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A B S T R A C T

The heat transfer from the side-wall of a duct through which an electrically conducting fluid flows within a
strong transverse magnetic field is numerically investigated using high-resolution numerical simulation.
Parameter ranges considered are ≤ ≤Ha0 2400 and ≤ ≤Re100 3000 for a constant blockage ratio of 1/4. The
gain in the heat transfer using obstacles of different geometric shapes are compared. For =Ha 320, a maximum
heat transfer enhancement of 78% is obtained when using the square cylinder at a modes =Re 1000, while the
triangular cylinder outperformed the various other vortex promoter geometries at Re = 2000 yielding a 75%
improvement.. However, at a higher Hartmann number of =Ha 2400, a maximum heat transfer augmentation of
16% and 40% is obtained for the triangular cylinder at =Re 1000 and 2000, respectively. This suggests that for a
duct flow under the influence of a strong magnetic field, the triangular obstacle is a superior heat transfer
promoter geometry compared to the square or circular cylinders. A further net power analysis reveals that the
heat transfer enhancement dominates over the pumping power to produce net benefits for even a modest heat
transfer enhancement.

1. Introduction

Magnetohydrodynamic (MHD) flow in rectangular ducts under an
imposed magnetic field occurs in metallurgical processing applications
as well as within cooling blankets and tritium breeder modules pro-
posed for future magnetic confinement fusion reactors [1]. Liquid metal
blankets in fusion reactors need to be able to reliably carry heat away
from the fusion reaction. The economic premium in decreasing the size
of magnetic coils in fusion reactors can be achieved as a result of en-
hancing heat transfer efficiency of fusion reactor blankets which is
highlighted by Khan and Davidson [2].

The electrically conducting fluid that circulates within the blanket is
exposed to a sufficiently strong magnetic field to confine the plasma.
The Lorentz force arising from the interaction of the fluid with the high
magnetic field has a significant effect on the velocity distribution and
the turbulence intensity, and exerts a braking force on the flow [3].
Therefore, magnetohydrodynamic duct flows can be characterised by
laminar flow structures as velocity fluctuations in the direction of the
magnetic field are suppressed while vortices elongate and align with the
magnetic field [4–6]. Under these conditions, MHD duct flows comprise
a two-dimensional core flow separated by boundary layers on the duct

walls. The duct walls perpendicular to the magnetic field form
boundary layers known as Hartmann layers, which exert a friction on
the interior two-dimensional flow. This inspired the development of
quasi-two-dimensional models for these flows. For fusion reactor
cooling blankets, the suppression of these turbulent structures is det-
rimental to the operational efficiency, where given the large amounts of
heat that must be removed. The heat transfer can be enhanced by
promoting turbulence near the heated wall using obstacles placed in-
side the duct, where an increasing body of evidence is demonstrating
that the heat transport characteristics around the obstacle depend
strongly on the shape of the obstacle [7–10]. The disturbances resulting
from these promoters induce a significant velocity component in the
direction perpendicular to the magnetic field that promotes mixing and
thereby improves convective heat transport in this direction.

In addition to liquid metal cooling systems in fusion reactors, other
liquid metal duct flow applications include the cooling of nuclear fis-
sion reactors and high-performance computing infrastructure. Beyond
MHD applications, channel flows exhibiting quasi-two-dimensional
characteristics appear in applications ranging from microfluidics
through to geophysical flows.

In the present study, the efficacy of a triangular cylinder aligned
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with the magnetic field is used to induce disturbances near the heated
wall. The rapid suppression of flow disturbances even in the quasi-two-
dimensional plane at high Hartmann numbers compels the selection of
an obstacle shape that is highly effective at generating shed vortices in a
wake that encourages interaction with the hot duct side-wall. Recent
hydrodynamic studies of the flow past triangular prisms have demon-
strated that vortex shedding initiates at a smaller Reynolds number
than the canonical circular cylinder, while the inclined faces and se-
paration from the sharp triangular prism edges can invoke a wider wake
[11].

In contrast to the non-MHD flow past circular and square cylinders,
the flow and heat transfer past a triangular obstacle have received less
attention. For instance, the flow and heat transfer across a triangular
cylinder were only investigated in unbounded and bounded config-
urations by Refs. [12–16] and [17–20], respectively. Abbassi et al. [19]
investigated the structure of laminar flow and heat transfer in a dif-
ferentially heated horizontal channel with a built-in triangular cylinder
for Reynolds numbers ranging from ≤ ≤Re20 250 for a blockage ratio
of 25% and =Pr 0.71. The maximum heat transfer enhancement was
approximately 85%. Abbassi et al. [21] studied the mixed convection of
air in a plane channel heated from below with a built-in triangular
prism for Grashof numbers up to ×1.5 104, at a blockage ratio =β 0.25
and =Re 100. Their results showed that the effect of thermal buoyancy
lead to a slight increase in the frequency of vortex shedding and also
that the presence of the triangular prism results in a 44% increase in the
time-averaged Nusselt number. In another study by Abbassi et al. [22],
mixed convection was analysed for a differentially heated two dimen-
sional plane channel with a built-in triangular cylinder. The numerical
results demonstrated that for ≤ ≤Re50 200 and Grashof number

=Gr 0, the local and time-averaged Nusselt number can be described
by a linear function of Reln( ). The laminar forced convection fluid flow

and heat transfer from a triangular cylinder placed in a channel was
investigated numerically by De and Dalal [18] for the Reynolds number
range ≤ ≤Re80 200 and blockage ratio range ≤ ≤β1/12 1/3. A criss-
cross motion of the vorticity layers was observed at =β 1/3, whereas
they remain in their own half-plane for other cases. The St Re– curve has
a flat maximum around =Re 130 for =β 1

6 whereas St increases
monotonically with Re for ≥β 1/6 and with β for >Re 130. The local
Nusselt number varies with time only in the rear-end of the cylinder due
to the vortex shedding, whereas in other two faces it remains un-
changed. Srikanth et al. [20] examined the flow and heat transfer across
a long triangular cylinder placed in a horizontal channel for Reynolds
number range ≤ ≤Re1 80 and =Pr 0.71 for a fixed blockage ratio of
0.25. Their results found that the average Nusselt number increases
with increasing Reynolds number, and that the maximum change be-
tween the values of the average Nusselt number for triangular and
square obstacles was about 25% for =Re 1 and 12.5–15% for

≤ ≤Re5 45. More recently, the flow and heat transfer characteristics in
a plane channel with a built-in bluff body were investigated numeri-
cally by Bouhalleb and Abbassi [23] for ≤ ≤Re50 250, gap ratio

≤ ≤G0 3 and =β 0.25 at =Pr 0.7. Two body geometries were tested: a
triangular prism (TR) and a square cylinder (SQ). Their results showed
that maximum heat transfer is achieved when the obstacle is placed at
approximately the mid-height of the channel. At Re = 200, the max-
imum heat transfer enhancement was approximately 23% and 32% for
the SQ and the TR, respectively, when compared to the empty channel.

