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Abstract 

Horizontal convection is a distinctive convection heat transfer 

process where heating and cooling occurs along the same 

horizontal boundary. This study employs the asymptotic 

expansion method to elucidate Nusselt and Rayleigh number 

relationships toward the limits of small aspect ratios. Expansion 

solutions are derived and compared with the high-order spectral 

element simulations obtained for a rectangular enclosure of 

length L, height, H (aspect ratio, A = H/L), at a Prandtl number 

of Pr = 6.14 (consistent with water) across a wide span of 

Rayleigh numbers, (10 ≤ Ra ≤ 1016) and aspect ratios (10-3 ≤ A 

≤ 0.16). The Boussinesq flow is driven by imposing a linear 

temperature variation from colder to warmer across the bottom 

boundary of the enclosure, and insulating temperature 

conditions on the remaining boundaries. The accuracy of the 

model is demonstrated by comparison with the numerical 

solutions, and second-order expansion solutions captured the 

Nusselt-Rayleigh number behaviour. 
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Introduction 

Horizontal convection is classified as a distinctive version of 

natural convection, where heating and cooling occurs 

exclusively along the horizontal boundary of the enclosure. In 

contrast to the substantially studied Rayleigh–Bénard 

convection, where convective overturning circulation is 

stimulated by both heating and cooling, the strength of 

overturning circulation in horizontal convection is dominated 

by heat diffusion [1]. Research on horizontal convection has 

been inspired by the transport of warm fluids in the oceanic 

circulation and engineering processes, like glass melting in 

furnaces [2].  

Several experimental and numerical studies on horizontal 

convection investigated the flow dynamics and heat transfer 

scaling. Experiments by Mullarney et al. [3] with water in an 

enclosure of aspect ratio (height to length), A=0.16 showed that 

beyond the diffusion-dominated regime, the Nusselt number 

(Nu) scales approximately with Ra1/5, which is similar to the 

Rossby scaling [4]. Sheard and King [5] used a spectral element 

method to investigate horizontal convection for aspect ratios, 

0.16 ≤ A ≤ 2.0 at a range of Rayleigh and fixed Prandtl number 

representative of water (Pr = 6.14). They reported an aspect 

ratio dependence based on the measured Nu and boundary layer 

thickness at low Ra. The authors also confirmed an increase in 

the exponent of Ra 1/5th to 1/3rd in the convective regime for 

the Nu scaling. This uplift was later shown to represent a shift 

between flow regimes both obeying Nu ∝ Ra1/5 [6].  

Despite the substantial motivation to study horizontal 

convection to reveal the role of buoyancy forcing in ocean 

currents, the previous widely studied range of enclosure aspect 

ratios (A ≥ 0.16) is at least two orders of magnitude larger 

compared to the ocean-relevant values (10-5 ≤ O (A) ≤ 10-3). 

Therefore, certain aspects the shallow enclosure horizontal 

convection remains unexplored. This study emphasises on 

providing insights into Nusselt-Rayleigh number relationships 

of horizontal convection employing an asymptotic expansion 

analysis and exploring the theoretical shape of the Nusselt 

number which characterises the onset of the non-linear effects 

in shallow enclosure horizontal convection flow.  

Model derivation 

The computation domain comprises a rectangular enclosure, 

having internal dimensions of length L, height, H (aspect ratio, 

A= H/L) as shown in figure 1. The flow is driven by a linear 

temperature profile applied along the bottom boundary of the 

enclosure. The side and top walls are thermally insulated (a zero 

wall-normal temperature gradient is imposed), and a no-slip 

condition is imposed on the velocity field on all walls. The 

buoyancy is modelled with the Boussinesq approximation, in  

Figure 1. A schematic diagram of the system. The origin of the 

coordinate system placed at the bottom-left corner, and a temperature 

difference of 𝜕𝜃 imposed along the bottom boundary. 

which density differences in the fluid are disregarded except for 

the contribution of gravity. The Navier–Stokes equations 

governing a Boussinesq fluid are written as 

𝜵 ∙ 𝒖 = 0,   (1a) 

𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ 𝛁)𝒖 = −

1

𝜌0
𝛁𝑝∗ + 𝜐∇2𝒖 + 𝛼𝑔𝒆𝑦(𝜃 − 𝜃0)  (1b) 

𝜕θ

𝜕𝑡
= −(𝐮 ∙ 𝛁 )𝜃 + 𝜅∇2 𝜃,  (1c) 



where 𝑡 is time, 𝜃 is the temperature, 𝑝∗is the pressure with 

hydrostatic contribution, 𝒖 denotes the velocity vector, 𝑔𝒆𝑦 is 

a unit vector in the direction of gravity, 𝜌∘ is defined as the 

reference density of the fluid and 𝜅 is the thermal diffusivity. 

