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A B S T R A C T

Horizontal convection is a distinct type of natural convection, where the flow is driven by non-uniform buoyancy
supplied along a horizontal boundary. Horizontal convection has been studied in enclosures with aspect ratios
(ratio of enclosure height H to length L) down to O(10−1), though the flow dynamics and heat transfer in very
shallow enclosures remain unexplored. This study employs a high-order spectral-element method and the
Boussinesq buoyancy approximation to simulate horizontal convection in rectangular enclosures for aspect ratios
10−3≤A=H/L≤ 0.16, over Rayleigh numbers 10≤ Ra≤ 1016 and a fixed Prandtl number Pr =6.14 re-
presentative of water. The flow is driven by imposing a linear temperature variation along the bottom boundary
of the enclosure, and insulating temperature conditions on the remaining boundaries.

This work, for the first time, explores small aspect ratios towards the shallow-enclosure limit up to 100 times
shallower than those studied previously to elucidate the effect of ocean-relevant confinement on horizontal
convection. The Rayleigh number delineating the transition between the diffusion-dominated and convection-
influenced regime is identified. The aspect ratio dependence of these Rayleigh numbers and their corresponding
Nusselt numbers are found to follow power-law scalings Nu~A and Ra~A−4. These scalings illuminate a
modified Nusselt number and Rayleigh number that govern horizontal convection at lower Rayleigh numbers,
and reveal that height, rather than the horizontal length, governs the flow dynamics. Away from the side-walls
the velocity and temperature profiles in these regimes exhibit self-similarity features and are well-described by
the analytical solution for a one-dimensional horizontal channel flow driven by horizontal temperature gradient.
A previously unseen behaviour is discovered whereby at aspect ratios A≲ 0.1, an increasingly broad horizontally
uniform zone with no heat transfer into the base occupies the middle of the enclosure, thereby localising the
heating and cooling to within a distance of approximately 4H of the sidewalls.

1. Introduction

Thermal convection includes heat and mass transfer by molecular
diffusion and large-scale advection motion within a fluid. Research
regarding thermally driven buoyancy flows is of great significance both
in understanding geophysical flows and improvement of industrial
process engineering applications [1]. The most extensively studied type
of convection is the canonical Rayleigh–Bénard convection [2–6],
where fluid flow is driven by destabilisation of the vertical thermal
gradient owing to the forced differential heating of the horizontal layer
of fluid with a cold upper layer. However, the present study investigates
another distinctive mode of thermal convection where simultaneous
heating and cooling along a horizontal boundary results in a horizontal
thermal gradient that initiates a natural convection flow; this class of
convection is known as horizontal convection [7].

Research interest in horizontal convection originated from geo-
physical and geological flows [8] as it can be regarded as a model
providing insight into ocean overturning circulation [8–10]. It also
informs industrial processes, for example, glass melting in furnaces
[11,12]. A shallow enclosure with small aspect ratio is representative of
a meridional segment of a typical ocean basin, whereas the imposed
horizontal temperature gradient models the solar heating and ocean
surface temperature. The oceanic circulation constitutes transportation
of warm fluids from the tropical regions to high latitudes, where it cools
and sinks, subsequently before an up-welling flow across the ocean
basin completes the flow path [13]. Similarly, the fluid in horizontal
convection undergoes advection while passing through a region of
stable stratification towards an unstable region where vertical heat
transport occurs away from the bottom boundary. One distinguishing
feature of large-scale oceanic circulation is the formation of deep and
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bottom water from relatively small regions of ocean surface [14]. This
resembles the narrow vertical plume region in horizontal convection,
whereas the simultaneous heating-cooling resembles the upwelling and
downwelling features of the oceans.

