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A B S T R A C T

Natural convection in a square cavity filled with electrically conducting nanofluid that is driven by a periodic
temperature profile along on of the vertical wall is studied numerically. The top and bottom horizontal walls are
kept adiabatic. The right wall is maintained at low temperature while the temperature of the opposing vertical
wall varies sinusoidally with time about a mean temperature. Flow and heat transfer performance through the
enclosure is examined over a wide range of oscillation amplitudes and frequencies, Hartmann number, Rayleigh
number and solid volume fraction at Prandtl number Pr = 6.2. The results show that oscillation amplitude, A,
and frequency, f, of the vertical wall significantly affect the response of heat transfer inside the cavity. For
A > 0.5, the forcing frequency is found to remain almost constant at f= 2.5, while it shifts towards a higher
frequency f= 5 for A≤ 0.5. At low Rayleigh number, Nusselt number is found to be independent of Rayleigh
and Hartman numbers, while at higher Rayleigh number, convective flow dominates, and Nusselt number be-
comes independent of Hartmann number. In this regime, the Nusselt scaling with Rayleigh number agrees well
with the exponent predicted by theory of natural convection in a cavity without magnetic field or nanoparticles,
with a value of 1/4. With the increase of solid volume fraction, the heat transfer rate may increase or decrease
depending on the values of Hartmann and Rayleigh numbers.

1. Introduction

Natural convection flow and heat transfer in enclosures have re-
ceived considerable attention in the past few decades. This interest
stems from its importance in many industrial and engineering appli-
cations. Such applications include electronic packaging, cooling of
electrical equipment, solar collectors, nuclear reactors and crystals
manufacturing [1–10]. The convection of electrically conducting fluid
in the presence of a magnetic field has also been studied by many re-
searchers numerically and experimentally [11–17]. In material manu-
facturing technology, researchers apply an external magnetic field to
suppress unavoidable convection currents for superior control of crystal
quality. For example, the mechanism of the crystal growth in the pre-
sence of magnetic field was examined by Oreper and Szekely [16]. They
found that the magnetic field can suppress natural convection and that
the strength of the magnetic field is one of the important factors during
crystal formation. Alchaar et al. [18] numerically studied two dimen-
sional natural convection in a shallow cavity heated from below in the
presence of an inclined magnetic field. Their results demonstrated that
the effect of the magnetic field was to reduce heat transfer and inhibit

the onset of the convection current.
Khanafer and Chamkha [18] numerically studied hydromagnetic

natural convection from an inclined porous square enclosure with heat
generation. The effect of magnetic field was found to suppress natural
convection activities within the enclosure. Al-Najem et al. [11] nu-
merically investigated laminar natural convection in a tilted enclosure
with a transverse magnetic field. Their results found that the heat
transfer mechanisms and the flow characteristics inside the tilted en-
closures were shown to depend strongly upon both the strength of the
magnetic field and the inclination angle. Furthermore, significant sup-
pression of the convective current was obtained by applying a strong
magnetic field. MHD natural convection flow in cavities filled with
square solid blocks was studied by Ashouri et al. [19]. The aim of that
investigation was to study the influence of magnetic field on natural
convection inside enclosures partially filled with conducting square
solid obstacles. The results reported by the authors indicated that both
the magnetic field and solid blocks can significantly influence the flow
and temperature fields.

Nanotechnology has been used extensively in various industrial and
biomedical applications. Recent advances in nanotechnology have led
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to the development of a new class of heat transfer fluids called nano-
fluids created by dispersing nanoparticles (10 − 50 nm) in traditional
heat transfer fluids [20]. A large number of research work associated
with heat transfer enhancement using nanofluids has been conducted
by many researchers both experimentally and theoretically [20–29]. In
addition, several review papers on nanofluids have also been published
[22]. Nanofluids exhibit the potential to significantly enhance heat
transfer rates in a variety of areas such as industrial cooling applica-
tions, nuclear reactors, transportation industry (automobiles, trucks,
and airplanes), micro-electromechanical systems (MEMS), electronics
and instrumentation, and biomedical applications (nano-drug delivery,
cancer therapeutics, cryopreservation) [20,22]. Possible improved
thermal conductivity translates into higher energy efficiency, better
performance, and lower operating costs. On the contrary to extensive
studies on flow and heat transfer of nanofluids, the effect of magnetic
field on nanofluids has received less attention. Convective heat transfer
in the presence of a magnetic field has wide range of applications in-
cluding the process of manufacturing materials and cooling in nuclear
reactors. Sheikholeslami et al. [30] studied steady natural convection
heat transfer in a cavity with sinusoidal wall under constant heat flux
filled with CuO-water nanofluids in presence of magnetic field. Their
results showed that Nusselt number was an increasing function of na-
noparticle volume fraction, dimensionless amplitude of the sinusoidal
wall and Rayleigh number while it was a decreasing function of Hart-
mann number. MHD natural convection in a square enclosure filled
with water-Al2O3 nanofluid and subjected to non-uniform heating of
the side walls was studied by Mejri et al. [31]. The cavity side walls
were assumed to have spatially varying sinusoidal temperature dis-
tributions while the horizontal walls were assumed adiabatic. A Lattice
Boltzmann method (LBM) was applied to solve the governing equations
for fluid velocity and temperature. Their results showed that heat
transfer rate increased with an increase in the Rayleigh number but it
decreased with an increase in the Hartmann number.

