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Horizontal convection driven by a linear temperature profile along the bottom of a two-dimensional
rectangular enclosure is perturbed by a small tuned synthetic (zero-net-mass-flux/ZNMF) jet. The jet
permits instability in the horizontal convection boundary layer to be investigated in a controlled manner.
At a Prandtl number Pr = 6.14 and Rayleigh number Ra = 2.5 x 108, slightly below the natural onset of
instability, the boundary layer is found to be convectively unstable, exhibiting a disturbance pattern
consistent with a Rayleigh—Bénard mechanism. Advection of the boundary layer disturbance gives rise to
unsteadiness in the vertical end-wall plume. Nusselt number is enhanced across a range of frequencies
for all perturbation amplitudes, with the response dominated by two frequencies differing by approxi-
mately a factor of two: each invokes the periodic shedding of vorticity into the vertical end-wall plume at
the higher frequency. This suggests that there exists a natural sensitivity in this flow to disturbances
convecting in the upstream boundary layer. That is, a convective instability in the horizontal convection
boundary layer serves as a disturbance amplifier, with the end-wall plume controlling the frequency of
the resulting instability mode. The increase in Nusselt number achieved by a jet with peak speed of the
same order as the horizontal convective velocity in the unperturbed flow is consistent with a greater

than two-fold increase in Rayleigh number.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Horizontal convection is a form of convection in which the flow
is triggered by a heating differential applied across one horizontal
boundary, which can be either the top or bottom boundary in an
enclosure. Unlike the comprehensively studied Rayleigh—Bénard
convection, in which vertical heating from below promotes insta-
bility beyond some critical Rayleigh number, in horizontal con-
vection the non-uniform heating over the forcing boundary leads to
overturning of the fluid for all Rayleigh numbers [1]. Horizontal
temperature gradients are found in myriad geophysical flows,
including the Earth's oceans, atmosphere and mantle [2], though it
is the oceanographic application towards the global thermocline
current system that has motivated significant recent attention to
horizontal convection [1,3—9].

The characteristics of horizontal convection are highly depen-
dent on the Rayleigh number, which indicates the strength of the
applied heating differential. Fluid flow at low Rayleigh numbers is
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laminar and diffusive in nature; and no boundary layer is present.
In this regime, overturning circulation is approximately symmet-
rical and is caused by the destabilizing buoyancy input. At higher
Rayleigh numbers the fluid flow moves from a diffusion-dominated
to a convection-dominated behaviour, where thermal and velocity
boundary layers establish along the horizontal boundary on which
the differential temperature is applied [5].

At Prandtl numbers consistent with water, horizontal convec-
tion flow becomes time-dependent beyond a critical Rayleigh
number [3,5]. Instability presents initially as a convecting
transverse-roll wave in the forcing boundary layer along with a
time-periodic pulsing in the end-wall plume. This soon gives way to
an eruption of mushroom shaped plumes breaking out from the
boundary layer and rising near the end-wall as a vertical plume. The
plume transports the hotter, more buoyant fluid towards the top of
the tank, before it recirculates horizontally along the top and dif-
fuses in the interior of the box. Understanding the nature of the
instabilities in horizontal convection is important as controversy
remains regarding both the transition to unstable flow and the role
of turbulence in the flow. Paparella and Young [10] proved for
horizontal convection that in the limit of vanishing thermal and
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Nomenclature

A synthetic jet peak velocity amplitude
Cp fluid specific heat capacity
d jet orifice width

e unit vector in y-direction

f frequency

fi synthetic jet frequency

Fr absolute base heat flux

g gravitational acceleration
H enclosure height

L enclosure width

Np element polynomial degree
Nu nusselt number

j2) pressure

Pr prandtl number

Ra rayleigh number

t Time

T time period

u velocity vector

vj synthetic jet vertical velocity

X cartesian horizontal coordinate
X; horizontal jet position

ZNMF  zero-net-mass-flux

Greek symbols

a. volumetric expansion coefficient
o6 horizontal temperature difference across base
0 temperature

o reference temperature

KT fluid thermal diffusivity

v fluid kinematic viscosity

Do fluid density

W, spanwise vorticity

molecular dissipation for fixed Prandtl number, that the energy
dissipation per unit mass also vanishes. Horizontal convection
therefore does not satisfy the law of finite energy dissipation (the
‘zeroth law of turbulence), and is therefore formally non-turbulent.
It does, though, exhibit some features consistent with a turbulent
flow. Fig. 3 in Ref. [10] demonstrates unsteady and time-dependent
features, which have also been observed in subsequent experi-
mental and numerical studies [3,5,8,11], along with evidence of a
spectral cascade [8].

The development of instability in horizontal convection has
been linked to a possible increase in the scaling of Nusselt number
characterising heat transport with Rayleigh number from the
laminar scaling developed by Rossby [12], Nu ~ Ra'/® [3,5,8,13]. The
scaling of horizontal convection with Rayleigh number has also
been studied recently by Ilicak and Vallis [ 14] and Hazewinkel et al.
[15]. A theoretical upper bound of Nu ~ Ra'® has been proposed [16]
but has yet to be observed. The ultimate value of the scaling
exponent at high Rayleigh numbers may have significant implica-
tions for the contribution of horizontal convection to global over-
turning and heat transport in Earth's oceans, and so is of significant
interest. Indeed, a recent theoretical consideration of heat and
momentum dissipation in the boundary layer and interior of hor-
izontal convection following the ideas of Grossmann and Lohse [17]
led to the development of a sketch of the horizontal convection
scaling regimes in Pr—Ra space [ 18]. At high Rayleigh numbers their
theory predicts both a Ra'/ regime and the upper-bound Ra'’®
regime at higher and lower Prandtl numbers, respectively; both
regimes exceed Rossby's Ra'/® scaling.

