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Abstract

The linear stability of time periodic pulsatile flows under a
transverse magnetic field is investigated over a wide range of
frequencies. The interplay between variations in frequency and
the magnetic field are observed with small amplitude oscilla-
tions of the driving force, which can stabilize or destabilize. The
complexity rapidly increases with increasing amplitude. High
magnetic field strengths are strongly stabilizing, but optimised
pulsation amplitudes and frequencies still induce large destabi-
lizations (a 90.3% reduction in critical Reynolds number).
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Introduction

The transition to turbulence is strongly delayed by the appli-
cation of a transverse magnetic field to the magnetohydrody-
namic (MHD) flow of an electrically conducting fluid. This has
implications for the design of self-cooled lead-lithium ducts,
which form part of proposed magnetic confinement fusion re-
actor blankets [8], as the laminar flow transfers insufficient heat
from the plasma facing wall [2]. This paper adresses whether a
time periodic forcing can advance the critical Reynolds number
[7] in MHD flows under strong magnetic fields, as is possible in
hydrodynamic flows [11].

The linear stability of pulsatile hydrodynamic channel flows has
been assessed in [5, 11], among others. [5, 11] identified the
need to validate Floquet methods of stability analysis for pul-
satile flows (with time stepping methods) to resolve otherwise
dubious or conflicting stability assessments. However, due to
these additional numerical costs, the size of the governing three-
parameter space and the focus on frequencies related to blood
flows, the linear stability picture is far from complete. [5] find
that the pulsation frequencies which are (most) destabilizing
correspond to those found in blood vessels, with stabilization
at much higher and lower frequencies. [11] found that the sta-
bilization or destabilization (depending on frequency) was most
intense when the maximum velocity of the pulsatile component
is of similar magnitude to that of the steady base flow. However,
[5] and [11] do not resolve high Reynolds number conditions. In
this work, the additional stabilization due to the imposed mag-
netic field forces computations to much higher Reynolds num-
bers (order 10° for strong fields); see [6] for the steady problem
with a transverse magnetic field.

Magnetoydrodynamic flows, under strong uniform magnetic
fields, can become quasi-two-dimensional, such that it is sen-
sible to apply the SM82 model [9]. The magnetic field acts to
eliminate velocity gradients along the field lines (by diffusing
momentum), to avoid Joule dissipation. This results in a core
flow which does not strongly vary along magnetic field lines.
Walls perpendicular to the field are instead modelled with lin-
ear friction, as the local acceleration within the boundary layer
is felt as braking in the core flow.

Problem Description and Methodology

Application is made to a quasi-two-dimensional, time peri-
odic, streamwise (x—direction) flow through a duct of half
height L (y—direction), subjected to a uniform magnetic field
Be, directed out-of-plane (z—direction; duct width a), figure
1. The SM82 model is a valid approximation for quasi-two-
dimensional flows, such that the governing mass and momen-
tum equations are
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respectively, where time ¢, velocity u, pressure p and the
quasi-two-dimensional gradient operator V| have been non-
dimensionalized by 1/, U; + Us, p(U; +U)? and L, respec-
tively. @ is the pulsation frequency, U; the maximum veloc-
ity of the steady base flow component, U, the maximum ve-
locity (over one period) of the periodic base flow component,
and p, v and ¢ are the Newtonian fluid’s density, kinematic
viscosity and electrical conductivity, respectively. There are
four non-dimensional parameters, a Reynolds number based
on the half duct height Re = (U} + Up)L/v, a Strouhal num-
ber Sr = oL/ (U; + U,), a Hartmann friction parameter H =
L*(2B/a)(c/(vp))'/? and an amplitude ratio T' = Uy /Up. It
is also worth defining a Reynolds number ratio ry = (Re/(1+
1/T))/Recrit s, Where Recyig s is the critical Reynolds number for
the steady flow (I' — o) computed at the same H value.
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Figure 1. Schematic of the system, with characteristic length of the duct
half height L. Solid lines denote oscillating, impermeable and no-slip
walls and dotted lines indicate the streamwise extent of the periodic
domain, defined by a wave number o. A transverse magnetic field,
strength B, is directed into the page. An example of the steady base
flow component (U p; dashed line) and the normalized total pulsatile
base flow ((1+1/T")Usg; 11 coloured lines over the full period, 27)
at H=10,T =10, Sr =5 x 1073 and Re = 1.5 x 10* (close to the
conditions optimised for a 90.3% reduction in Re) is overlaid.