Nemati et al. [32] applied Lattice Boltzmann Method (LBM) to in-
vestigate the effect of CuO nanoparticles on natural convection with
magnetohydrodynamic (MHD) flow in a square cavity. The left and
right vertical walls of the cavity were kept at constant hot and cold
temperatures, respectively, with insulated walls at the top and bottom.
A uniform magnetic field was imposed in the horizontal direction.

Results were carried out for different Hartmann numbers ranging from
Ha= 0 to 100, Rayleigh numbers from Ra= 103 to 105 and the solid
volume fraction from ϕ = 0 to 0.05. The results indicated that the
averaged Nusselt number for nanofluids had increased when increasing
solid volume fraction, while at the presence of high magnetic fields,
that effect had decreased. Sheikholeslami et al. [30] numerically stu-
died natural convection of a nanofluid filled cavity with steady sinu-
soidal temperature boundary conditions along vertical walls under the
influence of an inclined magnetic field. The LBM method was applied to
simulate the Cu-Water nanofluid flow around an average temperature
circular cylinder. Their results indicated that the influence of nano-
particles for this geometry along with its boundary condition was
highly dependent on the Rayleigh and Hartmann numbers. Also, it was
shown that for lower Rayleigh numbers, the obstacle with an aspect
ratio of 0.1 presented better heat transfer rate; while for higher Ra
numbers, the obstacle size was much less important than its position.

Many industrial and engineering applications are subject to non-
uniform temperature distribution, such as solar energy collection, en-
ergy storage applications, building heat transfer and cooling of elec-
tronic components [33,34]. The time variation in the surface tem-
perature of the electronic components occurs as a result of periodically
changing the current in these components. To the best of our knowl-
edge, this problem has not been considered before in the literature. The
effect of Hartmann number, amplitude and frequency of sinusoidal
temperatures on heat transfer characteristics within the cavity will be
studied in this investigation for various pertinent parameters.

The paper is organised as follows: The problem is defined in Section
2, which also presents the governing equations and parameters. The
methodology is presented in Section 3, which describes the numerical
method, model setup, boundary conditions and validation. Results and
discussion follow in Section 4, and finally conclusions are drawn in
Section 5.

2. Problem definition and mathematical formulation

The system under consideration consists of a two-dimensional
square cavity height H and width L filled with an electrically con-
ducting nanofluid with Pr = 6.2 as shown in Fig. 1. The horizontal
walls of the cavity are assumed to be insulated, while the right wall is

Nomenclature

A oscillation amplitude
B0 magnetic field
Cp specific heat
H enclosure height
Ha Hartmann number
L enclosure width
f temperature oscillation frequency
g gravitational acceleration
k thermal conductivity
T temperature
u, v velocity components in x, y directions
U, V dimensionless velocity components
Nu Nusselt number
Nu time-averaged Nusselt number
p pressure
P dimensionless pressure
Pr Prandtl number
Ra Rayleigh number
Rem magnetic Reynolds number
t time
x, y Cartesian coordinates
X, Y dimensionless cartesian coordinates

Greek symbols

α thermal diffusivity
β thermal expansion coefficient
η ratio of the nanolayer thickness to the original particle

radius
ϕ solid volume fraction
ρ density
σ electrical conductivity
μ dynamic viscosity
ν kinematic viscosity
τ dimensionless time
τp dimensionless time period
θ dimensionless temperature
ω angular frequency