To introduce non-dimensionalisations (primes denote the 

described dimensionless quantities) we define 

 

  𝒙 = 𝐿(𝑥′, 𝑦′), 𝑡 =
𝐿2

𝜅
𝑡′, 𝒖 =

𝜅

𝐿
(𝑢′, 𝑣′), 𝑝∗ = 𝜌0

𝜅2

𝐿2
𝑝∗′, 

𝛁 =
1

𝐿
(

𝜕

𝜕𝑥′
,

𝜕

𝜕𝑦′
) , ∇2=

1

𝐿2 (
𝜕2

𝜕𝑥′2 +
𝜕2

𝜕𝑦′2) , 𝜃 = 𝜃0 + 𝜕𝜃 𝜃′. 

 

Length, time, velocity, pressure and temperature difference are 

respectively scaled by 𝐿, 𝐿2 /𝜅, 𝜅/𝐿, 𝜌∘ 𝜅
2 /𝐿2 and 𝜕θ. The non-

dimensionalised form (excluding the primes for convenience) 

of equations (1a) to (1c) and splitting momentum into its 

horizontal and vertical parts leaves 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                                         (2a) 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+ 𝑃𝑟 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2
),                        (2b) 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+ 𝑃𝑟 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) + 𝑃𝑟𝑅𝑎 𝜃,       (2c) 

𝜕𝜃

𝜕𝑡
+ 𝑢

𝜕𝜃

𝜕𝑥
+ 𝑣

𝜕𝜃

𝜕𝑦
=

𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑦2.                                             (2d) 

 

Here we have introduced the Prandtl number, 𝑃𝑟 = 𝜐/𝜅 and 

Rayleigh number 𝑅𝑎 = 𝛼𝑔𝜕𝜃𝐿3/𝜐𝜅. Now, expanding the 

variables in terms of 𝑅𝑎, 

𝜒 = 𝑅𝑎0𝜒0 + 𝑅𝑎1𝜒1+ 𝑅𝑎2𝜒2+…                                        (3) 

where 𝜒 = 𝑢, 𝑝 𝑎𝑛𝑑 𝜃. Substituting (3) into the equations (2a) 

to (2d) and collecting terms of zero order yields 

 
𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
= 0,                                                                      (4a) 

𝜕𝑢0

𝜕𝑡
+ 𝑢0

𝜕𝑢0

𝜕𝑥
+ 𝑣0

𝜕𝑢0

𝜕𝑦
= −

𝜕𝑝0

𝜕𝑥
+ 𝑃𝑟 (

𝜕2𝑢0

𝜕𝑥2 +
𝜕2𝑢0

𝜕𝑦2
),            (4b) 

𝜕𝑣0

𝜕𝑡
+ 𝑢0

𝜕𝑣0

𝜕𝑥
+ 𝑣0

𝜕𝑣0

𝜕𝑦
= −

𝜕𝑝0

𝜕𝑦
+ 𝑃𝑟 (

𝜕2𝑣0

𝜕𝑥2 +
𝜕2𝑣0

𝜕𝑦2
),              (4c) 

𝜕𝜃0

𝜕𝑡
+ 𝑢0

𝜕𝜃0

𝜕𝑥
+ 𝑣0

𝜕𝜃0

𝜕𝑦
=

𝜕2𝜃0

𝜕𝑥2 +
𝜕2𝜃0

𝜕𝑦2 .                                    (4d) 

 

As the enclosure has no-slip boundary conditions on all 

boundaries and the zeroth order equations have eliminated 

buoyancy there is no mechanism in these equations to drive the 

flow. In addition, the velocity field is no longer a function of 

the temperature field. Considering the equilibrium state, it is 

apparent that the velocity field must approach zero at long 

times. With a zero-velocity field and assuming a steady state, 

equations (4a) – (4d) reduce to  

 

𝑢0 = 𝑣0 =
𝜕𝑝0

𝜕𝑥
=  

𝜕𝑝0

𝜕𝑦
= 0,                                                  (5a) 

𝜕2𝜃0

𝜕𝑥2 +
𝜕2𝜃0

𝜕𝑦2 = 0.                                                                   (5b) 

 

Thus, zeroth order solution comprises a zero-velocity field, an 

arbitrary constant pressure field, and a temperature field 

obtained by conduction through the stationary fluid satisfying 

the imposed-temperature and insulating boundary conditions. 

