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Abstract

Understanding the underlying fluid dynamics is essential for the
design of ducts and control of flow therein such that better heat
transfer efficiency could be achieved. The numerical results
of flow through a duct with repeated wedge-shaped protrusions
heated from below with the aim to investigate the effect of such
protrusions for heat transfer enhancement are presented. Differ-
ent flow regimes for a two-dimensional flow are identified and
the heat transfer enhancement achieved by varying two different
geometric parameters of the wedge (blockage and distance be-
tween the wedges - pitch) are explained. Three-dimensional lin-
ear stability limits and the underlying modes which destabilises
the flow are unveiled and the effect of three-dimensionality on
the heat transfer behaviour are elucidated. Further, sensitive re-
gions in the flow wherein any modification will be beneficial
to amplify instabilities and control these flows for better heat
transfer enhancement are discussed.
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Introduction

This study draws motivation from the cooling blanket ducts in
magnetic confinement nuclear fusion reactors where there is a
need to enhance the heat transfer efficiency from the fusion re-
actor to the cooling blanket fluid [16]. Bluff bodies [5, 3], point
electrodes [5] and variable surface conductivity [6] have been
used in previous studies for vortex promotion. Use of surface
geometric modification has not been explored as means to en-
hance heat transfer in magnetohydrodynamic duct flows, in con-
trast to the hydrodynamic case. Most of these studies have had
a focus on high Reynolds number (Re) turbulent flows [8, 2].
Flow in a duct having a wedge shaped surface geometry have
been considered, as this gometry was found to outperform rect-
angular and other geometries in terms of heat transfer efficiency
in high Reflows [2]. In the cooling blankets of fusion reactors,
the flow conditions are generally in the steady or transitional
regimes [16]. So, our focus is on these flow regimes. Further,
understanding the underlying dynamics leading to transition can
help to understand the system better which in turn will be bene-
ficial for design and control of flows to enhance the performance
of the system.

The aim of this study is to understand the onset of transition in
duct flows with repeated wedge shaped protrusions and its ef-
fectiveness to promote heat transfer efficiency. Duct flow here
is a pressure driven channel flow with infinite spanwise length.
The enhancement achieved for a range of geometric parame-
ters, covering the steady and unsteady regimes are presented.
Furthermore, possible regions in the flow where it could be
favourable to have a control mechanism for increasing insta-
bilities and a possibility for heat transfer enhancement are pre-
sented.

Problem Setup and Methodology

The problem under consideration is shown in figure 1. A pe-
riodic streamwise flow domain with a constant temperature hot

bottom wall and a constant-temperature cold top wall is consid-
ered. Two dimensionless geometric parameters are identified:
blockage (β) - ratio of wedge height (hw) to duct height (2H),
and pitch (γ) - ratio of the distance between wedgeslp to half-
duct height (H). The parameters considered in the study are:Re
in the range 50–1300,β = 0.125,0.25,0.5,0.65, γ = 1,2,3,4,5,8
and Prandtl numberPr = 6.14 representative of water.

Figure 1. Flow geometry with periodic boundaries in the streamwise
direction (x). Flow is left to right.

The dimensionless continuity, momentum and energy equations
used for the computations are:

∇∇∇ ·uuu= 0, (1)
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whereuuu, p and T are the velocity, pressure and temperature
fields respectively. Reynolds number and Peclet number are
defined asRe= U0H/ν and Pe= RePr respectively. Prandtl
numberPr = ν/κ, whereν and κ are the kinematic viscosity
and thermal diffusivity respectively. Lengths are scaled by half-
duct heightH, velocity by the mean duct velocityU0, timet by
H/U0, pressure byρU2

0 (whereρ is the fluid density) and tem-
peratureT by the difference in temperature between the hot and
cold walls∆T = Th−Tc.

Enhancement ratio (ER) is defined as the ratio of the heat trans-
fer rate in the duct with wedges over that of a plane duct with-
out the wedge to the pressure drop in the duct with wedges
to that of a plane duct without the wedge, given byER=
(Nu/Nu0)/( f / f0), whereNu, f , Nu0 and f0 are the Nusselt
number and friction factor for the present flow domain and that
of a plane duct without the wedge, respectively. Nusselt number
is defined as the ratio of the transverse convective to the conduc-
tive heat transfer to the fluid, given byNu= hH/k, whereh is
the convective heat transfer coefficient andk is the thermal con-
ductivity of the fluid.