While the manifestation of flow dynamics in horizontal convection
under applied thermal forcing is increasingly well understood with a
fixed enclosure aspect ratio, the characteristics of the key mechanisms
under different aspect ratios, and particularly in shallow enclosures
relevant to Earth's oceans, is less clear. Chiu-Webster et al. [12] in-
vestigated horizontal convection relevant to glass-melting processes
and Earth's mantle. They considered the infinite-Prandtl number limit
relevant to very viscous fluids at a range of aspect ratios 10−2≤ A≤ 2,
with Ra up to 1010. They reported a scaling of Nu~ Ra1/5 consistent
with Rossby's [15] analysis, and provided evidence of an aspect ratio
independence for Ra > 107. Sheard and King [16] used several aspect
ratios, 0.16≤ A≤ 2.0 with an upper limit of Ra=1012 and Pr =6.14
to study horizontal convection at high spatial resolution by using a
spectral-element method. They reported aspect ratio dependence of Nu
and boundary layer thickness at low Ra , whereas these became in-
dependent of aspect ratio for higher Ra once convective effects became
dominant. For A > 1, the threshold Ra that separated the transition
from diffusion-dominated to convection-influenced flow was found to
be independent of aspect ratio. Besides, the development of unsteady
flow resulted in an increase in the Nusselt number scaling exponent
from 1/5 to approximately 1/4. It is evident that the confinement of
small aspect ratios enclosures may influence the heat transport in
horizontal convection flow.

The aim of this study is to investigate the effect of aspect ratio to-
wards the shallow-enclosure limit. Consideration will be given to the
dependence of Nu on aspect ratio and Rayleigh number, scaling of the
flows towards the small aspect ratio limit, and the connection between
these flows and one-dimensional channel flows.

This paper is structured as follows: § 2 describes the numerical
approach and grid resolution study. The obtained heat transfer scalings
in the context of small aspect ratio and proposed analytical solutions
are described in § 3, and conclusions are drawn in § 4.

2. Numerical setup

The system under investigation is presented in Fig. 1, which consists
of a rectangular enclosure of width L and height H filled with a fluid of
density ρ0, kinematic viscosity ν, thermal diffusivity κ, and volumetric
expansion coefficient α. The flow is driven by imposition of a linear

temperature profile across the bottom boundary of the enclosure being
δθ hotter at the right-hand end compared to the left-hand end, while
insulating temperature conditions are imposed on the remaining
boundaries (a zero temperature gradient normal to the walls). A no-slip
condition (zero velocity) is imposed on all boundaries. The buoyancy is
modelled with the Boussinesq approximation, which implies that the
density differences in the fluid are disregarded except through the
contribution of buoyancy in the momentum equation. Hence, the en-
ergy equation simplifies to a scalar advection-diffusion equation for
temperature which is evolved in accordance with the velocity field. The
fluid temperature is related linearly to the density via thermal expan-
sion coefficient α. The governing equations are therefore written as

∂
∂

= − ⋅ − + ∇ +u u u u g
t

p Pr Pr Ra θ( ) ^ ,2  (1)

⋅ =u 0, (2)

∂
∂

= − ⋅ + ∇uθ
t

θ θ( ) ,2 (3)

where t is time, θ is temperature, p is pressure, u is the velocity vector
and g is a unit vector in the direction of the gravity. In Eqs (1)–(3),
lengths, time, velocity, pressure and temperature are respectively
scaled by L, L2/κ, κ/L, ρ0κ2/L2 and δθ.

The Rayleigh number characterizing the ratio of buoyancy to
thermal and molecular dissipation is

Nomenclature

A aspect ratio A = H/L
cp specific heat capacity of fluid
Fθ heat flux
g gravitational acceleration
g unit vector in direction of gravity
H enclosure height
Nu Nusselt number
NuI−II threshold Nusselt number
NuH horizontal Nusselt number
L enclosure width; characteristic length of thermal forcing

for horizontal convection
p (pressure)
Pr Prandtl number, Pr = ν/κ
Ra Rayleigh number based on imposed temperature differ-

ence across heated horizontal boundary
RaI−II threshold Rayleigh number
RaH horizontal Rayleigh number
t (time)

u velocity vector
u horizontal velocity component
x Cartesian horizontal coordinate
y Cartesian vertical coordinate

Greek symbols

α volumetric thermal expansion coefficient
β linear temperature gradient in (x) direction
δθ temperature difference imposed across horizontal

boundary
δθH horizontal temperature difference imposed across hor-

izontal boundary
κT fluid thermal diffusivity
ν fluid kinematic viscosity
θ fluid temperature
ρ0 reference density of fluid
θy fluid temperature along (y) direction
θw local bottom wall temperature