Subscript

c cold
h hot
f fluid
nf nanofluid
p nanoparticle
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kept at a uniform low temperature Tc and the left vertical wall is
maintained at a sinusoidal temperature variation in time with an
average temperature of Th ( >T Th c). The nanofluid is permeated by a
uniform external magnetic field (B0) applied along the x-axis. The re-
sulting convective flow is governed by the combined mechanism of the
driving buoyancy force and the electromagnetic braking force. The
magnetic Reynolds number Rem, which represents the ration between
the induced and applied magnetic field is assumed to satisfy Rem ≪ 1 so
that the induced magnetic field produced by the motion of the elec-
trically conducting fluid is negligible compared to the externally ap-
plied magnetic field B0. The Joule heating of the fluid and the effect of
viscous dissipation are also negligible. The thermo-physical properties
of the base fluid and the antiparticles are given in Table 1. A Boussinesq
approximation for fluid buoyancy is employed, in which density dif-
ferences in the fluid are neglected except through the gravity term in
the momentum equation. Under this approximation the fluid tem-
perature is related linearly to the density via a thermal expansion
coefficient α and the energy equation reduces to a scalar advection
diffusion equation for temperature which is evolved in conjunction with
the velocity field [35,36]. Under these assumption, the conservation
equations of mass, momentum and energy for laminar and unsteady-
state natural convection in a two-dimensional Cartesian coordinate
system can be written as

+ =u
x

v
y

0
(1)

+ + = + +u
t

u u
x

v u
y

p
x

u
x

u
y

1
nf

nf
2

2

2

2 (2)

+ + = + + +v
t

u v
x

v v
y

p
y

v
x

v
y

g T T
B v1 1 ( ) ( )

nf
nf

nf
nf c

nf

nf

2

2

2

2

2

(3)

+ + = +T
t

u T
x

v T
y

T
x

T
ynf

2

2

2

2 (4)

The effect of the electromagnetic field is introduced into the mo-
mentum equation by the Lorentz force term J× B, which represents the
vector product of the electric current density and magnetic field. The

Poisson equation for the electrical potential is obtained by combining
Ohm's law and the conservation of electric current, respectively written
as

= + ×J V B( ) (5)

=J 0 (6)

which yields

= B U
Y

V
X

2
0 (7)

where J, V and Φ are the electric current density, velocity vector and
electric potential, respectively. As discussed by Pirmohammadi et al.
[37], for the case of two-dimensional cavity flow with an electrically
insulating boundary (σ= 0) on which ∂Φ/∂n= 0, Eq. (7) reduces to
∇2Φ = 0, which means that the electric potential vanishes everywhere
in the cavity. Thererore, the Lorentz force reduces to a damping factor

B v0
2 .

The thermo-physical properties of nanofluids can be determined
using the following models as [20,22,38].

= +(1 )nf f p (8)
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In these equations, ϕ is the solid volume fraction, σ is the electrical
conductivity, ρ is the density, α is the thermal diffusivity, Cp is the
specific heat and β is the thermal expansion coefficient of the nanofluid.
The effective viscosity of a fluid containing a dilute suspension of small
rigid spherical particles is given as [39].
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The effective thermal conductivity of the nanofluid, taking into an
account the effect of a liquid nanolayer on the surface of a nanoparticle
is used in this investigation [40].
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where η is the ratio of the nanolayer thickness to the original particle
radius. η = 0.1 is used throughout this study [34].

Introducing the dimensionless parameters,
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Eqs. (1)–(4) can be converted to non-dimensional form as

Fig. 1. Schematic diagram of the enclosure geometry with temperature
boundary conditions. A square cavity with H= L is considered throughout this
study and No-slip conditions (u= 0) is imposed on all boundaries.

Table 1
Thermophysical properties of water and nanoparticles [34].