While the manifestation of instability in horizontal convection is
increasingly well understood [1,5,8], the characteristics of the un-
derlying instability mechanism are less clear. The onset of unsteady
flow has been attributed to a pulsing in the end-wall plume [6],
though recent simulations [5,8] have also demonstrated convecting
two-dimensional disturbances within the forcing boundary layer
upstream of the plume. Tsai et al. [19] demonstrated using a one-
dimensional linear stability analysis that these disturbances arise
from a Rayleigh—Bénard type of thermal instability mechanism at
the hotter end of the bottom boundary. The precise connection
between these disturbances and their respective contributions to
the development of unsteady flow in horizontal convection re-
mains unknown. This study proceeds on the hypothesis that
instability originates within the forcing boundary layer, and seeks
to investigate the response of the flow at a Rayleigh number just
below the natural onset of instability to a controlled, localised

perturbation of the boundary layer.

In 1948, Schubauer and Skramstad [20] published a landmark
report into the stability of laminar boundary layers. They mounted
a vibrating ribbon within a stable boundary layer, and by control-
ling the amplitude and frequency of the vibration, were able to map
the stability of the boundary layer using measurements of the
response of the flow to the applied perturbation. A similar meth-
odology is adopted in this study, though for numerical convenience
a synthetic jet located on the forcing boundary is employed in place
of a vibrating ribbon to perturb the boundary layer. Synthetic, or
zero-net-mass-flux (ZNMF), jets are a type of jet flow generated by
cyclic movement of fluid into and out of a small opening [21]. They
have the distinguishing property when compared to other jet flows
that the jet is composed only of the surrounding fluid (there is no
net injection of fluid from an external source). Synthetic jets find
important application as actuators for aerodynamic flow control
[22,23], including control of flow separation [24] and study of
turbulent transition [25,26].

The addition of the synthetic jet places this study within the
domain of mechanically forced horizontal convection. In Haze-
winkel et al. [15], simulations of horizontal convection with a time
invariant shear stress applied over the breadth of the heated
boundary was considered. In their study the mechanical forcing
was ‘thermally indirect,” acting in opposition to the direction of
overturning due to the buoyancy forcing. They recalled Sandstr
om's [27] observation of wind reversing the direction of surface
flow in a fjord in western Sweden, and primarily reported on the
ability of opposing surface shear stress to establish a regime
featuring a shallow thermally indirect shear-driven overturning
cell near the forcing boundary, beyond which lay a larger thermally
direct buoyancy-driven cell. Tailleux and Rouleau [28] considered a
square enclosure (H/L = 1) with a linear temperature profile applied
over the top surface, and mechanical forcing applied as a vorticity
source spanning 1/3 of the enclosure depth and 1/2 the enclosure
width, extending from the upstream end of the heated boundary. In
contrast to [15], the mechanical forcing configuration was localised
rather than spanning the forcing boundary, and was imposed in
both direct (acting with the buoyancy forcing) and indirect
(opposing the buoyancy forcing) configurations. They concluded
that mechanical forcing enhances horizontal convection by
increasing the energy extracted from the buoyancy forcing,
enhancing mixing, increasing the thermocline depth and produc-
tion rate of available potential energy. Ilicak and Vallis [14]
considered a horizontal convection system with a buoyancy
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profile applied across the top boundary such that a central
descending plume was invoked, with return flows towards the left
and right of the enclosure. They invoked a mechanical forcing via
imposition of a uniform vorticity across the top boundary that
varied sinusoidally in time about zero. Hence their configuration
imposed no net forcing acting in cooperation or opposition to the
natural buoyancy-driven overturning flow. This property is shared
with the configuration adopted in the present study, though here
the perturbation is added via a localised synthetic jet, specifically
positioned at the upstream end of the convectively unstable part of
the boundary layer at the chosen flow conditions.

This paper is structured as follows: § 2 defines the problem
setup, governing equations and numerical formulation, § 3 de-
scribes the results, which includes a description of the unperturbed
reference flow, the response of Nusselt number to the applied
perturbation, and elucidation of the response through interroga-
tion of thermal and disturbance fields. Finally, conclusions are
drawn in § 4.

2. Numerical model and methodology
2.1. Model description

Fig. 1 shows a schematic diagram of the problem being inves-
tigated. The system consists of a two-dimensional fluid undergoing
horizontal convection in a rectangular box with height H and width
L. Consistent with several previous studies [3,5,8], a fixed enclosure
aspect ratio of H/L = 0.16 is used. The flow is driven by a linear
temperature profile applied along the base of the enclosure. The
remaining three walls are perfectly insulated. The imposition of a
fixed temperature distribution across the jet orifice ensures that no
net advective heat flux is created by the addition of the jet. The two
side walls have a no-slip velocity boundary condition imposed. The
bottom surface has a no-slip boundary condition, with the excep-
tion of the synthetic jet location, while the upper horizontal
boundary features a second broad and weak synthetic jet to satisfy
conservation of mass. The parameters quantifying the applied
perturbation include the synthetic jet peak velocity amplitude A,
oscillation frequency f, horizontal position of the centre of the
jet along the base x;, and orifice width d. This work seeks to char-
acterise the response of the flow via the Nusselt number to
boundary-layer perturbation of specific amplitude and frequency.

2.2. Governing equations and parameters

The governing equations are the dimensionless Navier—Stokes
equations for a Boussinesq fluid, which are expressed as

V-u=0, (1)
= Viop
L wao-o o9=0 o0=0
y
. ___u=0 iy, u=0
0= (36/L)x a1 =
5 | =y,
I

Fig. 1. Schematic representation of the two-dimensional problem under consideration.
Enclosure dimensions and boundary conditions on velocity and temperature fields are
labelled. The abbreviation d, represents the partial derivative with respect to x, the
synthetic jet velocity profile v; is defined in Eqn. (4), and mass is conserved by pre-
scribing a weak complementary vertical flow (v;op) through the top boundary.