Just as the number of studies on the vortex dynamics in a straight
channel under a strong magnetic field are limited, the studies per-
taining to heat transfer enhancement in a straight channel under these
conditions are scarce. An exhaustive literature review yields experi-
mental investigations by Kit et al. [24,25], Kolesnikov and Tsinober
[26], Andreev and Kolesnikov [27,28], Frank et al. [29], and numerical

Nomenclature

a duct depth (out-of-plane)
A instability mode amplitude
B magnetic field
Cd cylinder drag coefficient
Cl cylinder lift coefficient
Cp constant pressure specific heat capacity
d side length of triangular cylinder
Ec Eckert number
f wake oscillation frequency
Fd

' drag force per unit span
Fl

' lift force per unit span
h duct height
H Hartmann friction parameter
Ha Hartmann number
Lduct duct length
�2 integral of velocity magnitude throughout the domain
n number of Hartmann layers
N interaction parameter
Nel number of spectral elements in mesh
Nu time-averaged Nusselt number
Nu0 time-averaged Nusselt number in empty channel
Nuw instantaneous local Nusselt number
p pressure

pΔ pressure drop across channel
pΔ 0 pressure drop across channel with no cylinder
PΔ net overall net power enhancement

Pheat heating power
Pflow pumping power
Pe Péclet number
Pr Prandtl number

Re Reynolds number
Rec critical Reynolds number
Rem magnetic Reynolds number
St Strouhal number
t time
u streamwise component of velocity
u velocity vector field
U peak inlet velocity
x Cartesian coordinate in flow direction
xu length to upstream boundary
xd length to downstram boundary
y Cartesian coordinate across channel

Greek symbols

α duct aspect ratio
β blockage ratio
δH Hartmann boundary layer thickness
δS Shercliff boundary layer thickness

θΔ temperature difference between channel side walls
θ temperature field
θf bulk fluid temperature
θ0 temperature of fluid entering channel
θw temperature of hot channel side-wall
ζ mode phase in the Landau equation
ν kinematic viscosity
ρ fluid density
σ linear growth rate in the Landau equation
σe electrical conductivity
Ω vorticity in x–y plane
ω angular frequency
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studies by Muck et al. [7], Ueno et al. [30], Dousset and Pothérat [8],
Hussam et al. [9,31,32], Hussam and Sheard [33], Chatterjee and Gupta
[10], Cassells et al. [34], Hamid et al. [35]. The heat transfer char-
acteristics in a duct with a circular cylinder under a strong axial mag-
netic field was investigated by Barleon et al. [36], Hussam et al. [9,32],
Hussam and Sheard [33], while the case of square cylinder has been
investigated recently by Chatterjee and Gupta [10], Cassells et al. [34].
To the best our knowledge, a triangular cylinder with its axis aligned
with an imposed magnetic field has not been considered in this con-
figuration. Accordingly, we study numerically the magnetohy-
drodynamic flow and heat transfer characteristics in a duct with a tri-
angular cylinder subjected to a strong axial magnetic field. The study
aims to understand the difference in the MHD flow dynamics and heat
transfer characteristics relative to square and circular cylinders under
similar flow conditions.

The paper is organised as follows. The problem is defined in Section
2, which also presents the governing equations and parameters. The
methodology is presented in Section 3, which describes the numerical
method, model setup, boundary conditions and validation. Results and
discussion follow in Section 4, with conclusions drawn in Section 6.

2. Problem definition and mathematical formulation

The system of interest is shown schematically in Fig. 1. It consists of
a duct carrying an electrically conducting, incompressible fluid con-
fining an equilateral triangular cylinder. The cylinder is placed at the
centre of the duct, parallel to the imposed magnetic field vector and
perpendicular to the oncoming. The duct has a uniform square cross-
section with aspect ratio = =α h a/ 1, where h is the width and a is
height in the magnetic field (out-of-plane) direction. The blockage ratio

=β d h/ characterises the occlusion of the duct by the cylinder, where d
is the side length of the triangular cylinder, and throughout this study

=β 0.25. The duct walls and the cylinder are assumed to be electrically
insulated, and a homogeneous magnetic field of strength B is imposed
parallel to the cylinder axis. The bottom wall of the duct is maintained
at a constant wall temperature θw, while the top wall and the obstacle
are thermally insulated. The strength of the induced field is char-
acterised by the magnetic Reynolds number Rem, which represents the
ratio between the induced and the applied magnetic field. In the present
context, the magnetic Reynolds number =Re 1m and hence the mag-
netic field induced by the flow is negligible compared to the externally
applied field, i.e. the effect of velocity on the magnetic field is negli-
gible [4,5]. Thus the total magnetic field is effectively equal to the
applied magnetic field acting in the z-direction only.

Under these conditions the flow is quasi two-dimensional and con-
sists of a core region where the velocity remains unchanged along the
magnetic field direction, and a thin Hartmann layer along walls per-
pendicular to the magnetic field. The quasi-two-dimensional model,
hereafter referred to as the SM82 model, has been derived by averaging
the flow quantities in the magnetic field direction. The SM82 model
neglects the inertial effects within the Hartmann layers, and is accurate
to the order − −O Ha N( , )1 1 , where =N σ B a ρU/e

2 is the interaction
parameter, =Ha Ba σ ρν/e is the Hartmann number, σe, ν and ρ are the
electrical conductivity, kinematic viscosity and density of the liquid
metal, respectively, U is the peak inlet velocity, and B is the imposed
magnetic field. A thorough description of the SM82 model is given in
Refs. [5,6].