The quasi-two-dimensional flow approximation is well sup-
ported for steady flows [3, 4]. The implications of pulsatility
are now considered on two key approximations of the SM82
model: the quasi-static and quasi-two-dimensional approxima-
tions [6]. Respectively, in a steady flow, these require that the
inertial advection timescale L/U) is much larger that the Alfvén
time (duct width over Alfvén velocity; to ensure a static field)
and the magnetic diffusion time (to ensure two-dimensionality
along field lines). The inertial timescale is related to the pul-
satile timescale 1/ through Sr, in the ratio (L/U;)/(1/®) =
Sr(141/T) < 28r (for 1 < T < oo considered in this work).
Thus if Sr < 0.5 (where most of this work is focused) the pul-
satile forces act more slowly than inertial forces, and no SM§2
approximations are challenged by the periodicity of the driving
force. To the author’s knowledge, the pulsatile SM82 problem
has not been investigated in the literature; there is also very little
literature for other magnetic field setups [10].

Considering a fully developed, parallel, time steady
flow, driven by a constant pressure gradient such that
the maximum velocity is unity, with fixed walls at
y = *£1, the steady base flow component is U;p =
(1 — cosh(H'/2y)/ cosh(H'/?))cosh(H'/2) /(cosh(H'/?) — 1).
Considering a time periodic flow U, g(t,y) = Ua (¢t + 2m,y)
with walls at y = &1 oscillating at velocities of cos(wt), taking
the Fourier transform of equation (2) provides separable fourth-
order equations governing the real and imaginary components
of the Fourier coefficients b(y). Once solved for R(b(y)) and
3(b(y)), taking the inverse Fourier transform yields
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where r = ((SrRe)? + H?)'/*cos((tan~!(SrRe/H))/2) and
s = ((SrRe)? + H?)'/*sin((tan~ (SrRe/H)) /2) are parameters
governing the effect of friction on the pulsatile base flow (r =
s = (SrRe/2)"/2 hydrodynamically), and * represents the com-
plex conjugate. The total base flow is then U(y,7) = y,\U; B +
Y2Up g where yj =T'/(14T) and v, = 1/(14+T) (y; and 7,
ensure Uy + Uy = 1).

Instantaneous variables (u, p) are decomposed into base (U, P)
and perturbation (i1, p) components via small parameter €, as
u=U +¢m; p=P+¢p, to analyse the linear stability with re-
spect to infinitesimal perturbations. After linearising and taking
twice the curl of equation (2), substituting equation (1) and as-
suming plane wave solutions of the form ¥(y,z) = /*(y,1),
due to streamwise inhomogeneity, with wave number «, yields
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where .Z = (02/dy* — a). The forward evolution of equa-
tion (4), from a random initial condition, and with renormaliza-
tion to unit energy norm at integer period increments, forms the
timestepper method of linear stability analysis. Sufficient for-
ward evolution results in all but the fastest growing mode being
washed away, and provides the net growth of the leading eigen-
mode over one period. A Krylov subspace scheme [1] is also
implemented to aid convergence and provide the leading few
eigenvalues A; with largest growth rate. The domain y € [—1,1]
is discretized with N; + 1 Chebyshev nodes. The derivative op-
erators, incorporating boundary conditions, are approximated
with spectral derivative matrices [12].

The eigenvalues of the forward evolution operator can also be
determined with a Floquet approach [11]. In this case, the
time dependence of the perturbation is removed by decom-
posing into infinite harmonics scaled by exponential growth

#(y,t) = e*' 205, (y)e!"", with Floquet multiplier 4 and harmonic
n (numerically truncated to n € [—T,T]). Substituting this de-
composition into equation (4) yields a truncated set of coupled
ODE’s
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where M = v, (L~ (b — 32b/3y?)). This system of ODE’s
is set up as a block tridiagonal system, with the coefficients of
Vn+1, ¥y and ¥, placed on super- central- and sub-diagonals,
respectively. Spectral derivative matrices are built as before.
MATLAB’s eigs function then finds a subset of eigenvalues
of the block tridiagonal system located near zero real compo-
nent (neutral stability), with convergence tolerance 10~!%. For
a given Reynolds number, o is then varied until only a single
wavenumber, Omax, attains zero growth (providing Reg; for
specified Sr and I').