%—l::—(u-V)u—Vp+PrV2u+PrRaEy 6, (2)
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where u, t, p, Pr, Ra, €y and 0 are the velocity vector, time, kinematic
static pressure, Prandtl number, Rayleigh number, unit vector in the
upward vertical direction, and temperature, respectively. Length,
velocity, time, pressure and temperature are respectively scaled by
L, k1/L, L*[kr, pok?/L? and 66, where kr and po are the thermal
diffusivity and reference density of the working fluid, and 64 is the
imposed temperature difference across the bottom boundary.
Temperature is taken relative to a reference temperature g such
that the absolute temperature is recovered from 6 + 6. The refer-
ence temperature is arbitrarily taken as the temperature at the cold
end of the heated boundary. Hereafter, these quantities are
expressed in their normalised form.

The Rayleigh number, which characterizes the strength of
thermal forcing, is defined as Ra = ag 66 L /vkr, where g is the ac-
celeration due to gravity, a the volumetric thermal expansion co-
efficient, and v the kinematic viscosity of the fluid.

Previous studies have determined for horizontal convection in
an enclosure forced by a linear temperature profile (as used here)
that the flow transitions from a steady convective state to a state
exhibiting a time-periodic instability beyond Ra = 5 x 10% [5]. As
our interest is in the mechanisms underpinning this primary
instability in horizontal convection, we consider the flow at
Ra = 2.5 x 108, slightly below the onset of the transition.

The two-dimensional approach taken here is justified by the
observation from high-resolution three-dimensional direct nu-
merical simulation by Gayen et al. [8]. Those observations are in
turn supported by the linear stability analysis of Tsai et al. [19],
where the horizontal convection boundary layers were found to
first become unstable to transverse-roll (two-dimensional) distur-
bances with increasing Rayleigh number, prior to the onset of
longitudinal-roll (three-dimensional) instability.

The Prandtl number Pr = v/k7, characterizes the ratio of viscous
to thermal dissipation in the fluid, and consistent with water at
room temperature, Pr = 6.14 is used in this study.

The Nusselt number, which is the ratio of convective to
conductive heat transfer, is defined as Nu = FrL/pgcpkrd6, where
here we take Fras the time average of the absolute value of the heat
flux averaged over the forcing boundary, and cj, is the specific heat
capacity of the fluid.

The forcing boundary layer is perturbed by a small synthetic jet
embedded in the forcing boundary. This study is concerned with
the response of the flow to the applied perturbation rather than the
local flow dynamics in the vicinity of the jet orifice, so for simplicity
the jet is modeled by an oscillatory parabolic velocity profile
described by

vj :A[l —%(x—xj)z} sin<27rfj t)A (4)

The velocity v; is applied over xj—d[2<x<xj+d[2, t > 0. A jet
position of x; = 0.75L and width of d = 0.1 are used throughout this
analysis. This position was chosen to correspond to the inception of
convective instability in the forcing boundary at Ra = 2.5 x 10®
following [29,19].

Peak jet velocity amplitudes up to A = 1000 are considered in
this study. At this amplitude the peak jet flow rate is of the same
order as the horizontal flow speed within the kinematic forcing
boundary layer above the jet. Our interest is in perturbation of the
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boundary layer rather than its destruction, so larger amplitudes are
not considered.

2.3. Numerical method

The governing equations are solved numerically using a high-
order solver implementing a spectral element method for spatial
discretisation and a third-order time integration scheme based on
backwards differentiation. The solver has been validated and
employed extensively for heat transport [30] and natural convec-
tion flows [5,9,31]. The spectral element method combines the
desirable convergence properties of the spectral method and the
geometric flexibility of the finite element method [32]. An
operator-splitting approach [33] is taken to advance the velocity
and thermal fields in time. The advection terms are treated
explicitly, with fields projected to the future time using polynomial
extrapolation for evaluation of the first term on the right-hand side
of each of equations (2) and (3). The convection (or non-
conservative) form of the discrete advection operators are used,
which requires fewer operations to compute and demonstrates
superior convergence with increasing spectral order to the formally
conservative alternatives such as the skew-symmetric or rotational
forms [34,35]. The buoyancy contribution is also calculated at this
step. A Poisson equation for pressure is then constructed to project
the velocity field onto a divergence-free space, satisfying (1).
Finally, a set of Helmholtz equations are constructed from the
viscous and thermal diffusion terms to implicitly solve for the final
velocity and thermal fields. Dirichlet boundary conditions for ve-
locity and temperature are strongly enforced at this step, while
Neumann boundary conditions are weakly enforced. A mesh con-
sisting of 3692 rectangular elements with a coarser mesh in the
centre of the domain and higher element density in close proximity
to the boundaries to resolve the boundary layers was used.

2.4. Grid independence

To assess the resolution required to reduce spatial discretisation
errors to within an acceptable level, convergence with increasing
element polynomial degree N, of each of the mean temperature
favg over the flow domain, the 2% norm of the velocity field, and the
contributions to the Nusselt number over the colder Nucyq and
hotter Nupo halves of the heated boundary were monitored for an
unperturbed case having Ra = 2.5 x 108, Pr = 6.14 and H/L = 0.16.
The results of this convergence study are shown in Fig. 2. The

Error (%)
=
Degrees of Freedom [x 105]

Element polynomial degree

Fig. 2. Percentage errors in %2 norm (O), average temperature 6y (), and the
contributions to Nusselt number over the cooler and hotter halves of the base, Nuq
(<1) and Nupe (> ), respectively, for the unperturbed case (Ra = 2.5 x 108, Pr = 6.14 and
HJL = 0.16). The number of degrees of freedom at each polynomial degree is also
displayed (dashed line), and lines connecting each point are added for guidance.

percentage error at each N, is taken relative to the next higher-
resolution case, ie. N, + 1. Error in the 2% norm decreases
rapidly to less than (@‘(10*7%) by Np = 7. Errors in g and Nupot
floor out by N, = 8 with errors less than #(10-5%). The error in
Nucolq similarly rapidly reduces with increasing N, up to N, = 6, but
poor convergence is seen thereafter. By N, = 6, the errors across
these quantities are already very small, ranging between #(10~7%)
and #(10~4%), and up to this resolution the percentage errors
decrease approximately exponentially with increasing Ny, which is
a desirable property of the spectral element method [32]. Therefore
a polynomial degree N, = 6 is used hereafter. Additionally, at this
resolution the error in mass conservation due to finite resolution of
the two jet profiles was a negligible 7.38 x 10~7%.