Now attention is turned to collect the first-order terms 

considering values from (5a) and (5b), 

𝜕𝑢1

𝜕𝑥
+

𝜕𝑣1

𝜕𝑦
= 0,                                                                        (6a) 

𝜕𝑝1

𝜕𝑥
= 𝑃𝑟 (

𝜕2𝑢1

𝜕𝑥2 +
𝜕2𝑢1

𝜕𝑦2
),                                                        (6b) 

𝜕𝑝1

𝜕𝑦
= 𝑃𝑟 (

𝜕2𝑣1

𝜕𝑥2
+

𝜕2𝑣1

𝜕𝑦2
) + 𝑃𝑟 𝜃0,                                           (6c) 

𝑢1
𝜕𝜃0

𝜕𝑥
+ 𝑣1

𝜕𝜃0

𝜕𝑦
=

𝜕2𝜃1

𝜕𝑥2
+

𝜕2𝜃1

𝜕𝑦2
.                                               (6d) 

 

From equations (6a) – (6d) we observe that continuity is 

satisfied, and a balance between first-order pressure and 

velocity diffusion exists, with a non-zero first-order flow driven 

by the zeroth-order temperature field.  A first-order thermal 

field arises from a Poisson equation with RHS constructed from 

the zeroth-order temperature and first-order velocity field. 

Passing the information obtained from the zeroth and first order 

equations to deduce the second-order terms 

 
𝜕𝑢2

𝜕𝑥
+

𝜕𝑣2

𝜕𝑦
= 0,                                                                           (7a) 

𝜕𝑢2

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
+ 𝑣1

𝜕𝑢1

𝜕𝑦
= −

𝜕𝑝2

𝜕𝑥
+ 𝑃𝑟 (

𝜕2𝑢2

𝜕𝑥2 +
𝜕2𝑢2

𝜕𝑦2
),              (7b) 

𝜕𝑣2

𝜕𝑡
+ 𝑢1

𝜕𝑣1

𝜕𝑥
+ 𝑣1

𝜕𝑣1

𝜕𝑦
= −

𝜕𝑝2

𝜕𝑦
+ 𝑃𝑟 (

𝜕2𝑣2

𝜕𝑥2 +
𝜕2𝑣2

𝜕𝑦2
) + 𝑃𝑟 𝜃1, (7c) 

𝜕𝜃2

𝜕𝑡
+ 𝑢1

𝜕𝜃1

𝜕𝑥
+ 𝑢2

𝜕𝜃0

𝜕𝑥
+ 𝑣1

𝜕𝜃1

𝜕𝑦
+ 𝑣2

𝜕𝜃0

𝜕𝑦
=

𝜕2𝜃2

𝜕𝑥2
+

𝜕2𝜃2

𝜕𝑦2
.         (7d) 

 

In the momentum equations (7b) - (7c), quadratic terms 

involving products of zeroth and second order velocity fields 

are omitted as the zeroth order field was zero; likewise, in the 

thermal transport equation (7d) quadratic terms involving the 

product of zeroth order velocity and second-order temperature 

gradients have also been omitted. The second-order velocity 

field is a function of only first order velocity and temperature 

fields, and the second-order temperature field is a function of 

first and second-order velocity, and zeroth and first-order 

temperature fields. The governing equations are solved by a 

high-order in-house solver, which employs a spectral-element 

method for spatial discretisation and a third-order time 

integration scheme based on backwards-differencing.  Meshes 

are constructed for various aspect ratios from A = 0.16 down to 

0.001 while setting the most widely studied lowest aspect ratio 

(A = 0.16) in the literature as the largest for the aspect ratio 

range used in the current study. 

 

Simulation results 

Three aspect ratios (A=0.08. 0.04 and 0.01) were chosen to 

calculate different-order Nu by employing the expansion series 

solutions. Figure 2 illustrates zeroth (Nuorder0), first (Nuorder1) 

and second order (Nuorder2) Nusselt number for three aspect 

ratios along with their respective baseflow solutions (Nubaseflow) 

for a range of Ra. The Ra which marks the departure of 

Nubaseflow from the Nuorder0 solution demonstrates the onset of the 

first and second order effects in the flow. This Ra will be termed 

as Rad, and signifies the entrance of the higher-order and non-

linear effects of the flow. As the aspect ratio gets smaller, we 

can see from figure 2 (b) and 2 (c) that Rad shifts to higher Ra. 

