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Abstract

The wakes of flows past bluff bodies are known to undergo sev-

eral transitions leading to turbulence, each incurring changes

to the dynamics of the flow. The initial transition to three-

dimensional flow for several cylindrical geometries manifests

as coherent structures along the cylinder span and have been

the focus of many investigations. This transition and its asso-

ciated instability modes are investigated numerically for flows

past a cylinder with triangular cross-section at various incli-

nations using Floquet stability analysis. The instabilities are

shown to be strongly dependent on the cylinder inclination,

producing a dominant synchronous instability mode consistent

with the synchronous Mode A and the subharmonic Mode C

at various cylinder inclinations. The neutral stability threshold

ranges approximately from 100 < Reh < 140, where h is the

projected frontal height of the cylinder; and the wavelengths of

the instabilities ranging approximately between 4h–6h for the

synchronous mode and approximately 2h for the subharmonic

mode at transition for various cylinder inclinations.

Introduction

The study of flow transitions and its mechanism, while funda-

mental in nature, is pivotal in developing a deeper understand-

ing of fluid dynamics. For cylindrical bodies, as the Reynolds

number (Re) is increased, the initially steady flow becomes

unstable to a two-dimensional time-dependent flow through a

Hopf bifurcation. The flow then becomes three-dimensional

upon further increasing Re, exhibiting finger-like structures

from the onset. [1, 15, 17, 18] showed that these secondary flow

instabilities for the circular cylinder manifests via an instability

termed Mode A which becomes unstable at Re≈ 190, and later

through an instability named Mode B at Re= 259—a review of

these wake instabilities and their characteristics can be found in

[19].

Further investigations on various bluff-bodies also reveal the

existence of a subharmonic instability mode coined Mode C.

This mode was observed in the wakes of rings at moderately

low aspect-ratios (AR), while the synchronous modes were ob-

served at higher AR’s as the geometry tended to a circular cylin-

der [14]. The instability pathway of the wake of a normally ori-

ented square cylinder demonstrated a similar route to instability

as the circular cylinder with the exception of an additional insta-

bility branch [11]; [13] showed this instability to grow stronger

at intermediate inclination angles, eventually becoming domi-

nant over the synchronous mode branches. Further studies by

[3, 12] showed this subharmonic mode to smoothly take over

from the quasi-periodic mode when the reflection symmetry

about the wake centreline is gradually broken. The synchronous

instability modes appear to bifurcate from a base-flow exhibit-

ing symmetries of the Kármán vortex street [2], a lack thereof

introduces the Mode C instability with a period-doubling mech-

anism to recover some sense of periodicity.

We set out to further investigate the dependence of the transi-

tion scenario on underlying asymmetries in the dynamic wake,

which for this study, was produced from a triangular cylinder

Figure 1: System set-up with the cylinder inclined at an angle

α. The background displays the resolution of the mesh used.

at various inclination angles. The only available data on the

stability of these flows in literature comes from [9], who ex-

perimentally studied the three-dimensional wake transition for

a single isosceles triangular cylinder pointing downstream and

reported Mode A to become unstable at Re≈ 164.

Methodology

For this study, a fluid of velocity U∞ is incident on a triangu-

lar cylinder at an inclination α, producing a wake region whose

stability characteristics are sought. A schematic of this system

is provided in figure 1. The cylinder inclination was gradually

varied between 0◦ ≤α≤ 60◦, generally at an increment of 6◦,

with all other inclinations outside this range being either reflec-

tion symmetric about the horizontal centreline, or identical, to

the geometries contained within the initial range. Specifically,

α= 0◦ corresponds to the case with the triangle pointing di-

rectly upstream, α= 60◦ describes the triangle pointing directly

downstream, and α= 90◦ corresponds to the cylinder at α= 30◦

flipped vertically about the horizontal centreline. Lengths in

this study are scaled by the height of the cylinder projected on

the fluid (h), speeds by the uniform inflow velocity (U∞), time

by h/U∞, and pressure by ρU2
∞. The hydrodynamics of this sys-

tem is thus governed by α and Re, where Re =U∞h/ν.

Numerical Formulation

The flows considered in this study are governed by the incom-

pressible Navier–Stokes equations

∇ · uuu = 0, (1a)

∂uuu

∂t
+(uuu · ∇) uuu =−∇p+

1

Re
∇2 uuu. (1b)

If a three-dimensional perturbation field ({uuu′, p′}) is imposed

on a time-periodic two-dimensional base-flow homogeneous in

the cylinder spanwise direction ({ūuu, p̄}), the linearised model

for the evolution of the perturbation field can be derived as

∇ · uuu′ = 0, (2a)

∂uuu′

∂t
+(uuu′ · ∇) ūuu+(ūuu · ∇) uuu′ =−∇p′+

1

Re
∇2 uuu′. (2b)

Representing the perturbation field {uuu′, p′} with a Fourier

expansion following [1], perturbation wavenumbers decouple



from each other in the linearised model, permitting the stabil-

ity analysis at each Re and α to be performed as a function of

the wavenumber (m) alone. The wavenumber is related to the

instability wavelength (λ) through λ = 2π/m.