Linear stability analysis is used to study the stability of the 2D
base flow by perturbing the base flow variables,qqq= {uuu, p} by
an extremely small amplitude 3D disturbance,qqq′ = {uuu′, p′}.
The linearised non-dimensional governing equations (LNSE)



describing the perturbation evolution obtained by using this de-
composition in equation 2 is given by

∂uuu′

∂t
=−(UUU ·∇∇∇)uuu′+(uuu′ ·∇∇∇)))UUU −∇∇∇p′+

1
Re

∇2uuu′. (4)

These equations can then be framed into an eigenvalue prob-
lem using a Fourier decomposition for the perturbations to pre-
dict the fastest-growing mode as a function ofReand spanwise
wavenumberk. The stability threshold is determined by the
minimum Reynolds number producing a non-negative growth
rate for anyk [1].

To study the receptivity and sensitivity of the flow to initial con-
dition, momentum forcing or base flow variation, the adjoint
LNSE and the global mode of the adjoint operator (the adjoint
mode) are obtained. The adjoint LNSE are

∂uuu∗

∂t
= (UUU ·∇∇∇)uuu∗− (uuu∗ ·∇∇∇)))UUU +∇∇∇p∗−

1
Re

∇2uuu∗. (5)

The amplitude of a global mode and its dependence on initial
condition (̂uuu0) and momentum forcing (f̂ff ) can be expressed as

Al =
∫

ûuu∗l · [ûuu0+ f̂ff ] dS/
∫

ûuu∗l · ûuul dS. (6)

The structural sensitivity (Sl ) of an eigenvalue (σl ) to any lo-
calised perturbation of the LNSE operator is given by

Sl (x,y) = |ûuul ||ûuu∗l |/
∫

ûuu∗l · ûuul dS. (7)

Further details can be found in [4].

Numerical Method

An in-house solver is used, based on a nodal spectral element
method for spatial discretisation and a third order backward
multistep method for time integration [7]. Forward and ad-
joint eigenvalue problems are solved via an implicitely restated
Arnoldi iteration method [12]. The solver has been validated for
numerous flow simulations [3, 15] and stability analysis prob-
lems [14, 13].

After a mesh resolution study, 594 element mesh with polyno-
mial order 15 for the base flow and eigenvalue computations
are adopted forβ = 0.25. For otherβ andγ cases, meshes were
constructed such that the size of the smallest element alongthe
boundaries and largest elements remained the same as the one
tested for grid resolution. The order of polynomial for the base
flow and eigenvalue computation for all the cases were also kept
similar to the tested mesh. Table 1 shows solution convergence
with increasing element polynomial order for a test case having
β = 0.25, γ = 2 andRe= 400. For calculating the growth rate
for a spanwise wavenumber ofk = 1, base flow solutions us-
ing polynomial order 15 was used. Note that for all the results,
γ = 2, unless specified otherwise.

np Nu f σ

8 2.428654 0.02801743 0.067914286
10 2.430494 0.02799898 0.067915247
12 2.431883 0.02801755 0.067916422
15 2.433943 0.02801789 0.067917737
20 0.067917748

Table 1. Mesh resolution for different order of polynomial (np) for
β = 0.25, γ = 2 andRe= 400. k = 1 for growth rate of the leading
eigenmode.

Results and Discussions

Two-Dimensional Flow Regimes

At low Re, a single recirculation region is formed in front of
the wedge (regime-1). With further increase inRe, another re-
circulation region is formed further downstream (regime-2) on
the wedge taper. With increasingReboth these recirculation
regions increase in size and merge to form a bigger recircu-
lation region before the wedge (regime-3). In regime-4, flow
separation occurs at the wedge tip, forming a secondary recir-
culation region immediately after the wedge tip and the flow be-
comes unsteady, with the secondary vortex oscillating in length.
Further increase inRe(regime-5) causes the vortex to deattach
itself from the tip and a self sustained vortex shedding is ob-
served. For higher blockage fromβ = 0.5, an additional regime
(regime-2a) with a steady secondary recirculation region after
the wedge tip is observed. The influence ofRe for the onset
of each of these regimes as a function of blockage is shown in
figure 3.

