∙U = 0, (5)  

∂U
/

∂t+(U∙∇)U = − ∇P+ Pr∇2U − RaPrΘeg+GaΘ(U∙∇)U, (6)  

∂Θ
/

∂t+(U∙∇)Θ = ∇2Θ, (7)  

that are solved by considering the following boundary conditions, 

U = 0 on Y = 0, 0.16 and − 0.5 ≤ X ≤ 0.5, (8)  

U = 0 on X = − 0.5, 0.5 and 0 ≤ Y ≤ 0.16, (9)  

Θ = X − 0.5 on Y = 0 and − 0.5 ≤ X ≤ 0.5, (10)  

∂Θ/∂n = 0 on Y = 0.16 and − 0.5 ≤ X ≤ 0.5, (11)  

∂Θ/∂n = 0 on X = − 0.5, 0.5 and 0 ≤ Y ≤ 0.16. (12) 

Eqs. (5)–(7) introduce the Gay-Lussac parameter Ga = βΔθ 

(incidentally being twice the relative temperature difference, Ga = 2ε), a 
Rayleigh number characterising the ratio of buoyancy to thermal and 
viscous dissipation, Ra = gβΔθLref

3/να, and the Prandtl number char-
acterising the ratio of viscous to thermal dissipation, Pr = ν/α. In Eq. (4) 
T0 = 0.5(Th − Tc) and the reference length is equal to the horizontal 
length of HC system. In addition, p* is a modified pressured that absorbs 
the hydrostatic pressure effects i.e. p* = p + ρ0ϕ, where ϕ is the gravi-
tational potential. 

The centrifugal approximation is consistent with the conventional 
Boussinesq approximation, except for the additional inertial buoyancy 
term on the right-hand side of the momentum equation arising as a 
consequence of extending the density variations beyond the gravity 
term. Ga also appears in the dimensionless form of the density state 
relation, 

ρ/ρ0 = 1 − βθ = 1 − βΔθΘ = 1 − GaΘ. (13)  

and its range is limited to 0 ≤ Ga ≤ 2 to avoid negative density ratios. 

3. Problem description and numerical setup 

The centrifugal approximation is applied to HC problem in a rect-
angular enclosure with a fixed aspect ratio A = H/L = 0.16. An invariant 
unit Prandtl number Pr = 1 is considered, applicable to fluids including 
air and steam. A schematic of the enclosure and applied boundary 
conditions is presented in Fig. 1a. A linear temperature variation is 
applied along the bottom boundary while other surfaces are thermally 
insulated. This configuration cools and heats the fluid over the left and 
right regions of the bottom boundary, respectively. This buoyancy 
imbalance leads to the formation of a counter clock-wise overturning 
circulation. For this problem, it is supposed that the buoyancy-driven 
flow is 2D and laminar and the working fluid circulating inside the 
enclosure is Newtonian. In the considered range of the dominant pa-
rameters (0 ≤ Ga ≤ 2, Pr  = 1 and 102 ≤ Ra ≤ 5 × 108), all flow sim-
ulations lead to a steady-state solution. 

Eqs. (1)–(3) are solved using a high-order nodal spectral-element 
method with time integration via a third-order backward differentia-
tion scheme. In spectral-element method, physical domain is discretised 
by overlapping elements and a continuous Galerkin method is applied 
that leads to a weak form of the governing equations. For high accuracy 
purposes, an orthonormal basis function such as Legendre polynomials 
is used in the Galerkin formulation and resultant equations are inte-
grated over space using Gaussian quadrature formula (Gauss-Lobatto- 
Legendre). Indeed, spectral-element method combines the accuracy of 
spectral methods with the geometrical flexibility of finite elements that 
yields an efficient computational method in which the error decreases 
exponentially as the order of approximating polynomial increases. 

(a)

(b)

Fig. 1. (a) A schematic depiction of the horizontal convection problem showing 
the imposed boundary conditions, (b) The mesh showing interior quadrature 
points within the 5 × 4 spectral elements. 
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Meshing the physical geometry is performed so that resolution is 
concentrated toward the bottom boundary and towards the heating 
section where buoyancy is expected to produce plume structures. This is 
performed with a small number of elements having a high polynomial 
order 30. The mesh independency is checked in terms of an L2 norm 
(defined as the integral of the velocity magnitude over the physical 
domain) and it is found that over the considered parameter range is less 
than 2 × 10− 7% [18]. 