Following, for example, Refs. [4,5,34,35] we note that quasi-two-
dimensionality is achieved when the time-scale for the Lorentz force to
diffuse momentum of a structure size ⊥l along magnetic field lines over
length l , = ⊥τ ρ σ B l l( / ) /D e2

2 2 2, is shorter than the timescales for viscous
diffusion in the perpendicular and parallel planes ( =⊥

⊥τ l ν/ν
2 and

=τ l ν/ν
2 , respectively), and the inertial timescale = ⊥τ l U/u . Taking

=l a, these three conditions can be used respectively to obtain limiting
length scales under the model, >⊥

−l a Ha/ 1/2, >⊥
−l a Ha/ 1 and

>⊥
−l a N/ 1/3. The second condition is always satisfied under the first

condition for >Ha 1 [37]. Here lengths are scaled by the side length of
the triangular cylinder d, pressure by ρU 2, time by d U/ , velocities by U,
and temperature by the imposed temperature difference between the
bottom and top walls, θΔ [9,38].

2.1. Governing equations and parameters

In this case the non-dimensional magnetohydrodynamic equations
of continuity, momentum, and energy reduce to

∇⋅ =u 0, (1)

∂
∂

+ ⋅∇ = −∇ + ∇ −
t

p
Re

Hu u u u u( ) 1 ( ),2
(2)

∂
∂

+ ⋅∇ = ∇ + ∇ +θ
t

θ
Pe

θ E
Re

HaE
Re

u u u( ) 1 ( )
4

,c c2 2 2
(3)

where =H n d a Ha( / )2 is the Hartmann friction parameter which re-
presents the effects of the Lorentz force on the flow, and n is the number
of Hartmann layers formed on the duct walls ( =n 2 in the present
configuration). The second and last terms on the right-hand side of
equation (3) describe the effects of viscous dissipation and Joule
heating, respectively.

In the above equations, the dimensionless Reynolds number, Péclet
number and Eckert number parameters are defined as

=Re Ud
v

, (4)

=Pe Re Pr, (5)

=E U
C θδ

.c
p

2

(6)

The Prandtl number =Pr ν κ/ T , where κT is the thermal diffusivity of
the fluid.

The heat due to the viscous and Joule dissipation is assumed to be
negligible. This is possible when the interaction parameter is large and
the flow reaches a quasi-two-dimensional state [5]. It has been reported
previously by Hussam et al. [9] that in the context of MHD flow for
fusion blanket applications, the contributions of these term are up to
seven orders of magnitude smaller than the other terms in equation (3).
Furthermore, liquid metals have very high electrical conductivity
( = − −σ O m(10 ) Ω6 1 1; Lyon, 1952), thus Joule dissipation plays a lesser
role in the damping of the vortical structures [7,38]. Equation (3) then
reduces to

Fig. 1. Schematic representation of the system under investigation. Here the
channel is depicted with the triangular obstacle, which is replaced with either a
circular or square obstacle as required in the present study. The magnetic field
B acts in the out-of-plane direction, parallel to the cylinder axis, δS is the
thickness of the Shercliff layer, and h and d are the duct height and side lengths
of the equilateral triangular cylinder, respectively. The upstream and down-
stream lengths are xu and xd, respectively.
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∂
∂

+ ⋅∇ = ∇θ
t

θ
Pe

θu( ) 1 .2
(7)

Justification for the omission of the viscous and Joule heating terms
is supported by an order of magnitude analysis. Taking

=
= ×
= ×
=
=
=
=
= ×

− −

−

−

ρ
σ
ν
C
Pr
δθ
U
E

6.3632 kg/m ,
3.30737 10 Ω m ,
3.4809 10 m /s,
188 J/kg. K,
0.022,
250 K,
0.015m/s,
3.191 10

p

c

3

6 1 1

7 2

7

(these values are relevant to the fusion blanket application [39,40]), the
viscous dissipation and Joule heating prefactors are as follows: For

=Re 100 and 3000, = × −E Re/ 3.191 10c
9 and × −1.063 10 10, respec-

tively. At =Re 100, for =Ha 320 and 2400, the Joule dissipation pre-
factor = × −HaE Re/4 2.5528 10c

7 and × −1.9146 10 6, respectively. At
=Re 3000, for =Ha 320 and 2400, the Joule dissipation prefactor

= × −HaE Re/4 8.5 10c
9 and × −6.382 10 8, respectively. By contrast, the

thermal diffusion prefactor at =Re 100 and 3000 is = × −Pe1/ 4.5 10 1

and × −1.5 10 2, respectively. Therefore the contributions of the viscous
and Joule heating terms are at least five orders of magnitude smaller
than the thermal diffusion term.

The total drag coefficient is defined based on the drag force per unit
span ( ′F d) on the cylinderas

=
′

C F
ρU d

,d
d

1
2

2
(8)

and the total lift coefficient is defined based on the lift force per unit
span ( ′F l) on the cylinderas

=
′

C F
ρU d

.l
l

1
2

2
(9)

The wake oscillation frequency f is parameterised by the Strouhal
number

=St
fd
U

.
(10)

The local Nusselt number along the heated side-wall of the channel
is defined as

=
−

∂
∂

Nu x t d
θ θ

θ
y

( , )
( )

,w
f w wall (11)

where the bulk fluid temperature tf is calculated using the streamwise
velocity component u and the temperature distribution as

∫
∫

= −

−

θ x t
uθ y

u y
( , )

d

d
.f

h
h

h
h
/2
/2

/2
/2

(12)

The time-averaged Nusselt number for heat transfer through the
heated wall of the channel is calculated by first taking the time-average
of the local Nusselt number (Nu x( )w ) at each x-station, and then in-
tegrating over the length of the heated bottom wall, = +L x xu dduct ,
using

∫=
−

Nu
L

Nu x x1 ( ) d .
x

x
w

duct u

d

(13)

To characterise the effect on the heat transfer due to the addition of
a cylinder to the channel, the overall increment of heat transfer is de-
fined as

= −HI Nu Nu
Nu

,0

0 (14)

where Nu0 is the time-averaged Nusselt number of the heated region of
the duct without the cylinder.

The flow and heat transfer characteristics are investigated for the
quasi-two-dimensional channel flow for ≤ ≤Re100 3000,

≤ ≤Ha0 2400, and =β 0.25. A Prandtl number =Pr 0.022 is used
throughout this study as it is a representative of the eutectic alloy
GaInSn.