Physical properties Water Cu

ρ (kg/m3) 997.1 8933
Cp (J/kg. K) 4179 385
k (W/m. K) 0.613 400
α× 107 (m2/s) 1.47 1163.1
β× 106 (1/K) 210 51
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The non-dimensional initial and boundary conditions used in this
investigation are given as

= = = =
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where τp = αftp/L2 and f =ωL2/αf are respectively, the dimensionless
time period and frequency of the temperature oscillation and the am-
plitude of the temperature oscillation is non-dimensionlized by
(Th − Tc). The temporal variation of the average Nusselt number along
the left high temperature oscillating wall and the right constant cold
temperature wall are defined as
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The time-averaged Nuuselt number over one time period at hot and
cold walls can be defined as
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3. Numerical methodology

The governing flow and energy equations associated with the initial
and boundary conditions are solved numerically using a higher-order
in-house solver, which employs a spectral-element method for spatial
discretization and a third-order time integration scheme based on
backwards-differencing [41]. The enclosure is discretized with 962
quadrilateral spectral elements in the x–y plane. Care was taken to
ensure that the flow was resolved in the vicinity of the walls, particu-
larly the heated boundary, with coarser grid spacing in the interior.

A grid resolution study was undertaken to determine a suitably
accurate order for the tensor-product polynomial shape functions
within each element. Convergence tests were performed on two cases
chosen at the upper end of the parameter range of this study. The first
case featured a= 2, Ra= 107, Ha= 100, τp = 0.001 and ϕ = 0.2, and
the second featured a= 2, Ra= 107, Ha= 0, f = 100 and ϕ = 0.05
and 0.2. The results of these tests are shown in Table 2. It is found that
the results are converged to within less than 0.5% with polynomial
order Np = 6, which is hereafter used for the simulations reported in
this study.

For time integration of eqs. (16–19), the advection/convection
terms are concurrently solved explicitly, followed by a projection of the
velocity field onto a divergence-free space, and finally implicitly solves
for velocity components and temperature. This procedure extends the

backwards differentiation algorithm of Karniadakis et al. [41] to the
coupled Boussinesq equations. The temperature transport formulation
of the present code has been validated in studies on buoyancydriven
flows [35,36].

To validate the numerical scheme being used, the numerical system
was first tested for the case of natural convection in a cavity with time-
dependent boundary condition for Ha= 0 and ϕ = 0. Computed
average Nusselt numbers Nu for heat transfer with Pr = 7,
a= 0.2,0.4,0.8, τp = 0.01 and Ra= 1.45 × 105 were compared against
the numerical results of Kazmierczak and Chinoda [33] and Wang et al.
[34]. The results of this comparison are presented in Table 3, which
compare well with the published data.

In addition, the numerical system was further tested against the
study of natural convection with nanofluids in zero-Ha and non-zero-
Ha . Computed average Nusselt numbers Nu for heat transfer with
Pr = 6.2, Ha= 0 and 30, ϕ = 0.03,0.1 and Ra= 1 × 105 were com-
pared against the numerical results of Hammami et al. [42] and Pir-
mohammadi et al. [37]. The results of this comparison are presented in
Table 4, where a pleasing agreement is seen.

4. Results and discussion

To get an oscillating solution independent of the initial conditions,
at least 4–8 oscillation periods needed to be computed. Results are
computed for a wide range of parameters where the temperature am-
plitude is varied over the range 0 ≤A≤ 2, while the forcing frequency
is varied 0 ≤ f≤ 100. Hartmann number, Rayleigh number, and the
solid void fraction are varied as 0 ≤Ha≤ 100, 103 ≤ Ra≤ 109, and
0 ≤ ϕ ≤ 0.2, respectively. Throughout the computations, a time step
size of Δτ = 10−6 is used for Ra≤ 107, while a time step size of
Δτ = 10−7 is used for Ra= 108 and Ra= 109. Thus, for example,
2 × 106 and 1 × 104 time integration steps are needed for f= 0.5 and
100, respectively for Δτ = 10−6.

Results are presented in three subsections. Firstly, the effect of os-
cillation frequency and amplitude on heat transfer for a fixed combi-
nation of Ha , Ra and ϕ is reported. This is followed by considering the
effect of Hartmann number, Rayleigh number and nanoparticle mass
fraction on heat transfer. Finally, temperature and streamline fields in
the enclosure are presented.

Fig. 2 shows the variation of time-averaged Nusselt number over a
broad range of forcing frequency and for a selection of forcing ampli-
tudes for Ra= 106, Ha= 100 and ϕ = 0.2. It can be noted that there is
a significant enhancement in heat transfer for higher amplitudes where
a progressive increase in the peak Nusselt number is generated with
increasing the forcing amplitude. It is interesting to observe that as the
oscillation amplitude increases, the frequency where the peak Nusselt
number occurs, remains almost constant at f= 2.5 for A > 0.5, and
increases to f= 5 for A≤ 0.5. The response in terms of peak frequency
with increasing amplitude was found to be similar to the case of tor-
sionally oscillating cylinder in MHD duct flow [43].