Results

Variations in rg (ratio of rescaled pulsatile to steady Rei;) as
a function of Sr are depicted for various H at I = 100 (fig-
ure 2) and I' = 10 (figure 3). Although I" = 100 is not very
useful for turbulence promotion (the deviation from the steady
Re it values is minimal; between —1% to +4%), it is still suffi-
cient to highlight the underlying mechanics. Hydrodynamically
(H=10"")the steady Recj; is approached (rs — 1) as Sr — 0 as
the oscillation period (27) is long enough to allow viscosity to
smooth out any wall-normal oscillations in the velocity profile
over the entire duct (such that no inflection points exist, as in the
steady case). As Sr increases, the inflection points are able to
be maintained (against the action of viscosity), and the long os-
cillation period allows for a large amount of intracyclic growth
during the deceleration phase of the base flow, thereby reducing
Reit. However, the oscillating boundary layers also become
increasingly isolated with increasing Sr, eventually increasing
Reit. With still increasing Sr the oscillation period eventually
becomes too small for any relevant intracylcic growth, and the
steady result (rg — 1) is reattained (isolation of the oscillating
boundary layers then irrelevant).
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Figure 2. A plot of r¢ against Sr at I' = 100. Arrow indicates increasing
H through 1077, 0.01, 0.1, 1, 3, 10, 30, 300, 1000.

The effect of the friction parameter is now analysed. For larger
friction parameters, as the friction parameter is increased, the
curves in figure 2 shift to larger Sr. Increasing H weakens in-



flection points within the pulsatile boundary layer (e.g. a pul-
satile isolated SM82 boundary layer has the form e~ cos(sy —
t), thus increasing H decreases s, thereby eroding wall-normal
oscillations in the base flow). Larger Sr values are then required
to offset the larger H values, ensuring that inflection points re-
main within the boundary layer, providing enough intracylic
growth to reduce rg. As such the rg value of the local minimum
does not strongly depend on H. The pulsatile boundary layers
also become increasingly separated with increasing H (as r in-
creases), resulting in the steady increase in the rg value of the
local maximum.
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Figure 3. A plot of r¢ against Sr at I' = 10. Arrow indicates increasing
H through 1077,0.1, 1, 10, 100. Dashed curves indicate the restabiliza-
tion, then further destabilization for Re > Rej at H = 10.

The results with a larger amplitude pulsation, I' = 10 (figure
3), are now considered. The variation in rg is now more com-
plicated, although some of the underlying Sr dependence de-
picted at I' = 100 (figure 2) can still be observed. However, a
key difference is that the local minima and maxima are more
pronounced, due to the greater influence of the pulsatile base
flow component. For example, at H = 10, a 33.0% reduction or
804% increase over the steady Rej; can be obtained with the
appropriate frequency pulsation, with clear benefits for turbu-
lence promotion at Sr= 9 x 1073, Given the scope of the paper,
only a single complexity of the I = 10 behaviour will be inves-
tigated, the discontinuous change in r, considering H = 10.