The modest convergence performance beyond N, = 6 of the
Nucolg quantity was investigated, and is believed to be due to the
sign change in wall heat flux between the regions of cooling and
heating along the base. At this Rayleigh number this sign-change
occurs just to the left of the half-way point (at x = 0.47), which
lies within the cooler half of the base. As our Nusselt number is
calculated from the absolute value of heat flux averaged over the
heated boundary, this change in sign creates a discontinuity in the
gradient of the absolute heat flux distribution |86/9y| with respect
to x. This non-smooth variation renders the high-order polynomial
shape functions within the spectral elements susceptible to Runge's
phenomenon (spurious oscillations in a polynomial interpolant),
which explains the erosion in the quality of the convergence of
Nugolg with increasing polynomial order. The hotter half of the base
has no such sign change in 86/dy and correspondingly exhibits
significantly superior convergence.

2.5. Verification of heat conservation

Conservation of heat by the solver will now be considered. The
heat transport equation (3) can be recast in integral form for
application to a control volume containing the enclosure as

o [afdQ = ~frfu-n dT + §rv6-n dr, 5)

where Q and I are respectively the computational domain and its
boundaries, and n is a outward normal unit vector. The term on the
left-hand side describes the rate of change of heat in the enclosure.
This is balanced by the terms on the right-hand side, which

Error (%)

3 4 5 6 7 8 9
Element polynomial degree

Fig. 3. Conservation of heat at steady-state for the unperturbed reference case with
Ra = 2.5 x 108, Pr = 6.14 and H/L = 0.16. Net heat flux out of the enclosure ((1) and net
heat flux through the bottom boundary (O) expressed as percentages of the total
absolute heat flux across the base. Lines connecting each point are added for guidance.
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respectively describe heat flux due to advection and conduction
across the enclosure boundaries. For the unperturbed reference
case the first term on the right-hand side is always zero as there is
no flow through any of the enclosure boundaries. The second term
will also be zero on the thermally insulated top and size bound-
aries. Along the bottom boundary, the second term may be non-
zero if conductive heating and cooling are not in balance. At ther-
mal equilibrium, horizontal convection is well-known to have no
net vertical heating across any horizontal plane [1]. Hence heating
and cooling through the bottom boundary must be in balance and
the second term in (5) must sum to zero.

The reference case considered in this study (having
Ra=2.5 x 108, Pr = 6.14 and H/L = 0.16) is time-invariant at thermal
equilibrium. Hence each term in equation (5) should be zero.
However, the present solver adopts a weak enforcement of Neu-
mann boundary conditions (such as the zero thermal gradient for
insulating boundaries) through the Galerkin treatment of the
elliptic problem constructed to implicitly solve the diffusion term in
equation (3). Thermal insulation is therefore inexactly enforced by
the solver, so it is pertinent to quantify the error in heat conser-
vation by the present scheme. Fig. 3 plots both the total conductive
heat flux through all boundaries (the last term in equation (5)) and
along the bottom boundary as percentages of the total heat flux
magnitude, against element polynomial degree for the reference
case at thermal equilibrium. Both of these quantities should be zero
at thermal equilibrium and so non-zero values can be interpreted as
heat conservation errors by the solver; the plot demonstrates that
these errors decrease from #(10-1%) at N, = 3 to #(107%%) at
Np = 6. This confirms that the solver reliably conserves heat at the
selected resolution N, = 6.

The advection of fluid at the jet orifice and compensatory top
boundary admits the possibility of non-zero contributions of the
first term on the right-hand side of equation (5) as the integrand
product fu can be non-zero at these locations. The imposition of a
fixed temperature at the jet orifice ensures that the jet adds no net
advective heat flux due to its zero net flow. However, there remains
the possibility of non-zero net advective heat flux through the top
boundary as the temperature is not fixed at this boundary. While
any such net heat flux would be balanced by additional heat con-
duction through the bottom boundary at thermal equilibrium, such
a condition would introduce a net vertical heat flux through the
enclosure that is normally absent from unperturbed horizontal
convection [1]. A test case is computed at Ra = 2.5 x 108, Pr = 6.14,
H/L = 0.16 with synthetic jet amplitude A = 32 and oscillation
frequency f; = 4000 to a statistically steady state. A segment of the
time history at this equilibrium state is shown in Fig. 4, where the
time-variation of each of the integral terms in equation (5) are
plotted. As a percentage of the time mean absolute value of
conductive heat flux through the bottom boundary, the net vertical
heat flux through the base is a negligible 7.5 x 10~>%. Hence despite
the activation of the synthetic jet, the system retains the zero net
vertical heat transport consistent with unperturbed horizontal
convection.

3. Results and discussion
3.1. Baseline case

In this section, the flow case with no applied perturbation is
considered, which sets the framework for the subsequent sections.
It should be emphasized that the flow in the current configuration
is stable: this baseline case is for a Rayleigh number of 2.5 x 108,
which is below the critical Rayleigh number of approximately
5 x 108 [5]. This is important as it isolates the effect of the synthetic
jet on the flow instability.