All variables are expressed in their dimensionless form hereafter.

3. Numerical procedure

3.1. Spectral-element solver, computational model, and boundary
conditions

A nodal spectral-element method is used to discretise the governing
flow and energy equations in space, and a third-order scheme based on
backwards differentiation is employed for time integration [41]. The
boundary conditions imposed on Eqs. (1)–(3) may be written as follows:
A no-slip for velocity is imposed on all solid walls. At the inlet ( =x xu),
the analytical solution to Eqs. (1) and (2) for fully developed quasi-two-
dimensional flow through the channel without an obstacle was derived
by Refs. [8,37] and is given as

− = ⎡
⎣⎢

−
−

⎤
⎦⎥

u x y
H H βy

H
( , )

cosh( ) cosh(2 )
cosh( ) 1

.u
(15)

At the outlet ( =x xd), a constant reference pressure and a zero
normal velocity gradient are imposed. A high order Neumann boundary
condition is also applied on the pressure field at the other boundaries to
maintain the third-order time accuracy [41]. The temperature of the
incoming stream is specified as θ0, and at the bottom wall as θw. The
cylinder is thermally insulated with a zero normal temperature gradient
imposed on its surface. The domain is meshed using a series of macro-
elements with internally applied Langrangian polynomial mapping
functions. A graded element distribution is applied towards all solid
boundaries to resolve regions that experience large flow gradients, such
as flow separation at the cylinder corners and within the wall boundary
layers/ Shercliff layers. The distribution of the macro-elements in the
mesh applied in this study is shown in Fig. 2.

3.2. Validation, grid refinement, and domain dependence

In general, the SM82 model is applicable for MHD duct flows under
the effect of a strong magnetic field, although some deviation from the
quasi-two-dimensional behaviour can be observed in some situations of
complex geometry ducts. For the case of simple rectangular duct flows,
the model has been verified against the three-dimensional results [5,6],
and the error using this model compared to that of the three-dimen-
sional solution is found to be of order of 10% [8,42]. This error is sig-
nificant in the vicinity of and inside the side layers. The work done by
Kanaris et al. [43] demonstrated a high degree of two-dimensionalisa-
tion of cylinder wake vortices with increasing N, which also provides an
excellent validation of the model for MHD wake flows. The formulation
of this model can be found in literature including [9,31,32].

To validate the numerical scheme being used, the flow over a tri-
angular cylinder with =Pr 0.71 for non-MHD flow at different Reynolds
number and =β 0.25 were computed. Results are compared with pub-
lished numerical results by De and Dalal [18] and Srikanth et al. [20] in
Table 1. The results compare well with the results by De and Dalal [18],
where most results differ by less than 1%. The discrepancies observed
with the results by Srikanth et al. [20] may have arisen from the dif-
ferent in the domain size used. The present implementation of the SM82
model has previously been used and validated in a number of quasi-
two-dimensional MHD wake flow studies (see Hussam et al. [9,31,32]
Hussam and Sheard [33]) and more recently in Hamid et al. [42],
Cassells et al. [34].
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A comprehensive grid resolution study was conducted to ensure that
adequate domain sizes, and spatial and temporal resolutions are
maintained for the simulations described in this study. Three families of
meshes were tested for =Re 3000 and =Ha 2400, being the upper
bound of Reynolds and Hartmann numbers considered in this study.
The upstream and downstream domain length chosen are shown in
Table 2. For each domain length, elements of polynomial degree =N 8p
were employed, and the flow was evolved to a saturated state. The
changes in the time-averaged drag coefficient Cd , the vortex shedding
frequency St, the RMS of the lift coefficient Cl,rms, the time-averaged
integral of the magnitude of velocity over the computational domain �2

norm, and the time-averaged Nusselt number Nu were quantified. A
difference of less than 1% was found when comparing values of the
output parameters between the M2 and M3 meshes. Hence, the M2 mesh
sizing was used hereafter, which contains 4050 spectral-elements.

A spatial resolution study was conducted at the same flow para-
meters by gradually increasing the order of interpolation of the poly-
nomial shape function Np (Np

2 nodes per macro-element) over
≤ ≤N5 9p , while keeping the macro-element distribution unchanged.

The time-averaged integral of the magnitude of velocity over the
computational domain �2 norm, and the time-averaged Nusselt number
Nu were monitored. The results from the saturated flow solution ob-
tained using =N 8p achieves a precision of better than 0.5% to the flow
solution obtained using =N 9p , and this resolution is used hereafter.
Furthermore, we conducted additional convergence analysis on the post
processing methods used to obtain the Nusselt number. The data ac-
quisition points and sampling frequency were refined to accurately
estimate the time history of local Nusselt number without significant
error or aliasing. A sampling frequency of 100 samples per unit time
was used across the simulations.

4. Results and discussion

4.1. Transition from steady to time dependent flow

In this study, the critical Reynolds number above which the flow
past the body becomes oscillatory in nature is calculated using the
Stuart–Landau equation, which describes the non-linear behaviour of a
perturbation about the transition [9,44,45]. Following Provansal et al.
[44], the Stuart–Landau equation is written as

= + − + + …A
t

σ iω A l ic A Ad
d

( ) (1 ) ,2

(16)

where A is a measure of the complex amplitude of the evolving in-
stability as a function of time ( =A A iζexp( ), A the signal magnitude,
ζ the phase of the mode, σ is the infinitesimal growth rate, l and c are
coefficients describing the non-linear regime, and ω the angular fre-
quency of the signal in the linear regime. The above equation can be
decomposed into real and imaginary components as

= − + …
A

t
σ l A

d(log )
d

( ) ,2
(17)

= − + …
ζ
t

ω lc A
d
d

( ) .2
(18)

For supercritical bifurcations ( >l 0), the transition behaviour near

Fig. 2. (a) Macro-element distribution of the computational domain (b)
Magnified mesh in the vicinity of the triangular obstacle. The full duct height is
shown, while the extensive upstream and downstream duct lengths are omitted.
(c)–(d) corresponding zoomed-in segments of meshes used for the square and
circular cylinder duct flows.

Table 1
Comparison of results to published work for different values of Reynolds
numbers in a zero-Ha flow. The values in the parentheses are the relative dif-
ferences (%) between the results from the present study and available published
data.