Figure 2. Two-dimensional flow regimes over repeated wedge shaped
surface protrusions (β = 0.25, γ = 2) (a) Regime-1,Re= 100, (b)
Regime-2,Re= 175, (c) Regime-2a forβ = 0.65,Re= 75, (d) Regime-
3, Re= 200, (e) Regime-4,Re= 450 and (f) Regime-5,Re= 500.
Streamlines (a-d) andz-vorticity (c & d).

Heat Transfer Enhancement

To evaluate the effectiveness of these wedges for improvingheat
transfer from the heated walls to the fluid at the expense of the
pumping power required to drive the fluid through the duct, en-
hancement ratio (ER) is calculated..ER> 1 indicates enhance-
ment with the use of the wedges and vice-versa. Figure 4 plots
ER againstRe covering the steady and unsteady regimes for
a range ofβ andγ. In the steady regime,ER< 1 for all cases,
and decreases withRe, indicating that the pressure drop is much
higher than the corresponding increase in the heat transferrate.
With increasingRe, ER exceeds unity at differentRe for each
case. This jump starts with the onset of vortex shedding causing
convective heat transfer to dominate over conductive heat trans-

Figure 3. Regime map as function ofReandβ. Rei represents theRe
for the onset of the next regime



fer. The vortices sweeping over the bottom walls and interacting
with the vortices formed on the top wall results in better mixing
between the cold and the hot fluid near the top and bottom walls,
resulting in an increase in the bulk temperature of the fluid and
temperature gradient at the walls. Figure 5 shows the tempera-
ture field for a steady case and an instantaneous snapshot with
vortex shedding.

Figure 4.ERas a function ofRefor different (a) blockage (β) and (b)
pitch (γ).

In the range ofβ and γ investigated, the highest blockage,
β = 0.65, is not effective to promote heat transfer effciency.
From figure 4(a), it can be seen that with increasingRethe lower
blockage becomes more effective as means to increase the ef-
ficiency. The dashed lines are used as indicators to show the
approximateReafter which a lowerβ becomes more effective.
In figure 4(b), the first dashed line from the right shows the ap-
proximateRe, up to which the optimalγ lies roughly between
4–5, above this range upto the next dashed line, the optimalγ
shifts to a larger value around 5–8. Above this approximate
thresholdRe, lowering the distance between the wedges also
has a favourable effect on the effciency as does increasing the
distance.

Figure 5. Temperature field forβ = 0.5 (a)Re= 100 (steady) (b)Re=
400 (unsteady).

Linear Stability

The primary instability for the steady two-dimensional flow
over repeated wedges in a duct occurs through a three-
dimensional steady mode for all blockage and pitch investigated
here. The values of the critical Reynolds number (Recr) and crit-
ical wavenumber (kcr) for the onset of instability are shown in
table 2.

Figure 6 (a & b) shows iso-contours of streamwise vorticity of
the leading eigenmodes forβ = 0.25 andβ = 0.5. For both
cases the leading mode is concentrated near the wedge, con-
sisting of a pair of counter-rotating streamwise vortices before
the wedge and a pair from the front of the wedge extending
over it. Forβ >= 0.5, an additional pair of streamwise vor-
tices emerge near the top wall above the wedge. Iso-contours
of the streamwise velocity shows fast and slow moving streaks
extending through the flow domain and spanwise velocity com-
ponent of the eigenmodes concentrated near the wedge, inside
the primary re-circulation region extending over the wedgewith
no significant spanwise velocity component observed insidethe
recirculation region formed after the wedge tip (figure 6 (c)).