A nodal spectral-element method is used for spatial discreti-

sation [6] in conjunction with a third-order time-integration

scheme based on backwards differentiation [4, 5] to evolve

the two-dimensional form of the incompressible Navier–Stokes

equations (equation 1) to a saturated time-periodic state. Flo-

quet stability analysis is then performed by evolving a three-

dimensional perturbation field on the time-periodic base-flow

using the linearised model (equation 2) [1], and the com-

plex eigenmodes of the periodic system evaluated using the

ARPACK package [7]. The complex eigenvalues correspond

to the Floquet multipliers of the system (µ), which are related to

the instability growth rates (σ) through |µ| = exp(σT ), where T

is the period of the two-dimensional base-flow. The flow is thus

linearly unstable when the growth rate σ > 0 (|µ| > 1), and its

nature is one of either synchronous if the system’s eigenvalue

is positive real, subharmonic if negative real, or quasi-periodic

if an imaginary component is present. The critical Re for flow

transition is estimated as the Re where the instability growth rate

σ = 0. The two-dimensional flow solver and Floquet analysis

routine have been implemented and validated in various wake-

flow studies [3, 13]. Validation of the meshes and computational

domain used in this study can be found in [10].

Boundary Conditions

To simulate an unbounded flow through the computational do-

main, a streamwise velocity of U∞ was imposed at the inlet

while stress-free, impermeable boundaries were assigned at the

transverse walls. The outlet was treated with a standard pressure

outflow boundary condition and a zero outward-normal gradi-

ent of velocity, while the body was given a no-slip condition. A

high-order Neumann boundary condition was imposed on the

outward-normal gradient of pressure at all boundaries with a

Dirichlet condition on the velocity to maintain the overall third-

order accuracy of the scheme [5].

Results

The structure and characteristics of the two-dimensional base-

flows for this system at various α and Re are discussed in

[10]. The Floquet analysis requires the base-flow to be time-

periodic which limits the range of Re where this analysis can

be performed—higher Re flows quickly develop a spatial in-

stability where a secondary vortex street forms and introduces

incommensurate frequencies into the wake. Within the range

of available Re, the two-dimensional vortex street resembles

the familiar Kármán vortex street with counter-rotating vortices

shed from the body in succession which then rapidly decays as

it advects downstream.

Gradually increasing the cylinder inclination angle invokes

gradual changes to growth rate profile across the range of

wavenumbers investigated. At low angles of α< 24◦, a single

dominant peak is observed at wavenumbers similar to the Mode

A instability behind a circular cylinder, and is also synchronous

to the base-flow. Within 18◦<α< 36◦, a subharmonic mode

peak appears, although the synchronous mode branch remains

dominant (figure 2). This subharmonic mode becomes unsta-

ble beyond α≈ 34◦, with other inclinations within this range

showing the growth rate reaching a maximum negative value

before decreasing at higher Re. The subharmonic instability

mode becomes the first occurring mode at α≈ 34.6◦. From

36◦<α< 54◦, the growth rate profile shows only a dominant

subharmonic peak at wavenumbers similar to Mode C behind

Figure 2: An atypical growth rate vs wavenumber curve across

various Re, here for α= 24◦. Grey shaded regions denote

wavenumber domains where the instability modes typically

exhibited a local maximum, while non-shaded regions typi-

cally contain quasi-periodic mode branches. Low/high α cases

usually show only a single peak at either shaded regions,

with two-local-maxima profiles occurring over approximately

18◦.α. 36◦ within the range of Re investigated.

ring cross-sections [14]. The synchronous mode branch re-

appears at α≈ 54◦, and resumes as the first occurring insta-

bility at α≈ 55.4◦. For the range of Re investigated, instabili-

ties consistent with the synchronous Mode B branch and quasi-

periodic modes were not observed as they usually manifest at

much higher Re exceeding the upper bound limitation in this

study.

Figure 3: (top to bottom) Visualisation of the leading eigen-

mode superimposed on the two-dimensional base-flow for the

cylinder inclined at α= 0◦, 30◦, and 60◦. Blue/yellow iso-

surfaces represent positive/negative streamwise vorticity in the

leading eigenmode at arbitrary levels to visualise the instabil-

ity, and translucent red isosurfaces outline the two-dimensional

vortex loops.