Fig. 1. A schematic representation of the computational domain under in-
vestigation with the prescribed boundary conditions along each of the
boundary. The range of aspect ratios used throughout this study is 0.001≤H/
L≤ 0.16.
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=Ra
gαδθL

νκ
,

3

(4)

where g is the gravitational acceleration. The ratio between fluid visc-
osity ν and thermal diffusivity is parameterized by Prandtl number

=Pr ν κ/ , (5)

and throughout this study Pr =6.14 is used, representing water at
laboratory conditions (25oC). The Nusselt number denotes the ratio of
convective to conductive heat transfer, and is defined as

=Nu F L
ρ c κδθ

,θ

p0 (6)

with heat flux

= ∂
∂

F κρ c θ
y

,θ p0 (7)

where cp is the specific heat capacity of the fluid, and ∂ ∂θ y/ is the
averaged absolute vertical temperature gradient along the forcing
boundary.

2.1. Mesh dependence

The governing Eqs. (1)–(3) were solved on a two-dimensional do-
main using a high-order solver based on a nodal spectral element
method for spatial discretisation and a third-order time integration
scheme based on backward-differencing [17]. This solver has been
employed and validated in previous studies featuring different aspects
of horizontal convection flows [16,18–20]. Meshes were constructed for
aspect ratios over 0.001≤ A≤ 0.16. The number of quadrilateral
spectral elements in the meshes varied between 296 and 4128. The
elements were compressed towards the side walls; specifically adjacent
to the hot bottom end boundary to ensure that the flows were resolved.
The highest aspect ratio considered in this study was A=0.16, which
matches the most widely used shallow enclosure and overlapping the
shallowest enclosure, A=0.1 (used in [21]), mentioned in previous
horizontal convection experiments.

A thorough grid resolution study was conducted for all the meshes
to determine the optimal polynomial order to be employed within each
spectral element. The error (relative to the highest polynomial order)
percentage in the ℒ2 norm, average temperature of the enclosure and
Nusselt number are used to measure the convergence of the solutions.
The error of each parameter is shown in Fig. 2. Considering the ℒ2

norm, the error dropped below 10−5% for polynomial orders N≥ 5.
The errors reduced to approximately 10−7% with a polynomial degree
of 9. The errors for average enclosure temperature and Nusselt number
were also less than 0.1% for polynomial orders N≥ 5. Balancing the
trade-off between computational cost and accuracy, a polynomial order
of 5 was selected for the remainder of the study.

3. Result and discussion

3.1. Heat transfer regimes of horizontal convection

The Nusselt number was calculated from the vertical thermal flux
distribution along the bottom horizontal boundary of the enclosure for
each aspect ratio, and these were plotted against the Rayleigh number.
Fig. 3 presents the change of Nusselt numbers with increasing Rayleigh
numbers computed throughout the range of aspect ratios. Based on the
characteristics of Nusselt number with the increase of Rayleigh number,
the data can be divided into three zones. At low Rayleigh numbers,
Nusselt numbers at each aspect ratio are independent of the Rayleigh
number. In this regime, Nusselt numbers are only dependent on aspect
ratio, and this range of Rayleigh numbers is referred to as the diffusion-
dominated or conduction regime. At each aspect ratio, there is a Ray-
leigh number beyond which the Nusselt number displays a rapid

increase. This regime will be referred to as the transition regime. Be-
yond this regime, the Nu data collapse onto a single curve at higher
Rayleigh numbers where convection-dominated flows are observed.
The convective regime is seen to set in at relatively low Ra for
A=0.16, with dividing Rayleigh number increasing with decreasing
A . This is consistent with the behavior reported at larger aspect ratios in
[16], and supports the view that increasing the degree of enclosure
confinement, (i.e. decreasing A) delays the onset of the regimes is to
higher Rayleigh numbers. Beyond these qualitative behaviours that are
consistent with aspect-ratio dependence reported in the literature [16],
the present penetration to much lower aspect ratios permits, for the first
time, scalings towards the limit of vanishing aspect ratio to be revealed.