0.2

0.1

Heat flux

i

> | | \\/
1.2654 1.2655 1.2656
t

Fig. 4. Demonstration of heat balance for a perturbed case with jet amplitude A = 32
and frequency f; = 4000. The unbroken curve shows the total heat flux due to con-
duction out of all boundaries (the last term in equation (5)), the dashed curve shows
the rate of change of temperature within the enclosure (the left-hand side of equation
(5); calculated using second-order centred differences from data acquired at 250
samples per jet oscillation period). The dotted curve plots the difference between the
aforementioned quantities, which corresponds to the total heat flux due to convection
out of all boundaries (the first term on the right-hand side of equation (5)). A segment
of the time-history of these quantities is shown when the fluid and heat flow are at
statistical steady state.

Plots of the two-dimensional steady-state temperature and
vorticity fields for the baseline case are shown in Fig. 5. Guidance
lines identify the forcing thermal and kinematic boundary layers,
and it is seen that at this Rayleigh number a strong convection-
dominated flow has established. The thermal boundary layer be-
gins to form at approximately x = 0.4, while the velocity boundary
layer originates at the bottom-left corner (x = 0). The velocity
boundary layer is thinner than the corresponding thermal bound-
ary layer, however the thickness of both boundary layers continue
to grow in size as the flow approaches the hotter end (x — 1). The
flow is steady-state, confirming that this model correctly captures
the stable solution of the flow at this Rayleigh and Prandtl number.
A region of strong positive vorticity is seen close to the right hand
wall of the domain, which is the early formation of a vertical plume
that transports the heated flow towards the top of the enclosure

(@)

(b)

-1x10° 0 1x10°

Fig. 5. The steady-state two-dimensional solution computed at Ra = 2.5 x 108,
Pr = 6.14 and H/L = 0.16. (a) Temperature field: dark to light contours are equispaced
between the coldest and hottest temperatures in the enclosure, 0 < < 1, and the
dashed line identifies the edge of the thermal boundary layer (taken as the location of
minimum temperature vertically from the bottom wall). (b) Vorticity field: dark and
light contours show negative and positive vorticity over —1 x 10° < w, <1 x 105,
where vorticity o, is normalised by «7/L?, and the dashed line identifies the edge of the
kinematic boundary layer (taken as the first zero-vorticity - and hence maximum
horizontal velocity - location vertically from the bottom wall).
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before it diffuses into the remainder of the domain. The require-
ment of zero net heating across any horizontal plane at equilibrium
[1] helps to explain the slow and broad downwelling across the
cooler region of the enclosure that leads to the highly asymmetric
flow seen here [12]. This baseline case serves as a reference point
for the remainder of this study; in the following sections the
addition of the synthetic jet and its effect on the flow are
elucidated.

3.2. Nusselt number response of the flow to perturbation amplitude
and frequency variation

The Nusselt number is employed to assess the response of the
flow to the applied perturbation. This is motivated by the observed
increase in Nusselt number associated with the onset of instability
reported in recent studies [5,8]. The jet frequency dependence of
Nusselt number at different jet amplitudes is plotted in Fig. 6. Jet
amplitudes A < 1 generate a negligible change in Nusselt number
from the A = 0 baseline: at A = 1 the maximum deviation from the
reference Nusselt number was a mere 0.08% increase. A = 10 pro-
duced an observable increase in Nu over a frequency band
5 x 103 <f;<10%, with a peak at f; = 7.47 x 10%. The flow charac-
teristics arising from these jet perturbations leading to elevated Nu
will be explored in § 3.3—3.5. Further increases in A widen the range
of frequencies at which elevated Nu is found, and increase the
maximum Nu in the excited frequency band. Nevertheless, all
explored cases (A < 1000) produce a monotonic decrease in Nu
down towards the reference value as fj — co. Two distinct Nusselt
number maxima are evident within the excited frequency range.
The aforementioned local maximum in Nusselt number is achieved
at frequencies fj = 7.5 x 103 (hereafter referred to as the HF mode),
and is captured at smaller amplitudes (A < 100). A second local
maximum at f; = 4000 appears across all amplitudes (hereafter the
LF mode). The LF mode produces a smaller increase in Nu than the
HF mode at amplitudes A < 32, but it exhibits strong growth in Nu
at higher amplitudes, surpassing the HF mode peak at A = #/(102).
By A = 320, the HF mode maximum has been absorbed by the LF
mode.

At A = 1000, the peak enhancement in Nusselt number is 16.7%.
Under Rossby's Nu ~ Ra'l? scaling (valid in this Rayleigh number
regime [5,8]), an unperturbed horizontal convection flow would
require a greater than twofold increase in Rayleigh number (a factor
of 2.16) to produce this higher rate of convective heat transport. At
the reference conditions (Ra = 2.5 x 108, Pr = 6.14, H/L = 0.16), the
maximum horizontal velocity is approximately 8.2 x 10%, which
occurs within the boundary layer adjacent to the heated boundary

9.5+ | .

Nu

8.5 HF mode

32N100N320 |

F —L — |
8F A=l 10 4

0““5 10“”15
£ [x107]

Fig. 6. Nusselt number plotted against jet frequency for jet amplitudes as shown.
Akima splines have been fitted to the data for guidance.

towards the hot end of the enclosure. It is therefore found that a
localised perturbation with velocities only of the same order as the
horizontal convective transport velocity can destabilise the hori-
zontal convection flow so profoundly as to produce an elevation in
heat transport consistent with greater than a doubling of the
strength of thermal forcing across the horizontal boundary. This
may have implications for future consideration of the importance
of localised wind stresses to buoyancy driven overturning in the
oceans.

The Nusselt numbers of the perturbed flows in Fig. 6 asymp-
totically approach the unperturbed Nusselt number as fj — oo. This
mirrors a similar observation made by Ilicak and Vallis [14] from
their simulations of horizontal convection perturbed by a sinusoi-
dally time-varying shear across the heated boundary. They re-
ported greater modification at larger amplitudes of forcing over
their unstressed case, while the differences were more pronounced
at the lower two frequencies they computed; their highest-
frequency cases were similar to their unstressed case. They attrib-
uted this to the wind forcing having insufficient time at high fre-
quencies to penetrate vertically into the flow before being cancelled
by the shear reversal over each oscillation. The mechanism is
similar in the present study: at any given jet amplitude, the vertical
penetration of jet fluid into the enclosure decreases with increasing
frequency (as it is governed by the integral of the jet velocity over
half of the jet oscillation cycle, which vanishes in the limit as
fi = o).