Entropy generation analysis is an effective technique that can 
distinguish the evolution of heat transfer mechanism from conduction to 
convection both locally and globally. This is performed by measuring 
the entropy generation due to viscous and thermal dissipation in the 
context of the Bejan number, where the viscous contribution is associ-
ated with convective motions in the fluids [34]. Indeed, heat transfer 
processes inevitably encounter irreversible loss of useful work via 
dissipative processes that generate entropy. Understanding the sources 
of entropy generation in heat transfer may therefore provide insights 
permitting the improvement of efficiency in systems featuring such heat 
transfer processes. Following Ref. 34, for incompressible fluids in the 
absence of internal heating, local volumetric entropy generation (here 
normalised by T0

2L2/kΔθ2) may be expressed as, 

S′ ′′ = SΘ + χSψ (14) 

where the respective contributions due to thermal conduction and 
viscous friction are [34] 

SΘ =

[(
∂Θ
∂X

)2

+

(
∂Θ
∂Y

)2
]

, (15)  

χSψ = χ
[

2

{(
∂U
∂X

)2

+

(
∂V
∂Y

)2
}

+

(
∂U
∂Y

+
∂V
∂X

)2
]

, (16)  

and the irreversibility distribution ratio is χ = μT0α2/kL2Δθ2. The irre-
versibility factor may be also expressed as, 

χ = μu0
2 ×

1
(kΔθ)

×

(
T0

Δθ

)

= u0
(μu0)

(kΔθ)
×

(
T0

Δθ

)

= u0

(
μu0
L

)

(
kΔθ

L

)×

(
T0

Δθ

)

=
(u0τw)

(qcond)
×

(
T0

Δθ

)

,

or in other words, 

χ =
qvisc.dissip.

qcond.
×

1
Ga

=
Br
Ga

. (17) 

Eq. (17) demonstrates that the irreversibility distribution ratio may 
be expressed in terms of the Brinkman number characterising the ratio of 
the viscous heat dissipation to heat conduction within the system. 
Typically, a small value is employed for the irreversibility distribution 
ratio. Considering χ = 10− 4 (consistent with refs. [26, 28, 30]) under the 
Boussinesq approximation with relative temperature difference ε = 0.01 
(Ga = 0.02), gives Br = 2 × 10− 5. In this study, we alter the irrevers-
ibility distribution corresponding to different Ga at a fixed Br = 2 ×
10− 5. 

The ratio of entropy generation due to thermal conduction to total 
entropy generation yields the local Bejan number, 

Beloc =
SΘ

SΘ + χSψ
, (18)  

from which the mean over the enclosure is obtained from 

Beave =
L
H

∫

Ω
Beloc dΩ. (19) 

In entropy generation analysis, Be > 0.5 corresponds to scenarios 
where entropy generation is dominated by dissipation via thermal 

conduction, whereas Be < 0.5 corresponds to scenarios where entropy 
generation is dominated by viscous friction, correlating with convective 
heat transport. 

4. Entropy generation analysis 

For the entropy generation analysis in this study, calculations are 
performed over 102 ≤ Ra ≤ 5 × 108 at Ga = 0, 0.5, 1, 1.5 and 2. Sections 
4.1 and 4.2, deal with the global and local irreversibilities, respectively, 
as well as the average and local Bejan number, 

4.1. The effect of the Gay-Lussac parameter on the total irreversibilities 
and the average Bejan number 

The effects of the different Ga on the SΘtot, χSψtot and Beave are 
investigated in Fig. 2. Here, SΘtot and χSψtot refer to the integral of local 
SΘ and χSψ over the physical domain, respectively. For entropy gener-
ation due to thermal diffusion, two regions are detected in Fig. 2a; in 
which up to Ra ≈ 106, SΘtot remains constant, while in the second region 
106 ≲ Ra ≤ 5 × 108, it grows almost linearly. It should be noted that, the 
increase in SΘtot is modest being only approximately 30 times larger at 
Ra = 5 × 108 than at Ra = 102 for different Ga. As seen, entropy gen-
eration due to thermal diffusion grows faster for the smaller Ga in the 
second region. 

For entropy generation due to fluid friction (Fig. 2b), two regions are 
detectable. χSψtot increases quadratically with Ra up to Ra ≈ 106 for all 
Ga. Subsequently, there is a linear power law correlation in the range of 
107 ≤ Ra ≤ 5 × 108 at Ga = 0. This slope decreases slightly as Ga is 
increased, to an exponent of approximately 0.9. 