Scalings between Rayleigh number, Nusselt number and aspect ratio
have been determined to elucidate the behavior of horizontal convec-
tion in shallow enclosures. In the diffusion-dominated regime, Nusselt
number scales with aspect ratio as Nu∝A1. The onset of the transition
regime is demarked by a threshold Rayleigh number, RaI−II, which has
a corresponding Nusselt number NuI−II. To identify the threshold be-
tween the diffusion-dominated and transitional regimes, RaI−II is de-
fined when Nusselt number has deviated by 5% from its Ra -in-
dependent value. The threshold Rayleigh number was then found to
scale as RaI−II~A(−3.9481±0.000673). Combining this with Nu~A1 re-
veals the threshold scaling, Nu~ RaI−II

−1/4. In the convection domi-
nated regime beyond the transition regime, the obtained scaling be-
tween Rayleigh and Nusselt numbers becomes Nu~ Ra1/4. Considering
the mean and SEM value this scaling can be written as
Nu~ Ra(0.2461±0.0039).

The velocity and temperature fields corresponding to these three
regimes illustrate the flow dynamics inside the range of shallow en-
closures. The linear temperature gradient imposed on the horizontal
base of the shallow enclosure provides the heat-transfer from the
boundary to the adjacent fluid through molecular conduction.
Eventually, a horizontal thermal boundary layer develops and carries
the heat along the bottom boundary. The progression towards unsteady
conditions is most prominent in the hot end of the enclosure.

Figs. 4 and 5 respectively show the horizontal velocity and tem-
perature fields in the vicinity of the hot right-hand end of the closure
for A=0.08 at different Rayleigh numbers chosen to visualize each of
the three regimes. Figs. 4(a) and 5(a) show the diffusion-dominant re-
gime, where the flow features a symmetric pattern throughout the
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Fig. 2. Errors of the ℒ2 norm (triangles), average enclosure temperature
(circle) and Nusselt number (square) plotted against the degree of polynomial
order (N) imposed on the spectral elements. The flow conditions for this study
were Ra=1010 and Pr =6.14.
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whole enclosure and remains time independent. Figs. 4(b) and 5(b)
show that in the transitional regime the flow dynamics change as this
symmetry is lost: the formation of a thermal boundary layer is evident,
transporting colder fluid towards the hotter end. The loss of the sym-
metry is seen via the shift of the fastest fluid closer to the bottom
boundary and the hot end, which gives rise to the vertical jet trans-
porting heat and fluid away from the bottom boundary. While trans-
porting heat upwards and horizontally alongside the enclosure top
boundary, the fluid gradually cools, descending diffusively and stably
towards the cold end of the bottom-boundary. In this regime, the flow
pattern is mostly symmetric about the horizontal mid-plane but skewed
adjacent to the vertical hot-end wall as shown in Fig. 4(c). With an
increase in Rayleigh number, the thermal boundary layer becomes

thinner (in this regime the boundary layer is sufficiently thin that the
top boundary no longer modifies the convective heat transport) and
eruption of the plumes are evident at the hot end of the enclosure,
which can be observed from Fig. 5(c).

Within the convection-influenced regime, fully developed plumes
are visible and the returning flow commences after this regime to
complete the circulation inside the shallow enclosure. Owing to the
linear temperature forcing, the multiple thin plumes that originate from
the fragmentation of the single plume do not possess sufficient energy
to reach the top boundary. As a result, fractions of the plume undergo
convection processes along the middle of the shallow enclosures and
the entraining cold fluid leads towards a localized circulation entrapped
within the rightmost side of the enclosure. The convection-dominated
regime exhibits flows that can be either steady-state, time-periodic or
chaotic. Fig. 6 presents a regime map of the Rayleigh number-aspect
ratio parameter space identifying these states. This map marks the
diffusion-dominated regime (I) and convective regime (III) as shaded
zones. The region between the shaded zones represents the transition
regime (II), which follows the scaling of Ra~A−4. This regime map
reveals the steady to unsteady features of the flow for the three different
regimes. As can be seen from Fig. 6, the flow remains steady in the
diffusion-dominated regime, whereas it becomes unsteady in the con-
vection-influenced regime. Initially, the flow remains steady in the
transition regime, but as it approaches the convection-influenced re-
gime (III) it becomes unsteady (periodic flow).