Re Cd St Nu

80 Present study 1.6470 0.1954 4.4280
De and Dalal [18] 1.64 0.195 4.6

(0.43%) (0.22%) (0.61%)
Srikanth et al [20]. 1.6357 0.1919 4.8695

(0.69%) (1.84%) (4.96%)
100 Present study 1.6829 0.2045 5.2870

De and Dalal [18] 1.68 0.206 5.3
(0.17%) (0.23%) (0.24%)

Srikanth et al [20]. 1.6708 0.2004 5.5624
(0.72%) (2.06%) (4.95%)

150 Present study 1.9715 0.2258 6.8099
De and Dalal [18] 1.96 0.225 6.8

(0.59%) (0.34%) (0.15%)
Srikanth et al [20]. 1.9349 0.2212 7.1270

(1.89%) (2.07%) (4.45%)

Table 2
Domain lengths defining the meshes used to test the effect of the domain
lengths of the confined triangular cylinder meshes. Nel is the number of macro
elements, and xu and xd describe the inlet and outlet domain sizes, respectively.

M1 M2 M3

Nel 3933 4050 4208
xu 8 10 12
xd 25 30 42
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the onset of the instability can be described by the first two terms of Eq.
(17). A tdlog /d against A 2 should thus relate linearly, and the intercept
value as →A 02 corresponds to the linear growth rate of the in-
stability, and the sign of the gradient at this point determines the non-
linear evolution characteristics of the instability. Collecting σ for sev-
eral Reynolds number, and extrapolating to zero growth rate yields the
critical Reynolds number.

The variation of the critical Reynolds number with Hartmann
numbers for the values of Hartmann number ≤ ≤Ha320 2400 and
blockage ratio =β 0.25 is presented in Fig. 3. In order to understand the
difference in the MHD flow dynamics with comparison to the square
and circular cylinders under similar flow conditions and blockage ratio,
the critical Reynolds number results for the triangular cylinder are
compared with the numerical results of Chatterjee and Gupta [10] for
the square cylinder, and Dousset and Pothérat [8] for the circular cy-
linder. The critical Reynolds number increases monotonically with in-
creasing Hartmann number for all the cases. This is not surprising given
that higher Hartmann numbers (i.e. a stronger magnetic field) act to
weaken transverse fluctuations in the channel, resulting in a higher
Reynolds number required to invoke the transition. The damping effect
of the imposed magnetic field can be inferred from the momentum
equation of the quasi-two-dimensional Navier–Stokes equations, Eq.
(2), where the exponential growth rate of the flow instabilities is shifted
by Ha/Re through the linear damping action of the Hartmann layers.
However, it is found that the critical Reynolds number in the case of the
triangular cylinder is much smaller than those of the circular and
square cylinders. This is due to the existence of sharper corners in the
case of a triangular cylinder which alters the dynamics and instabilities
of the flow [46,47]. In contrast, the smooth surface in the case of the
circular object renders better stability to the flow. As a result, the
transition Reynolds number is higher in the case of a circular cylinder in
comparison to that of the square and triangular cylinders. The per-
centage reduction of the relative difference between the critical Rey-
nolds numbers for the various obstacles are found to be about

−50 % 34% for ≤ ≤Ha320 2160 with respect to the value of the square
cylinder's critical Reynolds numbers, and about −60 % 40% with respect
to the value of the circular cylinder's critical Reynolds numbers.

The consequence of the lower critical Reynolds numbers for the
triangular obstacle in comparison to those of the square and circular
obstacle is that for a given Reynolds number, unsteady flow (i.e. vortex
shedding) can be maintained to a significantly greater Hartmann
number. For instance, at =Re 600, vortex shedding behind a circular
cylinder is suppressed beyond =Ha 580, whereas it can be sustained up
to =Ha 1650 behind a triangular obstacle.

5. Flow structures

To demonstrate the effect of the magnetic field on the interaction of
the wall boundary layer parallel to the magnetic field (the Shercliff
layers) with those of the cylinder (vortex shedding), The instantaneous
vorticity fields for =Re 800 at different Hartmann numbers are illu-
strated in Fig. 4. At =Ha 320, a typical Kármán vortex street is ob-
served. Regular vortices are shed from alternate sides of the cylinder
forming two rows of vortices that rotate clockwise and counter-clock-
wise, respectively, along with the formation of secondary vortices en-
trained from the Shercliff layers. As the vortices convect downstream
(approx. =x d4 ), they interact significantly with the Shercliff layers,
merging and rolling up together before traveling further downstream.
For =Ha 640, the behaviour is similar, though the wake vortices from
the upper and lower sides of the obstacle adopt a wider separation from
the wake centreline, and the vortices dissipate more rapidly as they
convect downstream. The vorticity entrainment from the Shercliff
layers decrease significantly as the Hartmann number is increased from

=Ha 640 to =Ha 1160. With a further increase in the Hartmann
number to =Ha 2400, vortex shedding is completely suppressed and
the wake is composed of two shear layers which are reflection

symmetric about the duct centreplane.

5.1. Lift and drag coefficient

The temporal variation of the lift coefficient with Hartmann number
for =Re 800 is presented in Fig. 5. The lift coefficient signal preserves a
time-dependent oscillation for =Ha 320, 640 and 1160 which is a re-
sult of the periodic flow characteristic demonstrated in Fig. 4. Fur-
thermore, it is observed that the amplitude of oscillation decreases
gradually with increasing Hartmann number from =Ha 320 to 1160.
For =Ha 2400, no oscillation in the lift signal is detected as vortex
shedding is completely suppressed at that Hartmann number.