The high Rad reveals a delayed onset of the higher-order effects 

owing to the vertical confinement of the enclosures as it gets 

shallower.  



 
 

 
 

 
Figure 2. Nu against Ra for different order expansion solution for (a) 

A=0.08, (b) A=0.04 and (c) A=0.01. 

 

Attention is now turned towards the cumulative Nusselt 

numbers of the aspect ratios. First-order cumulative Nusselt 

number (Nuorder01) sums up the contribution from zeroth and 

first order terms. Second-order cumulative Nusselt number 

(Nuorder012) has the Nuorder01 and Nuorder2 terms. Figure 3 depicts 

the cumulative Nusselt numbers for three different aspect ratios 

with their respective baseflow solutions. As the cumulative 

Nusselt numbers sum up from the zeroth to any respective order 

terms, it elucidates the impact of that specific (first or second) 

order term, which is described in Figure 2. Figure 3 (a) 

illustrates that the cumulative Nusselt numbers for A=0.08 

demonstrate Nuorder012 can capture the baseflow solution 

features to a higher Ra than Nuorder01. For smaller aspect ratios, 

the Nuorder012 gets much closer to the baseflow solutions 

compared to Nuorder01. It can be seen from figure 3 (b) and (c) 

that the Nuorder012 term progressively coincides more with the 

baseflow for A=0.04 and A=0.01 compared to the larger aspect 

ratio (A=0.08). For A=0.01, the Nuorder012 term captures the 

baseflow solution up to log10(Ra) ≈ 11.5. 

  

 

 

 

 

 

Figure 3. Cumulative Nu against Ra for different order expansion 

solution for (a) A=0.08, (b) A=0.04 and (c) A=0.01.  

Previous published work [7] form the authors’ explored 

different regimes and revealed the relationships of Nusselt 

number, Rayleigh number and aspect ratios. Based on the low-

Ra/low-A scaling of Nu ~ A and Ra ~ A−4, the Nu – Ra data is 

plotted in figure 4. For lower values of RaA4, the corresponding 

values of Nu/A can be seen to have collapsed onto a universal  

(c) 

(a) 

(b) 

(a) 

(b) 

(c) 



 

Figure 4. Scaled Nu-Ra plots with dashed lines features a range of 

aspect ratios (10-3 ≤ A ≤ 0.16) with the expansion solutions of three 
aspect ratios. For A = 0.08, 0.04 and 0.01, expansion solutions are 

scaled and plotted using a solid line with square, triangle, circle 

symbols, respectively.  

curve for all aspect ratios. After log10(RaA4) ≈ 1.75 the Nu/A 

values for all aspect ratios start branching off for log10(RaA4) ≳ 

1.75, starting with the highest A = 0.16 and then in descending 

order to the lowest A = 0.001 with increasing Rayleigh number. 

This branching off resembles the convection-dominated regime 

of the shallow enclosure horizontal convection. To validate the 

expansion series results, the cumulative second order Nusselt 

numbers for A = 0.08, 0.04 and 0.01 are scaled and included in 

figure 4. We can see that the expansion series solutions follow 

the universal collapse trend until the convection-dominated 

region.  

 

Conclusion 

This study entails asymptotic expansion series to elucidate the 

Nusselt-Rayleigh number behaviour in shallow enclosure 

horizontal convection and provide insight regarding the onset 

of the non-linear behaviour of the flow. Zeroth, first and second 

order expansion solutions are derived from the governing 

equations. A Rayleigh number, Rad that predicts the onset of the 

higher order and non-linear effects is introduced based on the 

departure of the different order Nusselt numbers from the 

baseflow solution. An increase in Rad is observed as the aspect 

ratio gets smaller. Expansion series solutions are also validated 

against the scaled Nusselt-Rayleigh number plot consisting of 

thirteen aspect ratios. The scaled Nusselt number changes with 

squared value of scaled Rayleigh number, Nu/A ~ (RaA4)2. The 

cumulative second order Nusselt number from the expansion 

solution demonstrates a collapse along with the universal trend 

of the scaled Nusselt number. It reveals that the second order 

expansion solutions manifest the quadratic Nusselt-Rayleigh 

behaviour until the commencement of convection-dominated 

regime of the shallow enclosure horizontal convection.  
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