3.2. Self-similarity in horizontal convection

The variation of the Nusselt numbers for all A -values throughout
the range of Rayleigh numbers emphasizes self-similar features at
lower-Ra values. Based on the low-Ra/low-A scalings of Nu~A and
Ra~A−4, the data from Fig. 3 can be rescaled and plotted as Nu/A
against RaA4, the outcome of which is shown in Fig. 7. For lower values
of RaA4, the corresponding values of Nu/A can be seen to have col-
lapsed onto a universal curve for all aspect ratios. This collapse de-
monstrates that the flow in this regime is governed by the modified
Rayleigh number RaA4. Considering the scaled Nusselt and Rayleigh
numbers, defined here as NuH and RaH, respectively, Eq (8) and (9)
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Fig. 3. A comparison of the log10(Nu) for 0.001≤A≤ 0.16 range while
varying the log10(Ra). The dashed line refers to the onset of transition regimes
for every aspect ratio.

Fig. 4. Horizontal velocity contour plots for A=0.08 representing (a) diffu-
sion-dominated regime, (b) transition regime and (c) convection-influenced
regime while focused to the hot-end of the horizontal bottom boundary. Dark to
light shaded contours show respective maximum and minimum values of U for
(a), (b) and (c) ranging over± 8,±1600 and±4600 with 13, 15 and 22
contour levels plotted, respectively.

Fig. 5. Temperature contour plots for A=0.08 representing (a) diffusion-
dominated regime, (b) transition regime and (c) convection-influenced regime
while focused to the hot-end of the horizontal bottom boundary. Dark to light
shaded contours show values between −0.45≤ θ≤ 0.45. In (a), (b) and (c),
21, 25 and 21 contour levels are plotted, respectively.

S. Hossain, et al. International Communications in Heat and Mass Transfer 109 (2019) 104308

4



= = =Nu Nu
A

F L
ρ c κ δθ A

F L
ρ c κδθ( )H

θ

p

θ

p H0 0 (8)

= = = =Ra RaA
αg δθL

νκ
H
L

gα δθ A
νκ

H
gαδθ

νκ
H

( )
,H

H4
3 4

4
3 3

(9)

it is revealed that low-aspect ratio horizontal convection is govenered
by the enclosure height rather than its horizontal length. Here, δθH
refers to the temperature difference along a portion of the bottom
boundary of length H. Notice that the characteristic length quantity L
appearing in the horizontal Rayleigh number definition has been re-
placed by H through this analysis. The corollary to this is that in very
shallow enclosures, horizontal convection will be insensitive to the
overall length of the enclosure, rather its behaviour will be controlled
by the enclosure height and the horizontal temperature gradient acting

over that same scale. As can be seen from Fig. 7, after
log10(RaA4)= log10(RaH)≈ 1.75 the Nu/A values for all aspect ratios
start branching off for log10(RaH)≳ 1.75, starting with the highest
A=0.16 and then in descending order to the lowest A=0.001 with
increasing Rayleigh number. This resembles the opposite of the collapse
within the convection dominated regime seen in Fig. 3.

Attention is now turned to profiles of the horizontal velocity com-
ponent and temperature extracted at various horizontal locations
within the enclosures. The locations are selected at different distances
from the hot end, and are plotted against the height from the base. The
extracted velocities were normalized by the maximum velocity value
from each profile U/Umax, while the vertical coordinate was normalized
by enclosure height (y/A), based on the dimensionless y coordinate.
Results are shown in Fig. 8, which presents the combined velocity
profiles for all aspect ratios at a single value of RaA4 within the col-
lapsed regime. The normalized profiles exhibit a strong collapse to a
universal profile, implying a self-similarity in the velocity fields in this
regime. By observing the extracted velocity data for all aspect ratios
throughout different locations (which are expressed in terms of the
distance x' from the hot end-wall) along the horizontal boundary, it is
evident from Fig. 9 that beyond a distance of approximately 4H, all
trends collapse to a single curve. This demonstrates that the effects of
the sidewalls in conduction-dominated horizontal convection are con-
fined to within 4H from the wall, and this distance scales with height,
rather than the horizontal enclosure length. This previously unreported
behavior emerges in enclosures having L≳ 8H, or A=H/L≲ 1/8, i.e.
A≲ 0.125, which is shallower than the most widely studied enclosure
(A=0.16) investigated previously.