The Fourier spectrum of the lift coefficient signal for =Ha 320 and
=Re 800 presented in Fig. 5 is plotted in Fig. 6. Consistent with Fig. 5,

the spectrum exhibits a strong harmonic peak which reflects the uni-
form periodic behaviour observed in the lift coefficient time history.
However, the interaction of the Kármán vortices with Shercliff layers
(see Fig. 4) suggests that secondary frequencies will develop simulta-
neously with the primary vortex shedding frequency. To further in-
vestigate the presence of secondary frequencies in the flow, a spectral
analysis of the vorticity time series signal is recorded on the duct cen-
treline at streamwise locations four, eight, twelve, sixteen and twenty
diameters downstream of the cylinder. Fig. 7 displays the vorticity time
history for =Ha 320 and =Ha 1160 at =x d4 and =y 0. The respective
Fourier spectrum of the vorticity signal for =Ha 320 shown in Fig. 7 is
presented in Fig. 8. For =Ha 320 at different x d/ , the time-dependent
vorticity (not shown) demonstrates a sequence of vortices with alter-
nating senses of rotation with the intensity being highest at =x d4 . It
was observed that irrespective of the position where the signal was
acquired, the spectrum peak is located at the same dominant frequency.
The spectra is the secondary harmonic has a power density of about 40-
60% of the primary's. 'dominated' and 'significantly' sounds a bit too
strong for this usage. The first peak is fairly consistent for all x d/ , while
the harmonics are progressively stronger at greater distances down-
stream. These spectra support the visualization of the flow shown in
Fig. 4(a–c), where the flow is characterised by the formation of vortices
shed from the cylinder along with the formation of secondary vortices
that detach from the side walls.

The effect of Hartmann number on the time-averaged drag coeffi-
cient, Cd , is presented in Fig. 9. Following Dousset and Pothérat [8], it
is found that the drag coefficient data exhibits a collapse to a universal
curve when plotted against Re Ha/ 0.8, with Cd observed to first decrease
to a minimum of =C 1.2d at =Re Ha/ 20.8 , before subsequently

Fig. 3. Critical Reynolds number for onset of vortex shedding plotted against
Ha for the three different shapes as indicated for a duct with a blockage ratio

=β 0.25. The dash-dotted line is the =N 10 curve: the Rec values pre-
dominantly lie to the right of that curve, demonstrating the suitability of the
quasi-two-dimensional assumption as ≫N 1.CR, SQ and TR represents circular
[8], square [10] and triangular cylinder, respectively.
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increasing to a plateau of approximately =C 1.8d at larger values of
Re Ha/ 0.8. Results for the circular [8,9] and square cylinder [10] de-
monstrated that at low values of Re Ha/ 0.8, the data similarly collapses
onto a universal curve. However, in contrary to the present results,
those studies observed that at higher Re Ha/ 0.8, the drag coefficient ex-
hibited a dependence on the Hartmann number.

5.2. Heat transfer

To illustrate the effect that the magnetic field has on the wall heat
transfer, instantaneous temperature contours are presented in Fig. 10
for a range of Hartmann numbers at a constant =Re 800. The initial
observation from these contours is that, due to the strong interaction
between the side wall vortices and the Kármán vortex street, the
thermal field in the absence of the magnetic field (i.e. =Ha 0) is more
irregular and chaotic than those of the MHD flows. For ≤Ha 1160, the
temperature fields are time-dependent since the flows are unsteady the
oscillatory cross-stream velocity field induced by the periodically shed

Fig. 4. Vorticity contour plots for =Re 800 and Hartmann number as indicated.
20 contour level are displayed between − ≤ ≤2 Ω 2, with light and dark con-
tours representing positive and negative vorticity, respectively.

Fig. 5. Time history of the lift force coefficient Cl at different Hartmann num-
bers as indicated for =Re 800.

Fig. 6. Fourier spectrum of the lift coefficient (F C{ }l ) for =Re 800 and
=Ha 320.

Fig. 7. Time history of the vorticity signal taken at =x d/ 4 and =y d/ 0 for
=Re 800 at Hartmann number =Ha 320 and =Ha 1160.

Fig. 8. Fourier spectrum of the vorticity signal (F {Ω}) multiple streamwise
positions x d/ and =y d/ 0 for =Re 800 and =Ha 320.

Fig. 9. Time-averaged drag coefficients as a function of Re Ha/ 0.8 at different
Hartmann numbers as indicated.
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vortices act to perturb the thermal boundary layer. Thus, the colder
fluid is transported towards the hot region of the channel and the hotter
fluid near the heated wall is convected away to mix with the cooler bulk
flow. This process enhances the mixing between the cold fluid and the
heated surface, and as a result the heat transfer is enhanced. However,
on further increasing the Hartmann number to =Ha 2400, reversion to
steady flow eradicates the convective heat transport leading to an in-
crease in the thickness of the thermal boundary layer. Hence, the
temperature flux through the heated wall decreases. Similar observa-
tions with regards to convective heat transport in MHD flow past a
circular cylinder in a duct at different blockage ratio were reported in
Refs. [9] and [10] for a square cylinder at =β 0.25. Hence, the thermal
transport characteristics of MHD flow in a heated channel with an ob-
stacle of different geometries are qualitatively similar. However, the
quantitative difference is expected to be significant.

Now the local Nusselt number at different Harmann numbers will be
considered as a function of position along the heated duct wall. Fig. 11
presents the distribution of the time-averaged local Nusselt number
Nu x( )w along the heated wall as a function of streamwise coordinate for
different Hartmann numbers at =Re 800. It is found that the effect of
Hartmann number on the distribution of the local Nusselt number along
the heated wall is substantial. A monotonic decrease in Nu x( )w is ob-
served for the steady-state case at =Ha 2400 where the heat transport
is not enhanced by transverse convection invoked by the wake vortices
interacting with the side walls. The Hartmann numbers producing un-
steady flow exhibit higher Nu x( )w over most of the downstream region
(except close to the cylinder), and that the increase in Nu x( )w is greater
at smaller Ha. With decreasing Ha, the extent of the region on the he-
ated duct wall downstream of the cylinder over which the local Nusselt
number increases is observed to increase. The location of the maximum
local Nusselt number moves downstream from nearly ≈x d/ 5 to

≈x d/ 13.5. This occurs because in this region there is a strong inter-
action between the Shercliff layer adjacent to the heated duct side-wall
and the cylinder wake vortices which is reflected in the vorticity field
plot shown in Fig. 4(a). However, for =Ha 640 and 1160, the peak
local Nusselt numbers occur at a closer location downstream of the
cylinder (i.e. approximately =x d/ 5). This is due to the fact that with
increasing Ha the wake dissipates faster and the distance downstream
over which enhancement of heat transport is observed gets shorter re-
dundant. On further increasing the Hartmann number, Nu x( )w de-
creases monotonically with increasing x, nearly similar to the corre-
sponding curve produced without no obstacle in the channel.