Table 2
Convergence of the average Nusselt number Nu with increasing polynomial
order for oscillating amplitude A= 2, time period f= 100, Rayleigh number
Ra= 107 at different Hartman numbers and solid void fractions. A polynomial
degree of Np = 6 was chosen for the simulations in the present study.

Nu

Np Ha= 0 Ha= 100

ϕ = 0.05 ϕ = 0.2 ϕ = 0.05 ϕ = 0.2

4 16.307 17.228 24.586 32.758
5 16.450 17.251 24.621 32.882
6 16.336 17.259 24.689 32.998
7 16.379 17.273 24.763 32.024
8 16.385 17.288 24.793 32.114
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The sequence of streamline and temperature contours plotted at
four different times over the duration of one period for A= 2 and
A= 0.5, and the frequency where the peak Nusselt number occurs (Ref.
Fig. 2) are shown in Fig. 3 and Fig. 4, respectively. The contours shown
in Figs. 3 and 4, are plotted in equal increments of 1/4τp. For both
amplitudes, the streamlines are dominated by a primary cell rotating in
a clockwise direction and filling most of the enclosure. However, the
location of ψmax in the cell shifts from the hot side to cold side in a
different fashion and with maximum magnitude changes with time at
the higher amplitude. A secondary cell was observed at the upper left
hand corner (Fig. 4(b)) and the right hand corner (Fig. 4 (d)) of the
enclosure at the higher amplitude.

The isotherms plotted in these figures reveal that regardless of the
amplitude value, a thermal boundary layer is visible on the hot wall.
The hot fluid next to the hot wall rises vertically and replacing the cold
fluid that transport horizontally towards the cold wall. The hot buoyant
fluid rises to the top of the enclosure and form a warm pocket which
contains fluid warmer than the hot wall. However, the warm pocket

near the top wall of the enclosure exists for longer duration for A= 2
(Fig. 4(b–c)). This warm region near the top wall vanishes in the next
cycle as energy diffuses and is advected outward until finally achieving
the rising hot wall temperature.

The dependence of the average Nusselt number on the Rayleigh
number at different Hartmann numbers for A= 2 and ϕ = 0.2 is shown
in Fig. 5. For a given Hartmann number, the Nusselt number passes
through different regimes as Rayleigh number increases. At Ra= 103,
it is found that the flow is diffusion dominated and the Nusselt number
is independent of both Rayleigh number and Hartmann number. In this
regime, the flow lacks a distinct boundary layer adjacent to the side-
wall boundary. At high Rayleigh numbers, convection effects become
significant and the Nusselt number start increasing with Rayleigh

Table 3
Comparison of results to published work for for Ra= 1.4 × 105, Pr = 7 and
τp = 0.01 at different values of oscillating amplitudes in a zero-Ha and zero-ϕ
flow.

a Nu

Present study Kazmierczak [33] Wang [34]

0.2 5.24 5.35 5.27
0.4 5.29 5.41 5.31
0.8 5.46 5.58 5.48

Table 4
Comparison of results to published work for for Ra= 1 × 105 for different
Hartmann numbers, solid volume fractions and Prandtl numbers as indicated.

Ha Nu

ϕ Pr Present study HHMM [42] PGS [37]

0 0.03 6.2 4.88 4.86 −
0 0.10 6.2 5.22 5.25 −
30 0.03 6.2 3.03 3.02 −
100 0 0.73 1.35 − 1.37

Fig. 2. Time-averaged Nusselt number plotted against temperature oscillation
frequency for different oscillation amplitudes for Ra= 106, Ha= 100 and
ϕ = 0.2. For reference, Nusselt number for the case without oscillation is shown
by the horizontal dashed line. The dashed-dot-line curve shows the locus of
maximum Nusselt number as a function of f.