Similarly, temperature profiles relative to the local bottom wall
temperature (θw), were extracted and normalized by the vertical tem-
perature difference (θy− θw) of each profile. The results are shown in
Fig. 10. In contrast to the velocity contour scaling, the temperature
contours for all aspect ratios are not well-collapsed as the obtained
values in the vicinity of the hot-end wall seems to deviate from the rest
of the data sets. However, similar to the velocity contours, the tem-
perature contours also demonstrate the self-similarity feature beyond
the 4H distance from the end wall for all aspect ratios.

The observation of a horizontally independent central region of the
flow and temperature fields raises the question as to whether that re-
gion can be described analytically. To address this question, the ana-
lytical solution to the related problem of natural convection within an

log10(A)
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Fig. 6. A regime map of Ra–A parameter space computed considering the log
values. Symbols denote points at which data was acquired, with open symbols
showing steady solution and filled symbols (circles for periodic flow, and dia-
monds for aperiodic flow) unsteady solutions, respectively. The marked regions
(I), (II) and (III) represent the diffusion-dominated, transition and convection-
influenced regimes, respectively.
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Fig. 7. The Nu–Ra plot has been rescaled to show log10(Nu/A) against
log10(RaA4) to investigate the self similarity features in the low-Ra number
region.
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Fig. 8. The horizontal velocity profiles generated from different locations
throughout the horizontal bottom boundary are plotted for modified Rayleigh
number, log10(RaH)= 1.75 and 10−3≤A≤ 0.16.
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infinite horizontal channel under a uniform horizontal thermal gradient
and zero net horizontal flow is sought. The analytical solutions are
derived from the momentum and energy equations as stated in Eqs (10),
(11) and (12)

⎜ ⎟
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∂

+ ∂
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= −
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+ ⎛
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Normalising length, velocity and temperature respectively by H/A ,
κA/H and δθ, the analytical solution representing the horizontal velo-
city and temperature fluctuation can be expressed in Eqs (13) and (14),
respectively, where y is set according to the coordinate system in-
troduced in Fig. 1.

= − +U Ra A y y y
12

(2 3 )
3

3 2
(13)

and

⎜ ⎟′ = ⎛
⎝

− + ⎞
⎠

θ Ra A y y y
24 5 2 3

.
5 5 4 3

(14)

This solution was verified against the simulation results for all as-
pect ratios. Fig. 11 presents error propagation plots of horizontal ve-
locity and temperature fluctuation values calculated from the differ-
ences between the analytical solution and the simulation results for
log10(RaH)= 1.75. The maximum difference between the analytical
and simulation results of A=0.08, 0.015 and 0.001 for the horizontal
velocity are approximately 2.95%, 2.16% and 0.01%, and the tem-
perature fluctuation difference are approximately 1.24%, 2.36% and
1.40%, respectively. The analytical solution is valid beyond the 4H
distance from the end walls found below H/L≈ 1/8 within the diffu-
sion-dominated flow regime with a Ra-limit of log10(RaH)= log10(Ra
(H/L)4)= 1.75.

3.3. Confined heating and cooling regions

The horizontal length independence and self similarity of shallow

enclosure horizontal convection towards the one-dimensional channel
flow discussed in § 3.2 invites more exploration. This section in-
vestigates the fluctuating part of the temperature throughout the aspect
ratio range 10−3≤ A≤ 0.16, motivated by the observation that Eq.
(14) describes a zero vertical derivative of temperature at the bottom
wall (y=0), that predicts no heat transfer through the base. Fig. 12
presents the obtained temperature fields for three representative aspect
ratios from the range 10−3≤A=H/L≤ 0.16. As aspect ratio de-
creases, a region of horizontally independent temperature contours
develops in the interior of the enclosure. This region becomes more
prominent as the aspect ratio gets smaller: notice the horizontal iso-
therms along the majority of the domain, with changes confined to the
near-wall regions. This supports the earlier finding that the temperature
fluctuation is indeed horizontally independent away from the end-
walls. This horizontally independent region corresponds to the portion
of the shallow enclosure that agrees with the analytical channel flow
solution presented in Eq. (14), which has zero heat flux at the bottom
boundary. Hence heating and cooling are confined to the end-wall re-
gions where the temperature fluctuation contours are not horizontally

Fig. 9. Minimum values of the scaled velocity plotted with the distance form
hot-end wall. The distance is expressed in terms of the height of the enclosure.
The inset figure demonstrates how the distance from the hot-end is defined as a
function of enclosure height.