The appearance of two distinct local maxima at different fre-
quencies is strongly suggestive of two unique modes of response
being excited by the applied perturbation. To explore this further,
the dependence of these modes on the amplitude of the synthetic
jet perturbation is analysed, and subsequently visualisation of the
disturbed flows is included.

The variation in the maximum Nusselt number for the LF and HF
modes with jet amplitude is plotted in Fig. 7(a). While not obvious
from Fig. 6, it is apparent that as amplitude is increased, both
modes approach a common trend exhibiting an approximate
scaling ANu ~ A3 where ANu = Nu — Nug, and Nug = 8.1264 is the
Nusselt number of the unperturbed baseline case. This is inter-
esting as it is suggestive of a common response being generated in
the flow as a result of these two distinct forcing modes. The
crossover amplitude between HF mode dominance and LF mode
dominance is found to occur at Ac = 75. Fig. 7(b) plots the peak
frequencies for the LF and HF modes. The HF mode exhibits a peak
excitation frequency of fipx = 7.27 x 103 at low amplitudes
(A = #(1071)), increasing slightly to fjpx = 7.61 x 10% atA = A.. The
LF mode first increases from fijpx = 3.76 x 10 at A = 10 to
fipk = 4.14 x 10% at A = 102, before receding to f;px = 3.61 x 10% at
A = 10%. It is notable that the first harmonic of the LF mode aligns
closely to fjpk for the HF mode. In light of the collapse in ANu at
higher jet amplitudes seen in Fig. 7(a), this suggests that both the LF
and HF modes may be exciting a common instability mode in the
flow, with a natural frequency in the HF mode waveband. It is
recalled that Ilicak and Vallis [14] reported that the addition of
oscillatory shear stress to their heated boundary significantly
modified their horizontal convection flows, with a deep eddying
flow increasing in strength with increasing forcing strength. The
section to follow will show that the synthetic jet perturbation in-
vokes an unsteady end-wall plume, which has similarities to the
unsteady eddying flow reported by Ref. [14]. To probe further, we
select representative frequencies for the LF and HF mode wave-
bands of fir = 4000 and fyr = 7500, respectively.

3.3. Temperature fields

A sequence of the temperature field for A = 32 and f; = 4000 (LF
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Fig. 7. (a) Logarithm of the increase in Nusselt number plotted against the logarithm of
amplitude for the two modes of excitation, exhibiting an approximate scaling of
ANu ~ AP (dashed line included for guidance) at higher amplitudes. (b) Frequencies of
maximum Nusselt number plotted against jet amplitude. The dashed curve shows the
frequency of the endwall plume disturbance excited by the HF mode perturbation.

mode) is shown in Fig. 8. The length of the sequence is one
perturbation period. Comparing to the temperature field of the
baseline case (Fig. 5), there was no visible differences in the left
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Fig. 8. Time sequence of the temperature field for a flow with synthetic jet properties
A =32 and f; = 4000 (LF mode). The sequence is one perturbation period (T) in length.
The area shown is the full height of the enclosure and 0.7L < x < L. Dark and light
shading denote cooler and hotter fluid ranging over 0.6 < § < 0.9, respectively, and
arrows identify disturbances convecting in the boundary layer that are ejected upward
as buoyant eruptions in the end-wall plume. Two such eruptions are seen per
perturbation period for the LF mode.

hand half of the enclosure, which is therefore omitted from these
frames. The effects of the perturbation are evident in the right hand
side of the domain, particularly in the boundary layer and in the
vertical plume. Downstream of the synthetic jet (located at
x = 0.7L) the boundary layer begins to oscillate and gives rise to
unsteadiness within the plume the hot portion of the fluid (indi-
cated in yellow) rises up the plume and begins to diffuse before it
reaches the top, cooling into its surrounds and forming part of a
diffuse return flow travelling to the left along the upper surface
Fig. 8(a—c). While this is occurring, a second packet of hot fluid is
advecting downstream in the boundary layer towards the plume. At
approximately the halfway point of the sequence Fig. 8(e), this
second packet of hot fluid begins to rise up in the plume. There are
two ejections of hot fluid in the vertical plume per perturbation
period. Furthermore, as the second ejection is occurring towards
the end of the period Fig. 8(e—h) a new accumulation of hot fluid is
building in the boundary layer for the next cycle. Arrows indicate
the position of successive packets of hot fluid through the sequence
shown in the figure.

A corresponding time sequence in the HF mode frequency band
with synthetic jet properties A = 32 and f; = 7500 is shown in Fig. 9.
Similar features to the LF mode case are seen: an unsteady circu-
lation forming beyond the perturbation, which continues to prop-
agate downstream until the end wall is reached. The end wall
plume transfers the destabilizing buoyancy to the top of the
enclosure before it diffuses into the interior of the enclosure. As the
plume ejects the instability a new packet of fluid begins to form as
the new period begins. However, the key difference is that for the
HF mode case a single ejection of a packet of buoyant fluid into the
plume per perturbation cycle is seen, compared to the two ejec-
tions per cycle in the LF mode case. This points to both modes
exciting a resonance that is naturally occurring within the flow.

A convective instability process is hinted by Fig. 9. Initially there
is only a small ripple of increased hot fluid within the boundary
layer (Fig. 9(a)), but as the sequence progresses (Fig. 9(c-g)) this
feature convects to the right and enlarges, before breaking near the
hot wall and convects upwards within the end-wall plume.