Variation of the average Bejan number against Rayleigh number is 
presented in Fig. 2c. A feature of this figure is the intersection of the 
average Bejan number at different Ga with Beave = 0.5 that indicates 
conduction and convection are in balance with respect to heat transfer. 
At Ga = 0, this occurs at Ra ≈ 4 × 104, but by increasing Ga, the cor-
responding Rayleigh number shifts to a higher value. In other words, 
higher Ga tends to delay the migration from conduction to convection- 
dominated regime. For instance, at Ga = 2 intersection with Beave =

0.5 occurs at Ra ≈ 7 × 105. Beyond the Beave = 0.5 crossing, at Ga = 0 the 
average Bejan number follows closely to a reciprocal (Beave~Ra− 1) 
scaling. However, the same process occurs with a softer Beave~Ra− 0.5 

relation at Ga = 2. In general, as Rayleigh number is increased into the 
convection-dominated regime, the average Bejan number decreases. 
This behaviour comes from the Bejan number definition as it is defined 
as the ratio of entropy generation due to thermal conduction to total 
entropy generation as the summation of the thermal conduction and 
viscous dissipation irreversibilities. Higher Rayleigh numbers are asso-
ciated with stronger buoyancy forces that generates larger velocity 
gradients and consequently larger irreversibilities due to fluid friction 
that yields smaller Bejan number. 

Results demonstrate that the effect of the Ga on the average Bejan 
number is negligible in the conduction dominated regime (Ra ≲ 104), 
but it becomes significant in the fully convection-dominated regime, so 
much so that the difference of Beave at the largest calculated Rayleigh 
number at Ra = 5 × 108 is around 95% between Ga = 0 and 2. Finally, in 
the fully convection-dominated regime (Ra ≥ 107), the average Bejan 
number at Ga = 0 correlates close to Beave~Ra− 1/3, however this ratio 
decreases with increasing Ga such that a Beave~Ra− 0.3 relation is ob-
tained by Ga = 2. A scaling of Ra− 1/3 is not unfamiliar in the context of 
horizontal convection. In HC, Nusselt number scales as the reciprocal HC 
boundary layer thickness. Siggers et al. [6] performed a variational 
analysis that revealed a lower bound on the scaling of the horizontal 
convection boundary layer thickness with Rayleigh number as Ra− 1/3. 
Separately, Shishkina et al. [8] developed a theory for the scaling of heat 
transport in horizontal convection based on an analysis of respective 
rates of thermal and kinetic dissipation in both the boundary layer and 
the interior. They proposed a Nusselt number regime scaling as Nu~Ra1/ 
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3 (i.e. the reciprocal of the aforementioned Ra− 1/3 scaling) arising from 
the scenario whereby kinetic and thermal dissipation rates were both 
dominant within the interior rather than the boundary layer. 

4.2. The effect of the Gay-Lussac parameter on the local irreversibilities 
and local Bejan number 

To probe further, four Rayleigh numbers are selected and the rates of 
the local irreversibilities and the local Bejan number are scrutinized in 
detail at different Ga in the analysis to follow. These four Rayleigh 
numbers cover different regimes so that a Rayleigh number is selected 
from conduction dominated regime, one Rayleigh number is near Beave 
= 0.5 and two Rayleigh numbers are selected from the convection- 
dominated regime. 

Fields of the local entropy generation due to fluid friction (Sψ) are 
portrayed in Fig. 3. Results indicates that, in the conduction-dominated 
regime (Fig. 3a), Sψ is small overall, with largest values being found 
adjacent to the top and bottom boundaries. A weaker zone extends 
centrally through the interior. This field is largely absent at right side- 
wall of the enclosure. In this regime, the apparent effect of Ga is to in-
crease Sψ over the cooling section. Fig. 3b represents Sψ at Ra = 6 × 105 

(in the vicinity of Beave = 0.5 for most of Ga values except Ga = 0 in 
Fig. 2c) where the irreversibilities due to heat transfer and fluid friction 
are in balance. Here, while the patterns are similar Sψ is three orders of 
magnitude larger than Ra = 104. In this regime, though its distribution is 
consistent, with the exception being slightly stronger values in the 

interior zone, increasing Ga draws larger Sψ toward the cooling section 
with more strength meaning convection is becoming stronger at this 
region. 