Fig. 12(a) shows the variation of the time-averaged Nusselt number
Nu of the heated wall with Reynolds number for different Hartmann
numbers. It can be noted that the heat transfer increases with increasing
Reynolds number, while it decreases with increasing Hartmann
number. At lower Re, the data for each Hartmann number is approxi-
mately coincident, which corresponds to the steady-state regime. The
coincidence of the data may be explained by the diffusion-dominated
heat transfer due to thermal conduction across the stable thermal
boundary layer that is relatively insensitive to Hartmann number due to
the low Prandtl number. The variation of Nu with Re is found to be
more significant in the unsteady flow regimes compared to the steady
flow regime with a noticeable difference at larger Reynolds numbers.
This may be attributed to the effect of the cross-stream mixing induced
by the cylinder wake near the heated wall which increases with in-
creasing Reynolds number resulting in enhanced Nusselt numbers. For
example, the increase Nu is almost 50% as Reynolds number changes
from =Re 1000 to 2000. The dependence of the time-averaged Nusselt
number on the Hartmann number is more pronounced at larger Rey-
nolds numbers. At higher Hartmann numbers, the thermal boundary
layer that develops along the heated wall becomes thicker as there is
less cross-stream mixing which decreases the temperature gradient re-
sulting in a reduction in the Nusselt number.

The percentage increment of the overall heat transfer defined by Eq.
(14) for the Nusselt number data presented in Fig. 12(a) are plotted in
Fig. 12(b). In order to present the comparison of the triangular cylinder
heat transfer increment with those of the square and circular cylinders,
the variation of heat transfer increment for those geometries are also
shown in Fig. 12(b). The triangular and square cylinders are found to
produce significantly greater heat transport than the circular cylinder at
corresponding Reynolds and Hartmann numbers.

In order to compare the percentage increment of the overall heat
transfer for each of the three geometries under the same conditions, the
percentage heat transfer increment for the three different geometries
for =Re 1000 and 2000 at =Ha 320 and 2400 are listed in Table 3. This
demonstrates that for a moderate Hartmann number at =Re 1000, the
square cylinder obstacle is preferable to circular and triangular cy-
linder, while for =Re 2000, the square and triangular objects behave
similarly, with the triangular obstacle having approximately 6% higher

HI% than the square obstacle.
This observation is attributed to the fact that for the square cylinder

at =Ha 320 and =Re 1000, the vorticity and temperature contours
shown in Fig. 13(c,d) reveal that there is substantial interaction be-
tween wake vortices and the heated wall due to the broadening of the
width of the wake. The boundary layer entrainment from the heated
wall into the wake, as well as the mixing of the hotter fluid near the
heated region with the cooler core flow are stronger in the wake of the
square cylinder than those for the triangular cylinder (Fig. 13a,b). This

Fig. 10. Instantaneous dimensionless temperature contours at =Re 800 for
Hartmann number as indicated. Dark and light contours correspond, respec-
tively, to colder and hotter regions, with contours plotted over ≤ ≤θ θ θw0 .

Fig. 11. Time-averaged local Nusselt number plotted against streamwise wall
position along the downstream of the heated wall for =Re 800 and Hartmann
number as indicated.
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leads to an increase in the local Nusselt number over a region extending
from ≃ −x d/ 5 15, as shown in Fig. 14(a). For =Re 2000 at =Ha 320 as
shown in Fig. 14(b), the local Nusselt number for the square cylinder
exhibits a wavy pattern due to the complex interaction between the
wake vortices and the thermal boundary layer of the heated wall.
However, at a high Hartmann number, the triangular promoter per-
forms better than the others. Inspection of vorticity contours for both

TR and SQ promoters (as shown in Fig. 15) reveal an apparent differ-
ence in the strength and the dynamics of the resulting wake vortices.
The shear layers emanating from the triangular cylinder almost im-
mediately roll up and shed, while for the square cylinder, the vortices
shed at a distance further downstream and diffuses rapidly as they

Fig. 12. (a) Variation of the time-averaged Nusselt number with Reynolds
number for different Hartmann numbers as indicated. The error bars provide an
uncertainty estimate in the thermal response due to the time interval used to
capture the low frequency temporal variations. (b) The percentage increase in
heat transfer obtained by adding triangular cylinder to the channel (%HI) as a
function of Reynolds number for different Hartmann numbers as indicated. For
comparison, the percentage increase in heat transfer at =Ha 320 and 2400,

=Re 1000 and 2000, and =β 0.25 correspondingly generated by using a square
or circular cylinder are indicated by hollow square and circular symbols, re-
spectively. They are connected by arrows to the triangular cylinder data at the
same parameters.

Table 3
Comparison of the overall heat transfer increment HI% for the cases with tri-
angular, square, and circular cylinders placed in a channel of =β 0.25 at

=Re 1000 and at =Ha 320 and 2400. The combinations producing the highest
heat transfer increment are highlighted in bold.

HI%

=Ha 320 =Ha 2400

Re 1000 2000 1000 2000
circular 46% 52% − 1.2% 16%
square 78% 73% 10% 33%
triangular 62% 75% 16% 40%

Fig. 13. Instantaneous vorticity (a,c) and temperature contours (b,d) for
=Re 1000 and =Ha 320. Figures (a,b) correspond to the triangular cylinder

case, and (c,d) to the square cylinder. Vorticity and temperature contours levels
are as per Figs. 4 and 10, respectively.

Fig. 14. Comparison of the time-averaged local Nusselt number along the he-
ated wall, downstream of the vortex promoter (a) =Re 1000 and (b) =Re 2000
at different Hartmann numbers as indicated. Here, the labels SQ and TR cor-
respond to the responses of the square and triangular cylinders, respectively,
with marker symbols that also correspond to the cylinder geometry. Symbols
are skipped in order to make the lines more visible.
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convect away. The peak vorticity obtained for TR at ≈x d/ 5 is ap-
proximately four times stronger than the one for SQ at the same
downstream distance, which results in a stronger wake-boundary layer
interaction for TR than SQ, and thus results in a better heat transfer
performance.