Fig. 3. Contour plots of streamlines (left) and temperature (right) during one
period of oscillation for A= 0.5, f= 5, ϕ = 0.2, Ra= 1e6 and Ha= 100. The
minimum and maximum levels of ψ and θ, respectively, are (a) 0.5 to 5, (b) 0.5
to 3.5, (c) 0.2 to 2.2 and (d) 0.5 to 3, and (a) 0 to 1.4, (b) 0 to 1, (c) 0 to 0.6 and
(d) 0 to 0.95.
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number and the Nusselt number recovers its Hartmann number in-
dependence. The Nusselt number curves collapse onto a single curve,
which is linear on the log-log scale, demonstrating a power-law de-
pendance on the Rayleigh number with an exponent very close to 1/4
predicted from theory for the case of natural convection in a cavity
without magnetic field and nanoparticles [44]. It can be noted that
between the diffusion- and convection-dominated regimes, where the
magnetic field suppresses the convection flows, the effect of the Hart-
mann number on the Nusselt number is significant. From Fig. 5, it can
be noted that there is a critical Rayleigh number at which the average
Nusselt number attains its minimum. The critical Rayleigh number
values obtained at different Hartmann numbers for ϕ = 0.2 are given in
Table 5. Critical Rayleigh number exhibits a power-law relationship

scaling as Racrit ∼Ha2.06 with a correlation coefficient r2 = 0.9683
when log10Racrit is plotted against log10Ha . This follows the prefactors
to the buoyancy and Lorentz friction terms in eq. 18, the ratio of which
is approximately Ra/Ha2, and the balance between which dictates the
threshold between the dominance of natural convection and Lorentz
force.

Fig. 6 portrays the effect of Hartmann number on the vertical
component of velocity (left) and the temperature (right) which are
extracted along the horizontal mid-span of the enclosure at different
Rayleigh numbers for A= 2 and ϕ = 0.2. It can be noted that the
vertical velocity component increases with increasing Rayleigh number
and decreases with increasing Hartmann number. This is due to the fact
that as Rayleigh increases, a strong buoyant flow occurs within the
enclosure which are suppressed at higher Hartmann number. For low
and high Rayleigh numbers, where the flow is mainly dominated by
conduction and convection, respectively, it is observed that the effect of
the Hartmann number on the temperature profiles is insignificant.
However, for the intermediate range of Rayleigh number, where the
convective flow field is not very strong, the effect of the magnetic field
on both the velocity and temperature profiles is significant.

Figs. 7 and 8 plot the temperature and streamfunction for Ha= 25
and 100, respectively, at different Rayleigh numbers. The contours are
plotted over the duration of one period of oscillation for A= 2 and
ϕ = 0.2. Despite the considerably different Hartmann numbers, the
Rayleigh number range is sufficient to get different flow regimes. It can
be noted that for Ha= 25, the flow passes from a diffusion-dominated
regime to a convective-dominated regime prior to Ra≈ 105. However,
for Ha= 100, the flow remains in diffusion-dominated regime until
Ra≈ 105, and approaches a convective-dominated regime beyond
Ra= 108. Throughout both figures, the diffusion regime presents
temperature fields that exhibit a smooth and gradual variation through
the enclosure. No thermal boundary layer is visible on the hot wall and

Fig. 4. Contour plots of streamlines (left) and temperature (right) during one
period of oscillation for A = 2, f= 2.5, ϕ = 0.2, Ra= 1e6 and Ha= 100. The
minimum and maximum levels of ψ and θ, respectively, are (a) 1 to 8, (b) 0.5 to
4.5, (c) 0.5 to 4 and (d) −0.1 to 0.9, and (a) 0 to 2.8, (b) 0 to 1.5, (c) 0 to 0.1
and (d) 0 to 0.9.

Fig. 5. A plot of log10Nu against log10Ra for A= 2 and ϕ = 0.2 at different
Hartmann numbers as indicated. Splines are fitted to the data for guidance. A
gradient of 1/4 is provided for comparison with theory.

Table 5
Critical Rayleigh number for the departure from the conduction regime at
different Hartmann numbers for the solid fraction ϕ = 0.2.

Ha log10Racrit Racrit

10 2.26542 1.84 × 102

25 3.28501 1.93 × 103

50 3.50429 3.19 × 103

75 4.15381 1.42 × 104

100 4.41286 2.59 × 104
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the isotherms are nearly vertical. The convective regime presents a thin
thermal boundary layer next to the hot wall where temperature changes
rapidly in the vertical direction, and a region of constant temperature
fluid (Ref. 10(c)) extending from the boundary layer to the top wall of
the cavity. For the diffusion-convection regime, the isotherms slanted a
way from the hot wall and become nearly horizontal at the centre of the
cavity at higher Hartmann number.