Hazewinkel et al. [15] reported at Pr = 10 evidence of a con-
vectively unstable boundary layer leading to unsteady plumes
penetrating vertically into the enclosure. Their mechanical forcing
was applied indirectly as a uniform shear across the heated
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Fig. 9. Time sequence of the temperature field for a flow with synthetic jet properties
A =32 and f; = 7500 (HF mode). The sequence is one perturbation period (T) in length.
The area shown is the full height of the enclosure and 0.7L < x < L. Shading and arrows
are as per Fig. 8, but here only a single eruption is seen per perturbation period.
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boundary, and they identified an intermediate regime of shear
forcing that induced a sufficiently strong buoyancy inversion in the
boundary layer to invoke an unsteady boundary layer convection.
In general, their forcing invoked a shallow counter-rotating shear-
driven cell over part of the heated boundary, with the thermally
driven overturning cell occupying much of the remainder of the
enclosure. Smaller shear forcing led to insufficient modification of
the thermally driven overturning flow and no counter-rotating
shallow cell formation, while excessive shear forcing produced a
stable reversed flow over much of the base. Their buoyancy contour
plots (ref. Fig. 3 in Ref. [15]) over these three regimes demonstrate
that increasing indirect shear forcing progressively increases the
inverted buoyancy gradient in the boundary layer. However, the
increased shear forcing also widens the counter-rotating cell. In the
context convective instability, a competition is therefore seen be-
tween the increasing strength of the buoyancy inversion promoting
unstable boundary layer flow and the shrinking proportion of the
forcing boundary layer over which the thermal overturning cell is
in contact with the forcing boundary.

3.4. Frequency analysis

The discrete Fourier transform (DFT) of the #? norm time his-
tory for the two dominant modes at fj = 4000 and 7500 and A = 32
are shown in Fig. 10. The first harmonic occurs at the perturbation
frequency for each case and subsequent harmonics occur at mul-
tiples of the perturbation frequency (i.e. f;, 2f;...,nfj). Significantly
more harmonics are observed for the LF mode disturbance (n = 11)
than the HF mode (n = 6). The second harmonic of the LF mode is
similar in magnitude to the first harmonic, while the harmonics of
the HF mode case decay monotonically with increasing frequency.
This second harmonic for the LF mode reveals a strong response in
the flow that corresponds to a frequency that is approximately the
same as the perturbation frequency for the HF mode. The LF mode
is being perturbed at approximately half the frequency of the HF
mode, but ultimately the end-wall plume emits vortices at a similar
frequency to the HF mode. This agrees well with what is seen in the
temperature flow fields and suggests that these two perturbation
frequencies are exciting a natural frequency of the end wall plume
at this Rayleigh number. This harmonic frequency is plotted along
with the peak frequencies as a function of amplitude in Fig. 7(b),
where the LF mode harmonic can be seen to align with the domi-
nant frequency of the HF mode disturbance.
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Fig. 10. Fast Fourier transform of the saturated #? norm time history, plotted against
normalised frequency (f/f;). In both cases A = 32, while (a) and (b) depict jet fre-
quencies f; = 4000 and 7500, respectively. The domain of frequencies displayed in both
frames is 0 < f < 5 x 10%

3.5. Disturbance field evolution

A clearer picture of the flow response to the applied perturba-
tion emerges when isolating the disturbance. By subtracting the
vorticity field of the baseline case from the vorticity field of the
perturbed flow, the disturbance vorticity field is isolated. Time
sequences of the disturbance field over a single period of the syn-
thetic jet at A = 32 for the LF mode (f; = 4000) and HF mode
(fi = 7500) are shown in Figs. 11 and 12, respectively. Both cases
show similarities to Rayleigh—Bénard convection instability as
evidenced by paired positive and negative vortices within the
forcing boundary layer that grow in strength as they move towards
the end wall. There they seed the ejection of eddies vertically up-
ward into the end-wall plume. Considering the LF mode case, the
strong positive vorticity region (indicated in red) in the lower right
hand corner is transported up the right hand wall to the top of the
enclosure before it is ejected towards the centre of the domain.
Meanwhile, at approximately half the perturbation period, a second
strong positive vortex begins to form, which follows the same
sequence and is ejected from the end wall plume. In contrast, the
HF mode transports one strong positive vortex through the end
wall plume over the oscillation period. This demonstrates that the
plume is shedding at the first harmonic frequency (8000) for the LF
mode, and at the driving frequency (7500) for the HF mode. This is
reflected in the DFT spectra in Fig. 10, where the LF mode exhibits
approximately twice as many distinct harmonics. The jet distur-
bance is similar for both modes, suggesting that the different
driving frequencies excite the same natural instability mechanism
in the flow (manifesting in the end-wall plume).

Numerical simulations of horizontal convection driven by a
linear temperature profile imposed along the bottom of a two-
dimensional rectangular enclosure with an applied periodic
perturbation have been carried out. These simulations demonstrate
that a substantial increase in the Nusselt number over the non-
perturbed case is exhibited over a large range of applied dimen-
sionless perturbation frequencies (0 <f; < 10%). Two distinct peaks
in Nusselt number occur, with properties suggesting a forced con-
vection and natural convection mode.

Instabilities are evident in the forcing boundary layer that
advect downstream and lead to ejection of eddies in the end wall
plume and vortex pairs forming. Instability that is observed as
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Fig. 11. Time sequence of the disturbance vorticity field for a perturbation amplitude
of 32 and frequency of 4000 (LF mode). The area shown is the full height of the
enclosure and 0.7L < x < L. Dark and light shading respectively shows negative and
positive disturbance vorticity over —2 x 10% < w, < 2 x 10%, respectively, and the
sequence is one perturbation period in length.
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Fig. 12. Time sequence of the disturbance vorticity field for a perturbation amplitude
of 32 and frequency of 7500 (HF mode). Frames and shading are as per Fig. 11.

unsteadiness in the vertical plume actually originates as con-
vectively unstable waves travelling in the forcing boundary layer, as
demonstrated in the disturbance fields, which show a distinct
vortex structure that convects to the right from the point of
disturbance in the boundary layer.