(a) Within 4H of side walls
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Fig. 10. The temperature profiles generated from different locations
throughout the horizontal bottom boundary are plotted (a) for locations within
the 4H distance from hot-side end wall, and (b) for locations beyond the 4H at a
modified Rayleigh number, log10(RaH)= 1.75 and 10−3≤A=H/L≤ 0.16.
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independent. It has been found that the turnover of the flow at each end
of the enclosure is confined to within 4H of each end wall. As can be
seen from Fig. 12, the previous horizontal convection studies had en-
closure aspect ratios too large (A≥ 0.16) to detect this significant be-
haviour. This is reinforced in Fig. 12 by the inclusion of vertical dashed
lines highlighting the positions 4H in from each side wall in each of the
three frames (noting that the vertical scale is stretched differently in
each frame for visualization purposes). In Fig. 12(a), A=H/L=0.16;
in other words, a distance 4H from one end-wall is less than 4H from the
other end wall - there is no room for this horizontally independent zone
at this aspect ratio, or any aspect ratio A≳ 0.125, which explains why
this feature has not been observed in previously reported horizontal
convection experiments.

4. Conclusions

Horizontal convection at ocean-relevant shallow enclosure aspect

ratios have been investigated for a wide range of Rayleigh numbers
with Pr =6.14 by employing high-resolution spectral element simu-
lations with a linear temperature profile applied along the horizontal
boundary. Different regimes and the respective heat transfer scalings
between Nu, Ra and A are revealed to understand the effect on en-
closure confinement. A threshold Ra identified the transition from the
diffusion-dominated regime to convection-dominated regime and was
found to scale with A−4, whereas the corresponding Nusselt number at
the threshold was proportional to A . These scalings led to modified
parameters, NuH and RaH, which govern the low-Ra conduction-domi-
nated regime. These modified parameters revealed that low-Ra shallow-
enclosure horizontal convection is insensitive to the enclosure width,
and is only controlled by its height.

The velocity and temperature contours demonstrate self-similar
behaviour in velocity and temperature profiles beyond a distance of 4H
from each enclosure end-wall for all aspect ratios. In this interior re-
gion, normalized velocity and temperature profiles are found to follow

Fig. 11. Propagation of the absolute error between the dataset obtained from simulation and analytical solution is plotted through 2D-triangulation. The error
propagation of (a) horizontal velocity and (b) temperature fluctuation are plotted with scaled vertical coordinates and the aspect ratios.
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the analytical solution of a one-dimensional horizontal channel with
zero net flow driven by a uniform horizontal thermal gradient.

Furthermore, a previously unseen behaviour is discovered, whereby
the turning of the flow at the enclosure sidewalls is confined to a small
region near the walls, while away from the walls the flow is horizon-
tally independent. The sidewall effects are confined to within a distance
of approximately four times the enclosure height. This reveals that the
most widely used and the shallowest enclosure previously investigated
in the literature is not sufficiently shallow to capture this phenomenon.
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version of this article.)

S. Hossain, et al. International Communications in Heat and Mass Transfer 109 (2019) 104308

8

http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0005
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0005
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0005
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0010
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0010
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0015
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0015
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0020
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0020
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0025
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0025
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0030
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0030
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0030
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0035
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0035
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0040
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0040
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0045
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0050
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0050
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0055
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0055
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0060
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0060
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0065
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0065
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0065
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0070
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0070
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0075
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0075
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0080
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0080
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0085
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0085
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0090
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0090
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0095
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0095
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0100
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0100
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0105
http://refhub.elsevier.com/S0735-1933(19)30174-5/rf0105

	Horizontal convection in shallow enclosures scales with height, not length, at low Rayleigh numbers
	Introduction
	Numerical setup
	Mesh dependence

	Result and discussion
	Heat transfer regimes of horizontal convection
	Self-similarity in horizontal convection
	Confined heating and cooling regions

	Conclusions
	Acknowledgements
	References