Fig. 9 shows the variation of the time-average Nusselt number with
the solid volume fraction at different Hartmann number for A= 2 and
Ra= 106. The results show that as Hartmann number increases from
Ha= 0 to Ha= 50, the time-average Nusselt number along the heated
wall increases linearly with increasing solid volume fraction. The in-
crease is more pronounced at Ha < 50. However, the variation of the

time-average Nusselt with the solid volume fraction remains nearly
constant at Ha= 75 and decreases slightly as Hartmann number is
increased to Ha= 100. This behaviour is due to the effect of magnetic
field in the suppression of the buoyant flows of the nanofluids at higher
densities of the nanoparticles. In addition, there is a significant change
in the slope of the curves as Hartmann number initially increases from
Ha= 10 to 100, decreasing by almost 100%.

For a given Hartmann number, the rate of decrease in the time-
average Nusselt number with the solid volume fraction is more pro-
nounced at high Ha . For example, the time-averaged Nusselt numbers
are almost unchanged for Ha= 10, whereas for Ha= 50 the value of
Nusselt number for the base fluid (i.e. ϕ = 0) lowered by 40% as more
nanoparticles with ϕ = 0.2 are introduced. However, For Ha > 50, the
time-average Nusselt number initially decreases as the solid volume
fraction increases.

5. Conclusions

Natural convection of an oscillating wall temperature on the left
wall of an enclosure filled with a nanofluid and is influenced by a
magnetic field has been numerically investigated. The effects of various
pertinent parameters such as oscillation amplitudes and forcing fre-
quencies, Hartmann number, Rayleigh number and solid volume

Fig. 6. Plot showing x-variation of vertical velocity component and tempera-
ture at y= 0.5 at different Rayleigh and Hartmann numbers for A= 2 and
ϕ = 0.2.

Fig. 7. Contour plots of temperature (left) and streamlines (right) during one
period of oscillation. Each case is depicted at the frequency producing max-
imum heat transfer for A= 2, ϕ = 0.2 and Ha= 25 at different Rayleigh
number as indicated. Streamline fields: light and dark contours show high and
low velocity, respectively. Temperature fields: dark and light contours show
cold and hot fluid, respectively.
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fraction on the flow and heat transfer characteristics have been ex-
amined for the Prandtl number Pr = 6.2.

It is found that there is a substantial enhancement in heat transfer
for higher amplitudes where an increase with the peak Nusselt number
is observed with increasing the forcing amplitude of the hot wall. As the
oscillation amplitude increases, the frequency where the peak Nusselt
number occurs, remains almost constant at f= 2.5 for A > 0.5, and
increases to f= 5 for A≤ 0.5. The flow structure for the frequency at
which the peak Nusselt number occurred was characterised by a
clockwise rotating primary cells located at centre of the enclosure
which fluctuated in intensity for both amplitudes and in the location for
the higher amplitude. In addition, a weaker secondary cell was ob-
served at the upper left and right corners of the enclosure at the higher
amplitude.

At low Rayleigh number, where the flow is diffusion dominated, the
Nusselt number demonstrates Rayleigh number and Hartmann number
independence. Above some critical Rayleigh number, the Nusselt
number collapses to single curves independent of Hartmann number,
and in agreement with theory, i.e. Nu ∝ Ra1/4.

A strong flow circulation and intense isotherm were observed near
the oscillating vertical wall at higher Rayleigh numbers and lower
Hartmann numbers for a fixed solid volume fraction of ϕ = 0.2. The y-
velocity and temperature distributions along the horizontal mid-span of
the enclosure demonstrate stronger flow fields in the enclosure and
higher temperature gradient near the vertical oscillatory hot wall at
higher Rayleigh numbers and lower Hartmann numbers. Furthermore,
the rate of decrease in the Nusselt number with the solid volume
fraction is more pronounced at high Ha .

The effect of the solid volume fraction on the response of the heat
transfer inside the cavity strongly depends on the value the Rayleigh
number and the Hartmann number. It was found that as Hartmann
number increases from Ha= 0 to Ha= 50, the Nusselt number in-
creases linearly with increasing solid volume fraction. The increase is
more pronounced at Ha < 50. However, the variation of the Nusselt
with the solid volume fraction remains steady at Ha= 75 and decreases
slightly as Hartmann number is increased to Ha= 100. Furthermore,
the rate of decrease in the Nusselt number with the solid volume
fraction is more pronounced at high Ha .
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