At the convection-dominated regime Ra = 4 × 107 and 4 × 108 

(Fig. 3c and d), Sψ is two to three orders of magnitude larger than Ra = 6 
× 105. In this regime, convection effects Sψ adopts a different distribu-
tion. It is relatively much stronger along the bottom boundary than the 
top likely due to the friction of the HC boundary layer adjacent to the 
bottom surface, and the interior zone has contracted and shifted 
downward and to the hot end of the enclosure. This reflects skewing of 
the overturning flow towards the lower-right of the enclosure [7] as the 
dark color shows stronger convection-dominated region. In other words, 
as the fluid moves relatively parallel to the bottom boundary, it receives 
stronger buoyancy forces by approaching to the bottom right corner as a 
linear temperature distribution is imposed along the bottom boundary. 
The location where the working fluid receives maximum energy co-
incidences with the region that it has to rotate due to geometry 
confinement. This generates large velocity gradients compared to other 
regions and consequently larger irreversibilities due to fluid friction. 

Excitingly, significant Ga-dependence is reversed in the convection- 
dominated regime (Fig. 3a and b) compared to conduction-dominated 
regime (Fig. 3a and b). Strong entropy generation in the ascending 
plume adjacent to the right wall is seen at Ga = 0, though this becomes 
progressively weaker as Ga increases; being almost absent beyond Ga ≈
1.5. The strength of Sψ in the interior zone also weakens as Ga is 
increased. These results suggest that centrifugal buoyancy effects are 

(a) (b)

(c)

Fig. 2. Variation of different entropy related parameters against the Rayleigh number at different Ga including (a) Entropy generation due to heat transfer (b) 
Entropy generation due to fluid friction (c) Average Bejan number. Indicators of power-law exponent gradients are included for reference. 
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weakening regions of most extreme vorticity in the flow, in turn weak-
ening their contribution to Sψ. Results at Ra = 4 × 108 (Fig. 3d) further 
demonstrate the shift of Sψ from the horizontal boundaries and interior 
to the plume region; here the low-Ga plume region dominates the dis-
tribution of Sψ. 

The influence of the end-wall plume region is further investigated by 
calculating the magnitude of the non-Boussinesq term, i.e. |GaΘ((U ∙ ∇) 
U)|, over the physical domain in the convection-dominated regime at Ra 
= 4 × 107 and 4 × 108 in Fig. 4. This term acts as a modifier through the 
advection part of momentum equation. As seen, stronger non- 
Boussinesq effects are visible across the plume region by increasing 
both Ga and Ra. The observed trend in the Sψ irreversibilities at Ra = 4 
× 107 and 4 × 108 (Fig. 3c and d) by increasing Ga may be attributed to 

the presented non-Boussinesq effects in Fig. 4. For both cases, the non- 
Boussinesq effects are strongest at Ga = 1 and it progressively 
weakens by increasing Ga. Overlaid stream-lines of the GaΘ((U ∙ ∇)U) 
provide a topological perspective on the action of this term, which is 
apparently towards a focal point that migrates from near the upper right 
corner of the enclosure at Ga = 0.5 towards a more central position as Ga 
is increased; this correlates with the alleviation in Sψ in the right side- 
wall plume as Ga is increased. 

Local irreversibilities due to heat transfer (SΘ) are portrayed in Fig. 5. 
Since three surfaces are thermally insulated, thermal conductive effects 
are important across the bottom boundary compared to the other 
boundaries. In the conduction-dominated regime (Fig. 5a), this effect is 
more tangible at the two bottom corners where the maximum 

(a) (b)

(c) (d)

Fig. 3. Distribution of Sψ over the physical domain with different Ga as stated at different Rayleigh numbers including (a) Ra = 104 (b) Ra = 6 × 105 (c) Ra = 4 × 107 

and (d) Ra = 4 × 108. Minimum and maximum of Sψ are set equal in different frames of each figure. 

(a) (b)

Fig. 4. Magnitude of the non-Boussinesq term (|GaΘ((U ∙ ∇)U)|) over right-half of the physical domain at different Ga as stated in the convection-dominated regime 
(a) Ra = 4 × 107 and (b) Ra = 4 × 108. 
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temperature differences due to applied linear temperature distribution 
across the base. As can be seen, the Ga-dependence on the SΘ distribu-
tion is visible in the conduction-dominated regime, and also at Ra = 1.5 
× 105 (Fig. 5b). By increasing the Rayleigh number (Fig. 5c and d), 
conduction effects become isolated to the cooling section of the 
boundary. This is consistent with Rayleigh—Bénard convection in which 
a cooling substrate located at the bottom side of the system de-energizes 
the fluid via conduction [35]. In the convection-dominated regime, this 
region extends further along the cooling section of the bottom boundary 
as thermal conduction is progressively superseded by convective heat 
transport at these higher Rayleigh number. A weak Ga-dependence can 
be seen in Fig. 5c and d, where the SΘ strong zones shown by dark color, 
exhibit slightly different lengths as Ga is increased. In other words, 
different frames of Fig. 5c and d show negligible sensitivity to Ga 
alteration in this regime. 

