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Abstract

The global maximum transient amplifications of an electrically
conducting fluid under the influence of a transverse magnetic
field in square duct were investigated. A range of Hartmann
numbers for 10 ≤ Ha ≤ 1000 were tested at a fixed Re = 5000
to elucidate the processes through which transition from three-
dimensional perturbation states at low magnetic field strengths
give way to predominantly anisotropic two-dimensional struc-
tures at higher field strengths. Such flows are applicable to met-
allurgical processes where magnetic fields are used to dampen
disturbances to increase homogeneity in material production, as
well as in the cooling blankets of nuclear fusion reactors where
instabilities can aid in improving convective heat transfer. Two
regimes are identified for the scaling of maximum transient en-
ergy amplification; when perturbation structures are dominated
by three dimensional variation in the vertical side-wall bound-
ary layers a scaling of Gmax ∝ Ha−1.6 for 10 ≤ Ha ≤ 100 was
found, while scaling of Gmax ∝ Ha−0.37 over 150≤Ha≤ 1000
occurs for when quasi-two-dimensional (Q2D) disturbances are
prevalent. Through comparison with existing literature, the
Q2D model of Sommeria & Moreau (1982) is shown to be valid
for Ha > 150.

Introduction

Understanding the stability mechanisms of electrically conduct-
ing fluids under the influence of strong magnetic fields, known
as magnetohydrodynamic (MHD) flows, has potentially signif-
icant implications to metallurgical processes, and more perti-
nently the viability of clean energy sources, such as magnetic
confinement fusion reactors. For the latter, the strong trans-
verse magnetic fields that exist to contain the plasma have a
strong damping effect on the flow differentials in the adjacent
liquid metal cooling blankets. As a result, efficient convective
heat transport is adversely affected; a detriment to the thermal
performance in maintaining safe operating temperatures of the
reactor, and in the heat exchange process used in the production
of electrical energy. To overcome these issues several works
have been conducted with the aim of mechanically enhancing
the convective heat transfer performance [3, 4]. However, these
methods are not always practicable, and a further understand-
ing of the underlying instability mechanisms which can aid in
convection across a broader range of operational parameters are
needed.

An issue with respect to the stability analysis of MHD flows in
the limit of strong magnetic fields is the discrepancy between
the critical regime parameters predicted through the growth of
exponentially growing perturbations and that observed in exper-
iments [5]. One explanation for this inconsistency is that non-
orthogonality in transient amplifications can create a route for
subcritical instability. In other words, the linearisation around
a base state may predict asymptotically decaying eigenvalues,
yet, interactions between suboptimal modes could result in suf-
ficient non-linear transient amplifications to render the base
flow unstable [6]. From a practical standpoint, the presence and
structure of these optimal modes have been shown to form a
fundamental part of fully developed turbulent flows [2]. Hence,

by utilising the knowledge of the modal spatial characteris-
tics, effective flow control strategies may be implemented such
as, periodic suppression and/or excitation of electro-magnetic
fields.

Due to their simplicity, existing literature has largely focused
on the stability of Hartmann MHD flows (flow between par-
allel plates orthogonal to an applied magnetic field); that is,
without consideration of the sidewall boundary layers, known
as Shercliff layers, which form on duct sidewalls tangential
to the magnetic field vector. One approach taken to exam-
ine the effects of the Shercliff layers on the stability of con-
fined MHD flows was conducted by Pothérat [7]. A quasi-two-
dimensional (Q2D) model developed by Sommeria & Moreau
(1982) (hereafter SM82) [9] was utilised by assuming the flow
outside of the Hartmann boundary layers, which form on the
walls perpendicular to the magnetic field vector, are predomi-
nantly two-dimensional. It has been shown previously that this
model remains sufficiently valid for magnetic interaction pa-
rameters N ≡ Ha2/Re� 1, where Ha is the Hartmann num-
ber representing the effect of the Lorentz force on the flow, and
Re is the Reynolds number [8]. From this work, global op-
timum transient growths were shown to become independent
to three-dimensional (3D) wavenumbers and reach an asymp-
totic regime for Ha ≥ 200. Subsequently, Krasnov et al. [5]
employed 3D transient growth analysis to show an asymptotic
scaling of global dominant modes following a Ha−3/2 relation
in the region of 10≤ Ha≤ 50 for Re = 5000 in square ducts.