For a fixed Sr, the maximum growth rate does not always mono-
tonically increase with increasing Re. As such, a dashed curve
is plotted on figure 3 as a function of Sr for the H =10,"' =10
case considered, indicating a region of restabilization (with
the stable region under the now continuous solid-dashed-solid
curve). At Sr=0.017 (the discontinuity is at Sr ~ 0.0175), de-
picted for a wide range of Re in figure 4, the initial destabiliza-
tion occurs at Regiy = 8.50617 x 10*. The maximum growth
rate increases with increasing Re until Re ~ 1.1 x 10°. Fur-
ther increasing Re (which further isolates the boundary layers at
fixed Sr) induces stabilization, with only negative growth (sta-
bility) reattained at Re = 1.52788 x 10°. With still increasing
Re the single eigenmode almost completely vanishes. Finally,
with still further increases in Re, multiple similar modes (even-
tually four are visible in figure 4) are excited, one of which first
attains positive growth at Re = 6.70474 x 10°. It is a similar
story at Sr = 0.018, figure 5, with one key exception. The sin-
gle eigenmode which is visible at lower Re is not able to attain
positive growth rates, before it eventually becomes subdomi-
nant. As such neutral stability is first encountered at the sub-
stantially higher Rei; = 6.40840 x 10°, explaining the discon-
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Figure 4. Exponential growth rate as a function of o with increasing Re
(8 x 10* through 8 x 10°) at Sr = 0.017. Destabilization first occurs at
Recit = 8.50617 x 10*, with restabilzation at Re = 1.52788 x 10° and
then a final destabilization at Re = 6.70474 x 10°. Symbols (timestep-
per) show excellent agreement with curves (Floquet).
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Figure 5. Exponential growth rate as a function of o with increasing Re
(8 x 10* through 8 x 10°) at Sr = 0.018. The single peak mode does
not attain positive growth rates at this Sr, thus Rec = 6.40840 x 107 is
much larger than Re.j; when Sr=0.017. Symbols (timestepper) show
excellent agreement with curves (Floquet).

tinuity in the r curves at I' = 10 (figure 3). The stable regions
can be further clarified by considering the neutral (zero growth)
curves, figure 6. There is no unstable region at lower Re when
Sr=0.018. At Sr < 0.0175 a closed unstable region appears,
which rapidly occupies more of the wave number space with
decreasing Sr. Eventually the closed curves intersect the open
curves (for Sr < 0.0112), such that their is no longer a restabi-
lization region if increasing Re at fixed Sr.

The local minima in rg occur at Sr values which should be un-
stable for all Re > Regi. As such, variations over the 1 <
[ < 100 and 1073 < Sr < 1 space were performed to deter-
mine the greatest advancement in Rej;. Recall for H = 10,
the ~ 33% reduction in Res; relative to the steady value at
I' = 10. The local minimum at H = 10 was located at "' = 1.19,
Sr=5.3x 1073, with rs = 0.0973, a 90.3% reduction from
the steady critical Reynolds number, which is very promising
for the application of turbulence promotion. As discussed for
I" = 100, the local minimum is less sensitive to H, and thus it
is likely that a large reduction in the critical Reynolds number
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Figure 6. Neutral (zero growth rate) curves for various Sr, at I = 10,
H = 10. Unstable (positive growth) regions are inside the closed curves,
and to the right of the open curves.

could be attained with the appropriate frequency and amplitude
pulsation at even fusion relevant magnetic field strengths.
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| e Sr = 0.017, Re = 152788
10 Sr = 0.017, Re = 670474
—-—-Sr = 0.018, Re = 640840

[|3]]; perturbation energy

0 0.2 0.4 0.6 0.8 1
t/(27); normalized time

Figure 7. Intracylcic growth at the four critical (no net growth) condi-
tions at Sr =0.017 (destabilization, restabilization, and then destabiliza-
tion again) and Sr = 0.018 (initial destabilization), at I' = 10, H = 10.

As a final note, the intracyclic growth is displayed for the Sr =
0.017 and Sr = 0.018 cases discussed earlier. The larger in-
tracyclic growth at lower Reynolds numbers bodes well for the
possibility for bypass transitions (even without optimised per-
turbations) via large amounts of transient growth. This should
further advance the Reynolds number which incites transition.

Conclusions

The linear stability of time periodic flows was investigated over
a wide range of frequencies and magnetic field strengths. A
maximum destabilization was optimised over all frequencies,
and all amplitude ratios greater than unity, demonstrating po-
tential for a 90.3% reduction in critical Reynolds number at
moderate field strength. This bodes well for the introduction
of turbulence in lead-lithium coolant duct flows, as, although
they are subjected to much larger magnetic field strengths, the
destabilization (percentage) slightly improves with increasing
field strength. Furthermore, large amounts of intracylcic growth
were observed, which may allow subcritical bypass transition
scenarios, and which is an avenue for future work.
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