The general observation arising from Fig. 12(a,b) is that as Ha in-
creases, the improvement in Nusselt number is seen at higher Reynolds
number (due to the delay in the onset of unsteady flow), and when
unsteady flow develops, the Nusselt number increase is progressively
smaller with increasing Ha. Projecting to higher Ha (e.g. fusion-relevant
conditions) suggests that physical vortex promoters may be of only
modest usefulness in the quest for enhancement of heat transfer. Hamid
et al. [35,48] demonstrated that electrically generated vortices in ad-
dition to a physical obstacle can achieve significantly greater en-
hancement than the physical obstacle alone. Their results showed that
the enhancement in heat transfer due to the imposed current exhibits a
non-monotonic relation with Ha. At low Ha, due to the competition
between inertial and Hartmann damping, heat transfer enhancement
increases with increasing Ha and then decreases steadily with further
increase in Ha. However, in the high-Ha regime, Hartmann damping
dominates over the driving force. As a result, a strong wake-boundary
layer occurs only in the wake region. On further increasing in Ha, the
flow becomes dominated by the forcing current only and the heat
transfer eventually becomes asymptotically independent of Ha.

5.3. Net power balance

The inclusion of a vortex promoter within the channel supplies
thermal enhancement but at the cost of the increased pressure losses. To
characterise whether the enhancement of heat transfer power invoked
by placing a vortex promoter within a duct exceeds the added power
required due to the increased pressure loss in the duct, the net power
enhancement is provided. Consistent with the analysis in Ref. [34], the
enhancement in heat power due to the inclusion of the vortex promoter
is

= −P P PΔ ,heat heat 0,heat (19)

where Pheat is the heat power transferred through the heated wall, while
the subscript 0 denotes the corresponding flow without cylinder. The
corresponding increase in pumping power to overcome the addition of
the vortex promoter is

= −P P PΔ ,flow flow 0,flow (20)

where Pflow is the pumping power required to drive the flow through the
duct. Hence, we have a net improvement if >P PΔ Δheat flow (i.e.

>P PΔ /Δ 1heat flow ). The net power balance can then be expressed as

= −P P PΔ Δ Δ .net heat flow (21)

Normalizing power by ρd U2 3 and applying the scaling outlined in
Section 2 for length, velocity, pressure and temperature, the di-
mensionless heat and pumping power may be expressed as

∫= ∂
∂

P
aκ C δθ

d U
θ
y

xdT p L
heat 2 3 0

duct

(22)

and

=P a
d

U p4 Δ ,flow avg (23)

where κT is the thermal diffusivity, Cp is the constant pressure specific
heat capacity and Uavg is the area-averaged velocity through the duct
inlet, which is estimated through the averaging of Eq. (15) as
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The net power balance is thus
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Normalizing the net power by the pumping power, and using
=Pr 0.022, =C 188p

− −Jkg K1 1, =δθ 250K and =U 0.015 −ms 1, which are
relevant to the fusion blanket application [39,49], the normalised net
power may be expressed as
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The pre-factor to the heat flux integral in Eq. (27) can be rewritten
in terms of dimensionless parameters as

= = =
κ C δθ
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,T p p p
3 3 2 (28)

where Ec is the Eckert number =Ec U C δθ/ p
2 , which relates the kinetic

energy and enthalpy in the flow.
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Its clear from the form of the pre-factor that a net benefit in heat
transfer will be more significant for smaller Prandtl numbers (compa-
tible with liquid metals), smaller Reynolds number (the Reynolds
numbers are relatively modest in magnetic confinement fusion blan-
kets), and smaller Eckert number. Furthermore, the value of Eckert
number tends to be of order −O (10 )9 , suggesting that enthalpy in the
flow is substantially higher than its kinetic energy. Thus, the pre-factor
is very large. This strongly amplifies the benefit of heat transfer en-
hancement in comparison to the required pumping power.

Fig. 16 demonstrates the variation of P PΔ /net flow with Reynolds

Fig. 15. Vorticity contour plots for =Re 2000 and =Ha 2400. 20 contour level
are displayed between − ≤ ≤1 Ω 1, with light and dark contours representing
negative and positive vorticity, respectively.

Fig. 16. Variation of normalised net power with Reynolds number for different
Hartmann number as indicated.
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number for different Hartmann numbers at relevant operating condi-
tions for fusion blanket application [39,49], calculated using eqn. (29).
It can be noted from the figure that P PΔ /net flow decreases with increasing
Hartmann number. This is due to the fact that a stronger magnetic field
dictates the opposing Lorentz force to be greater, which generally re-
sults in lower heat transfer characteristics and higher pressure losses.
For fusion-relevant conditions across the parameter ranges considered
in the present study, P PΔ /net flow ranges between ×1.05 102 and

×2.66 105, indicating a significant benefit in the rate of heat transfer
over the additional pumping power required.

6. Conclusion

The characteristics of MHD flow and heat transfer in a plane
channel with a built-in triangular cylinder subjected to a strong mag-
netic field aligned with the cylinder axis is numerically simulated using
a quasi-two-dimensional model. Simulations have been performed over
the range of Reynolds numbers up to 3000, ⩽ ⩽Ha0 2400 and with a
constant blockage ratio =β 1/4. The results for heat transfer en-
hancement were compared against the square and circular cylinders to
elucidate further the relationship between the gain in the heat transfer
using obstacles of different geometric shapes.

The magnetic field was observed to significantly alter the structure
of the wakes behind the cylinder, whereby the boundary layer de-
tachment from the side walls was observed to decrease with increasing
Hartmann number. It was found that the heat transfer enhancement
was significantly associated with the resulting wake and their interac-
tions with the heated wall. Comparisons between different shapes of
promoters revealed that the CR promoter performed worst in terms of
heat transfer enhancement regardless of flow conditions. The results
also demonstrate that for relatively low Reynolds number and
Hartmann number, SQ gives considerably better results in terms of heat
transfer enhancement compared to the TR, while for higher Reynolds
number, the SQ and TR cylinders act almost the same. However, for
high Hartmann number, the TR promoter performs better than the SQ
and CR. This is due to the fact that for high Hartmann numbers, unlike
the TR, a strong wake-boundary layer occurs only in the wake region
for SQ and the vortices diffuse rapidly as they convect downstream
constituting a thermal resistance against the heat transfer from the
heated wall to the main flow. Therefore, TR performed better than SQ
and CR for fusion relevant conditions. The heat transfer enhancement
exhibits similar characteristics to the hydrodynamics counterpart,
whereby the local Nusselt number distribution is closely associated with
the strength of the interaction between the wake boundary layer and
that of the heated wall. However, with increasing Reynolds number, the
average Nusselt number is found to be higher for TR than that of SQ.
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