To this date, it is not properly understood if Q2D models are
accurate predictors of instability modes towards high magnetic
field strengths, nor is there an extensive body of work on the
physical structures which develop through their transition to a
Q2D dominated state. It is therefore the focus of the present
work to understand how and when specific linear transient am-
plifications present over a wide range of Ha, and the processes
through which the 3D states at low magnetic field strengths give
way to anisotropic 2D structures at higher field strengths in con-
fined MHD flows.

Formulation

Problem Definition and Governing Equations

An electrically conducting fluid of conductivity σ, kinematic
viscosity ν and density ρ flows through a duct having square
cross-section with perfectly electrically insulated walls of width
2a. The vertical and horizontal duct walls are located at x =±a
and y = ±a, respectively. The flow is subject to a constant
external homogeneous magnetic field BBB000 = B0eee tangential to
the vertical sidewalls such that eee ≡ 〈0,1,0〉 (see figure 1). The
flow is driven by an imposed constant pressure gradient ∇p
with no-slip conditions applied on all solid boundaries.

For sufficiently large B0, the internal magnetic field induced
by the motion of the conducting fluid, measured by the
magnetic Reynolds number Rem, can be rendered negligible
in comparison to the externally applied field. This is a valid
assumption for typical environments seen in industrial and
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Figure 1: Schematic of flow configuration and parameters used
in this study.

laboratory MHD applications [5]. It follows that, when taking
proper scales for length a, pressure ρU2

0 , where U0 is the peak
inlet velocity, time a/U0, magnetic field B0 and lastly, for
the electric potential aU0B0, the dimensionless quasi-static
low-Rem momentum and continuity equations can be expressed
as

∂VVV
∂t

+(VVV ·∇∇∇)VVV =−∇∇∇p+
1

Re
∇

2VVV +
Ha2

Re
( jjj×BBB000), (1)

∇∇∇ ·VVV = 0, (2)

where VVV (x,y,z, t) = 〈u,v,w〉 and jjj = −∇∇∇φ +VVV × BBB000 are the
velocity and electric current density vectors, respectively. Here
φ is the electric scalar potential. Two independent dimension-
less groupings exist in these governing equations. Namely,
the Reynolds number Re ≡ U0a/ν representing the ratio of
inertial to viscous forces in the flow, and the Hartmann number
Ha ≡ aB0

√
σ/ρν representing the effect of the Lorentz force

on the flow in relation to geometric and fluid properties. In the
present work, Hartmann numbers between 10 ≤ Ha ≤ 1000
are investigated which significantly extends the range covered
by [5]. The aim being to bridge the gap between 3D and
Q2D models for transient growth analysis of optimal linear
amplifications. Here a fixed Reynolds number of Re = 5000 is
used both for comparison reasons with existing literature, but
also as it is below the exponential instability limit found for
hydrodynamic Poiseuille flows.

Transient growth analysis

A transient growth analysis is conducted by tracking the
energy amplification over a finite time interval τ due to the
evolution of linear three-dimensional infinitesimal perturba-
tions

[
VVV p,φp, pp

]
(x,y,z, t) = (u′,v′,w′,φ′, p′) to a stream-

wise independent two-dimensional steady-state base flow
[VVV 0,φ0, p0] = (u(x,y),v(x,y),w(x,y),φ(x,y), p(z)). When the
initial base state is subject to these perturbations, the solution
takes the general form [VVV ,φ, p] = (VVV 0,φ0, p0) + (VVV p,φp, pp).
The perturbations are considered through the form of decoupled
normal Fourier modes such that[

VVV p,φp, pp
]
=
(
û, v̂, ŵ, φ̂, P̂

)
(x,y, t) · eiαz, (3)

here α is a streamwise wavenumber. For brevity, the full
system of linearised equations describing the evolution of these
perturbed flows is not given. The reader may refer to [5] for a
form consistent with this work.