These eigenmodes resemble the leading eigenmodes seen in for-
ward facing step (FFS) [11] and backward facing step (BFS) for

blockage of 0.25 [1, 10] and also matches with experimental ob-
servation in [17]. Lanzerstorfer and Kuhlmann [11] from their
analysis for a FFS concluded that a lift-up mechanism along
with flow decelaration was the cause of the instability. For flow
around a 180o bend [14] an elliptic instability mechanism in
a re-circulation region behind the corner was responsible for
the instability. The velocity components of the perturbation in-
dicates a lift-up mechanism [9] responsible for the instability
where a small transverse perturbation moves the fluid to a high
velocity region leading to the formation of streaks, which de-
cays downstream.

Figure 6. 3D iso-surface of streamwise vorticity for (a)β = 0.25,
Re= 400, (b)β = 0.5, Re= 100 (c) Iso-surface of streamwise (x) and
spanwise velocity (z) of the eigenmodes forβ = 0.5, Re= 100, repre-
sented as translucent and opaque surfaces respectively.

Blockage Recr kcr Pitch Recr kcr

0.125 162.22 1.82295 1 79.4 1.74095
0.25 86.85 1.72921 2 86.85 1.72921
0.35 71 1.75209 4 100.49 1.74665
0.5 58.59 1.95534 8 127.42 1.76608
0.65 55.15 2.21249
0.8 57.98 2.65795

Table 2. Critical Reynolds number and wavenumber for different block-
age and pitch.

For all blockage and pitch values investigated, onset of 2D un-
steadiness was not associated with a linear instability mode; in-
stead, this onset may be explained by a sensitivity analysis.

Receptivity and Sensitivity

An adjoint analysis is carried out to obtain regions in the flow
which are receptive to inital condition/ momentum forcing.For
β = 0.5 andRe= 100, this region of maximum adjoint velocity
amplitude is in the core of the flow extending from above the
wedge tip to about half way downstream for a two-dimensional
perturbation as shown in figure 7(a) and is where any localised
intial perturbation would lead to maximum amplification of the
global mode. Any kind of momentum forcing will be more ben-
eficial in terms of amplifying the global mode if placed in these
regions. The feedback region, where there is maximum cou-
pling between the receptive region and amplifier regions makes
the largest impact on the leading eigenvalue and thus shows
the core of the instability mechanism, responsible for a self-
sustained instability in the two-dimensional steady flow. Figure
7(b) shows the sensitivity of the two-dimensional steady flow to
local base flow modifications under equation 7. The core of the
instability which gives rise to a self-sustained 2D vortex shed-
ding is located downstream of the wedge tip extending to the
front of the next wedge.



Figure 7. (a) Receptivity to initial condition/momentum forcing, (b)
sensitivity to base flow modification forβ = 0.5, Re= 100.

Three-dimensional simulation

Three-dimensional direct numerical simulation was performed
with spanwise periodicity matching the wavelength of the dom-
inant instability mode. 16 Fourier modes were found to be suf-
ficient to resolve the flow. Growth rate and structure of the 3D
disturbance matched the linear prediction. Remnants of the
eigenmode structure persists through non-linear saturation of
the mode (figure 8 (a);Re= 100,β = 0.5). The corresponding
temperature field (figure 8 (b)) demonstrates streamwise vor-
tices and plumes enhancing vertical mixing and heat transfer.
For Re= 100 andβ = 0.5, the time-averaged Nusselt number
and friction factor for 3D simulations is approximately 1.8and
1.34 times the corresponding 2D case.

Figure 8. (a) Iso-contours of streamwise vorticity (b) Temperature field
at x= 0.0, 4.0 and 10.0 units forβ = 0.5, Re= 100.

Conclusions

The enhancement in the heat transfer efficiency with the use of
repeated wedge shaped surface protrusions and an approximate
range of parameters where maximum effectiveness can be ob-
tained are elucidated. Breakdown of the two-dimensional solu-
tions to infinitesimal three-dimensional perturbations are found
to occur through a steady mode. Onset of three dimension-
ality happens due to a lift-up mechanism which is sustained
by the primary recirculation region. It was shown that the 2D
steady to unsteady transition occurs due to the sensitivityof the
flow to incoming perturbation created by the wedge upstream.
Favourable locations to place any flow control mechanism to
affect the flow’s stability is in the core of the flow domain,
downstream from the wedge tip. Furthermore, increasing three-
dimensionality in the flow is a favorable condition to increase
the heat transfer enhancement ratio.
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