The local Bejan number distribution for different cases is presented 
in Fig. 6. As expected, in the conduction-dominated regime at Ra = 104 

(Fig. 6a), computed Beloc is almost uniformly distributed over the 
domain with a value close to unity, and variation in Ga has no effect. An 
interesting feature of the local Bejan number is noticed at Ra = 6 × 105, 
where the average Bejan number is close to 0.5 for Ga ≳ 0.5 in Fig. 2c 
and the local Bejan number represents a general balance between Sψ and 
SΘ in Fig. 6b for mentioned values of Ga, with Beloc > 0.5 indicating SΘ >

Sψ and vice versa for Beloc < 0.5. As mentioned before, SΘ and Sψ 
represent local irreversibilities due to heat conduction and viscous heat 
dissipation that correlates with velocity gradients. When the local Bejan 
number takes a value of 0.5, it means conduction and convection have 
the same power at that point. At this Rayleigh number the flow is 
convection-dominated at Ga = 0 but for Ga ≳ 0.5, conduction is domi-
nant across the two bottom corners of the enclosure where the tem-
perature difference is maximum and two parallel stretched cores close to 
the horizontal boundaries. As can be seen, the region under the influence 

of conduction expands over the heating section by increasing the Ga. On 
the other hand, the local Bejan number distribution shows a convection- 
dominated regime along the forcing boundary layer in the range of 0.15 
≲ X ≲ 0.65 and a similar region along the top boundary that shrinks by 
increasing the Ga. These are the regions where the fluid is compelled to 
move due to buoyancy forces and to deflect vertically due to confining 
boundaries. A convection-dominated regime is also observed in the 
upper-half of the plume region at Ga = 0.5 that is annihilated by 
increasing Ga. A similar region exists at the top-left corner where the 
flow has to rotate, however part of the rotation is under the effect of 
cooling section that makes heat conduction as the dominant part of the 
heat transfer mechanism. 

At Ra = 4 × 107 and 4 × 108 (Fig. 6c and d), the whole flow is 
dominated by viscous entropy generation associated with convection 
except in the lower-left region where conductive cooling occurs. 
Comparing different frames of Fig. 6d indicates that by increasing Ga in 
the convection-dominated regime, the conduction effects become more 
important across the cooling section and stronger across the overturning 
plume region. The lowest local Bejan numbers are found adjacent to the 
right-hand side wall and along the top boundary. This reflects the fast 
convective flow upward in the buoyancy plume, which then progresses 
leftward along the top boundary; this is the return region of the over-
turning circulation. Ultimately, diffusive cooling at the left end takes 
over as described in [10]. 

5. Conclusion 

An entropy generation analysis of horizontal convection under the 
centrifugal buoyancy approximation was conducted at unity Prandtl 
number for the first time to map different conduction and convection 
dominated regimes in terms of the irreversibilities due to heat transfer 
and fluid friction associated with the local and average Bejan number. 

(a) (b)

(c) (d)

Fig. 5. Distribution of SΘ over the physical domain with different Ga as stated at different Rayleigh numbers including (a) Ra = 104 (b) Ra = 6 × 105 (c) Ra = 4 × 107 

and (d) Ra = 4 × 108. Minimum and maximum of SΘ are set equal in different frames of each figure. 
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The following items were the important findings/novelty of this study:  

• The irreversibility distribution ratio is expressed using the Brinkman 
number and the Gay-Lussac parameter for the first time (χ = Br/Ga). 

• Entropy generation analysis was performed with a variable irre-
versibility distribution ratio at a fixed Brinkman number of Br = 2 ×
10− 5 and different Gay-Lussac parameters ranging 0 ≤ Ga ≤ 2 up to 
Ra = 5 × 108.  

• At Ra ≈ 6 × 105 for Ga ≳ 0.5, the average Bejan number crosses with 
Beave = 0.5 where conduction and convection heat transfer mecha-
nisms are in balance.  

• The transition of the average Bejan number from conduction to 
convection-dominated regime follows closely to reciprocal (Bea-

ve~Ra− 1) for Ga = 0 but the same process occurs with Beave~Ra− 0.5 

relation at Ga = 2.  
• Ga has almost no role/effect on the buoyancy-driven flow field in the 

conduction-dominated regime (Ra ≲ 104) but it expands regions 
under the influence of heat conduction in the convection-dominated 
regime. 
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