The amplification in kinetic energy over a given time in-
terval t = τ can be written as a ratio of volume integrals over
domain Ω of the inner products of VVV p(t) at t = τ over the inital
state at t = 0

G(τ) =

∫
Ω

VVV p(τ) ·VVV p(τ)dV∫
Ω

VVV p(0) ·VVV p(0)dV
. (4)

A state-transition operator A = eLt , where L is a linear operator,
can be introduced to evolve an arbitrary initial perturbation VVV p
to time t = τ such that

VVV p(τ) = A(τ)VVV p(0). (5)

By further introducing an adjoint evolution operator A∗(τ) of
A , that evolves an equivalent adjoint variable VVV p

∗
τ

backwards in
time from t = τ to t = 0 (see [1] or [5] for further information),
(4) can be rewritten as

G(τ) =

∫
Ω

VVV p(0) ·A∗(τ)A(τ)VVV p(0)dV∫
Ω

VVV p(0) ·VVV p(0)dV
. (6)

In this form, the optimal growth G(τ)max is determined
through the leading eigenvalue of the operator A∗A , with the
corresponding optimal initial perturbation field given by the
related eigenvector. Hence, the goal of the present work can be
formally written as

G(τ)max = max
VVV p(0)

∫
Ω

VVV p(0) ·A∗(τ)A(τ)VVV p(0)dV∫
Ω

VVV p(0) ·VVV p(0)dV
. (7)

The global maximum amplification Gmax occurs at the
optimal time interval τopt having streamwise wavenumber αopt.

Numerical Methodology

A high order spectral element method was employed to
discretise the governing equations and implement the transient
growth analysis methodology. The linearised component of
this solver has been previously verified and implemented in
works such as [10]. The reader may refer to [10] for further
information regarding the numerical methodology. A grid
resolution study was conducted to ensure adequate spatial
and temporal sampling to accurately resolve the dynamics of
the flow field. Streamwise wavenumbers were investigated
between 0 ≤ α ≤ 40, with the local maxima resolved to an
accuracy of at least 0.1. To ensure that the global maximum
energy growths were captured, and a monotonic decay in
amplifications were achieved at higher τ, the analysis was
conducted over time intervals extending to τ = 100. Eigenvalue
convergence of better than 0.01% was ensured for all the values
presented in this paper.

Results and Discussion

Global Maximum Amplifications for 10≤ Ha≤ 1000

The global maximum amplification occurring at τopt and αopt
as a function of Hartmann number for 10 ≤ Ha ≤ 1000 are
provided in figure 2. Here the results from [5] and [7] are
also shown for comparison. Transient growth occurs for all Ha
present in this study, however, the magnitude of these ampli-
fications is progressively suppressed with increasing Hartmann
number. This reduction in kinetic energy growth is most likely
due to the increased magnetic damping found with higher Ha.
For 10 ≤ Ha ≤ 100 the global maximum amplification is de-
scribed by the trend Gmax ≈ 11.45× 103Ha−1.6. This is in
close agreement with the Gmax ≈ 8.8×103Ha−1.5 relationship
obtained by the optimal growth analysis in [5] over the limited
range of 10 ≤ Ha ≤ 50; serving as further validation for the
numerical framework used in this study.

For 150 ≤ Ha ≤ 1000 the optimal gain adopts a shallower
decreasing trend with increasing Hartmann number. The results



demonstrate a remarkable consistency with the SM82 model
data from [7]. For this higher Ha regime, the global maximum
amplifications recover an approximate −1/3 power scaling
with Hartmann number of Gmax ≈ 25×103Ha−0.37. However,
for Ha ≤ 150 there is a significant difference between those
predicted by the SM82 analysis which will be investigated in
more detail in the following section.

Figure 2: Global maximum amplifications as a function of Hart-
mann number. Here, pre-existing transient growth analysis data
using a SM82 model [7] (dashed-dotted line) and quasi-static
MHD analysis [5] (dash line) are plotted for comparison against
current results (solid blue line).

Flow Visualisation and Perturbation Structures

The eigenvector fields for Ha = 10,100,150 and 600 are vi-
sualised via streamwise vorticity and two-dimensional slices
of the streamwise component of velocity in figures 3 and 4,
respectively. For larger Ha the perturbation structures be-
come increasingly localised to the sidewall Shercliff layers
(whose thickness scales with Ha−1/2 [8]), and a significant
decrease in the optimal streamwise wavenumber is also ob-
served. The perturbation fields for low to moderate Ha form
complex overlapping structures within the sidewall layers. Fig-
ure 4 (b) and (d) also demonstrate that for some cases the opti-
mal perturbation fields are confined to only one boundary layer.
As the core becomes largely uniform at higher Ha , interac-
tion between boundary layer disturbances becomes diminished.
Hence, whether the computed eigenmodes are isolated to one
side-wall or occupying both side-walls, they are manifestations
of the same optimal disturbance mode with identical energy am-
plification.