Furthermore, the instability structure is consistent with Ray-
leigh—Bénard convection. Rayleigh—Bénard convection occurs
when a fluid is heated strongly from below, which is exactly what is
happening in the thermal boundary layer at the hotter end of this
horizontal convective flow. Hot buoyant fluid lies below cooler
denser fluid seeking to fall, which creates convection cells of a
Rayleigh—Bénard type. The vorticity field generated by Ray-
leigh—Bénard convection comprises a horizontal array of
alternating-sign vortices above the heated surface, each of which is
adjacent to a zone of opposite-signed vorticity attached to the
surface. This is very similar to the instability structure seen in the
disturbance vorticity fields towards the hot end of the bottom
boundary.

It is emphasized that the horizontal convection flow is not
globally absolutely unstable to infinitesimal perturbations at these
Rayleigh numbers, but rather as Tsai et al. [19] demonstrate, the
boundary layer profiles in horizontal convection are locally unsta-
ble (at least over part of the heated boundary and beyond a suffi-
cient Rayleigh number). In other regions the overturning horizontal
convection flow is stabilising, including the upstream boundary
layer towards the cooler end and the slow return flow. Hence a
finite extent of convectively unstable boundary layer appears to be
required to provide a sufficient amplification to disturbances to
support a self-sustaining instability in the flow. Presumably these
disturbances decay as they are advected in the return flow before
re-entering the boundary layer where they are re-amplified. If the
growth rates and/or breadth of the locally unstable part of the
boundary layer are too small, the stabilising parts of the over-
turning flow suppress the net growth of instability. Hazewinkel
et al.s [15] higher-Prandtl-number work (their Fig. 3(b,c)) shows a
similar behaviour, where horizontal convection with opposing
surface stress manifests a region of strong inverted buoyancy at the
downstream end of the horizontal convection boundary layer. In
their Fig. 3(b), unstable flow emerges from the horizontal convec-
tion boundary layer, but not in their Fig. 3(c): a notable difference
between the two cases is the significantly shorter length of
boundary layer available to amplify disturbances seen in their
Fig. 3(c) compared to their Fig. 3(b).

By independently controlling the frequency and amplitude of
the disturbance it was seen that excitation in the flow is realised
using a range of perturbation frequencies. However, the two
dominant frequency wave bands invoke the same instability in the
flow, which is strongly suggestive of the flow having a natural
dominant instability mode that can be initiated in different ways
and is not dependent on the perturbation mechanism. Despite
being driven by two perturbation frequencies that differ by a factor
of approximately two, ultimately both of these resultant modes are
a consequence of exciting the same natural frequency in the plume,
which at Ra = 2.5 x 10 and Pr = 6.14 is approximately 7500.

In the steady-state regime, heat transport has been shown to be
independent of H/L down to a Rayleigh number corresponding to
the point at which the boundary layer has become sufficiently thick
that it is affected by the confinement of the opposite boundary [5].
For steady-state flows, the scaling of boundary layer thickness with
Rayleigh number determines the transition between diffusion-
dominated flows at lower Rayleigh numbers and horizontal con-
vection with a distinct boundary layer at higher Rayleigh numbers.
The onset of unsteady flow has been shown to be independent of H/
L at least for aspect ratios typical of those considered in the majority
of published experimental and laboratory studies into horizontal
convection, i.e. H/L > 0.16. Presumably, below some HJL the critical
Rayleigh number will similarly be affected by the shallow-
enclosure confinement. If unsteady flow was solely a determined
by, and manifested within, the unstable boundary layer, then its
onset would be expected to be limited by Rossbys scaling for the
boundary layer thickness at small H/L. However, given that the
present study demonstrates that the unsteady-flow state is deter-
mined in part by the end-wall plume, then confinement of the
plume, rather than the boundary layer, will presumably control the
limiting depth below which the critical Rayleigh number becomes
dependent on H/L. Chiu-Webster et al. [36] describe that the end-
wall plume is driven by buoyancy near the heated boundary, but
becomes a momentum jet further from the boundary. As the plume
penetrates significantly deeper into the enclosure than the
boundary layer, this effect will emerge at larger H/L than expected
based on the scaling of the boundary layer with Rayleigh number
alone. This may then carry implications for the quantification of the
contribution of the horizontal convection mechanism to horizontal
heat transport in Earth's oceans, where despite the Rayleigh
numbers being very high (possibly #(Ra3?) or more [16]), the
height ratios are very small (H/L < #(0.001)).

4. Conclusions

A synthetic jet embedded within the boundary layer of a hori-
zontal convection flow is found to excite two modes of excitation,
which produce an increase in Nusselt number. With increasing jet
amplitude, both modes approach a single trend for the peak Nusselt
number that goes with the 3/5 th power of the amplitude. At small
amplitudes, a higher-frequency mode with dimensionless fre-
quency fj = 7.5 x 103 dominates, whereas at larger amplitudes a
lower-frequency mode with f; = 4 x 10? dominates. Interrogation
of thermal fields and disturbance vorticity reveals that the jet in-
vokes a boundary-layer disturbances with a structure consistent
with a Rayleigh—Bénard type of thermal instability. These distur-
bances convect towards the enclosure end-wall with frequencies
matching the respective applied perturbations. However, both
modes produce an oscillation in the vertical plume at the end-wall
having a frequency consistent with the high-frequency mode: A
common instability response in the end-wall plume is incited by
different upstream perturbations. It then follows that the emer-
gence of time-periodic unstable flow beyond the critical Rayleigh
number in horizontal convection may be due to a natural instability
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of the end-wall plume that controls the frequency of the oscillation
in the flow, and is excited by upstream disturbances—the source of
these disturbances is the amplifying effect of the convectively un-
stable thermal boundary layer at Rayleigh numbers Ra > #(108).
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