In the first regime between 0 ≤ Ha ≤ 100, the eigenvector
yielding the optimal disturbance field presents as roll-like struc-
tures aligned in the streamwise direction. As Ha is increased,
the number of rolls in the spanwise direction also increase and
become flattened within the thinning Shercliff layers. In the
second regime between 150 ≤ Ha ≤ 1000, a breakdown of the
streamwise vortex structures occurs as highlighted in figures
3 (c) and (d). The flow becomes strongly invariant in the
magnetic field direction, such that by Ha = 600 only remnants
of streamwise vorticity remain and are confined to the corner
regions of the duct. Figure 4 (c) and (d) further demonstrate this
two-dimensionalisation, with relative invariance of w-velocity
disturbance field near the side walls in the y-direction for
Ha≥ 150.

The combination of this corner region localisation of
streamwise vorticity and the relative invariance of w with y
suggests that at higher Ha the perturbation kinetic energy

(a) Ha = 10

(b) Ha = 100

(c) Ha = 150

(d) Ha = 600

Figure 3: Eigenvector vorticity isosurfaces producing the max-
imum amplification Gmax at τopt for Ha = 10,100,150 and 600
at Re = 5000. Blue and yellow contours represent positive and
negative streamwise vorticity, respectively. Spanwise vorticity
in the x-z plane are also visualised through purple isosurfaces
in (d). Contour levels are adjusted to approximately 90% of the
maximum magnitude of vorticity. The flow is from left to right
in the positive z-direction, with the magnetic field orientated
vertically in the positive y-direction. For clarity, the vorticity is
only plotted for 0≤ x≤ 1.

is dominated by vertically aligned (Q2D) roll structures in
the side-wall boundary layer (visualised by the purple x-z
plane vorticity isosurfaces in figure 3 (d)). The mechanism
producing maximum transient amplifications in low-Ha MHD
flows and 3D Poiseuille flows result from the coupling of
Orr-Sommerfeld and Squire modes; which in the context of
the present configuration correspond to modes respectively
invariant and variant in the vertical direction. The SM82 model,
which can only combine the two-dimensional Orr–Sommerfeld
modes for energy amplification, shows strong alignment of the
3D duct optimal growths predictions for 150 ≤ Ha ≤ 1000.



Hence, in the limit of large Ha, the SM82 model is an
excellent predictor of optimal linear growth when sufficient
suppression of the Squire modes has occurred. Conversely,
the coupling between these two mode types enhances the
transient amplifications for Ha ≤ 150, leading to the deviation
between predicted growth rates as Ha → 0. As Hartmann
numbers in fusion reactor applications are typically quite large
(O(103)), the ability of the SM82 model to accurately predict
the dominant transient amplifications at these larger values
allows for modelling to be conducted at significantly reduced
computational costs, as the thin Hartmann layers (whose
thickness scale with Ha−1 [8]) do not require resolving.

(a) Ha = 10

(b) Ha = 100

(c) Ha = 150

(d) Ha = 600

Figure 4: Contours of streamwise w-velocity plotted on repre-
sentative x-planes (left) and z-planes (right) of the eigenvector
fields producing Gmax at τopt for Ha = 10,100,150 and 600 at
Re = 5000. Red and blue contours represent positive and neg-
ative streamwise velocity, respectively. Contour levels are ad-
justed to approximately 90% of the maximum magnitude of w.
The underlying base flow is in the positive z-direction, with the
magnetic field orientated vertically in the positive y-direction.

Conclusions

The global maximum transient amplifications of an electrically
conducting fluid under the influence of a transverse magnetic

field were investigated. A range of Hartmann numbers for 10≤
Ha≤ 1000 were studied at a fixed Re= 5000. It was shown that
two regimes exists for scaling of maximum transient growth
amplification; when perturbation structures are dominated by
3D modes a scaling of Gmax ∝ Ha−1.6 for 10≤ Ha≤ 100 was
found, and Gmax ∝ Ha−0.37 in the range of 150 ≤ Ha ≤ 1000
for when optimal disturbances become predominantly Q2D.
Through comparison with existing literature, the SM82 model
for Q2D MHD flow is also shown to be a valid transient growth
predictor in this regime.
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