The structure of the synchronous instability mode is visualised

for the cylinder inclined at α= 0◦, 30◦, and 60◦ (figure 3). Con-

sider the near wake region of the perturbation fields; the insta-

bility structure appears to be strongest in the core of the two-

dimensional vortices, and also qualitatively possesses the ‘half-

period-flip’ symmetry much like the Mode A instability [8]—in

this case, the two ‘half-periods’ that make a full shedding pe-

riod are not of the same length due to the asymmetry in the

wake induced by the cylinder’s inclination. Due to this similar-



ity, this synchronous instability will also be referred to as Mode

A [13, 14]. The structure of the subharmonic mode, shown in

figure 4, instead resembles the Mode C instability. The struc-

ture is periodic to two shedding cycles of the base flow, and will

hereafter be referred to as Mode C [13, 14].

Figure 4: (top to bottom) Visualisation of the instability mode

for flows past the cylinder inclined at α= 36◦, 45◦, and 54◦.

Contour levels and colors are as per figure 3.

Interpolating the instability growth rates across Re to zero

growth rate at each α yields the transition Re at various cylinder

inclinations. The neutral stability curve for this system is shown

in figure 5. As described previously, the Mode A instability

manifests over all inclinations α except within 34◦<α< 56◦

where Mode C takes over as the first occurring, and for most

cases also the only observable, instability. The Mode A to

Mode C switching is predicted to occur at α≈ 34.6◦ and the

subsequent Mode C to Mode A switching at α≈ 55.4◦. For

the transition Re for Mode A (ReA), a small kink is observed

in the curve from α≈ 28◦, but is smoothed out upon re-scaling

Re by the cylinder side length d—the ReA curve remains de-

flected at a different gradient for α≥ 30◦. This could be related

to the fact that α= 30◦ separate two cases where the cylinder

appears topologically different to the flow—one case presents

a single cylinder face in the downstream direction for the recir-

culation region to form over while the other presents two—the

two-dimensional wakes and dynamics of both scenarios demon-

strate several differences [10, 16]. The two-dimensional wake

appears to be most unstable overall at low cylinder inclinations

where the triangle points upstream, exhibiting the Mode A in-

stability. The Mode A branch at higher α where the triangle

points downstream appears almost as stable as the initial Mode

A branch close to the Mode C switch. Results for the wake

behind an isosceles triangular cylinder [9] oriented similarly to

the present cylinder at α= 60◦ shows an even higher transition

threshold at ReA = 164 without any observation of the Mode B

instability. This highlights the effects of the afterbody geometry

on flow stability. The Mode C instead appears to be most unsta-

ble at α≈ 45◦. It is interesting to note that the square cylinder

wake becomes unstable to Mode C at a much lower inclination

angle of 10.5◦[12, 13], and appears most unstable at an inclina-

tion of approximately 24◦ where the square cross-section geom-

etry would be approximately most asymmetric about the hori-

zontal centreline. Conversely, the triangular cylinder at α≈ 45◦

is not as geometrically asymmetrical as it is at α≈ 30◦, but yet

shows the Mode C to be most unstable for the former while

the latter inclination remains unstable only to Mode A. Using

the lift coefficient as a measure of asymmetries in the wake and

Figure 5: Neutral stability curves above which the linear insta-

bility manifests. Solid connecting lines through circular mark-

ers weave through transition Re scaled by h while dashed lines

through square markers connect the transition Re scaled by d.

Hollow symbols mark Mode A transitions, while filled symbols

mark Mode C.

flow-field about the body revealed no correlation with the sta-

bility of Mode C—[10] reported the lift coefficient to be highest

for α≈ 30◦, with no discerning pattern observed at α≈ 45◦.

The wavelengths of the two occurring instabilities for the flow

in critical state at various cylinder inclinations are shown in fig-

ure 6. The three discontinuous branches correspond directly to

the two Mode A branches and the Mode C branch depicted in

figure 5. For the low-α Mode A branch, the instability wave-

length (λA) appears strongly dependent on the cylinder inclina-

tion starting at λA ≈ 5.8h at an inclination of 0◦ and increasing

to λA ≈ 6.1h at α≈ 18◦. λA was observed to decrease smoothly

from inclinations 24◦ to 30◦, and again from 30◦ to approxi-

mately 35◦ where Mode C is expected to become dominant, the

latter exhibiting a more rapid decrease in wavelength which is

perhaps related to the change in gradient in the corresponding

ReA curve at these inclinations (figure 5). The Mode A branch

at higher cylinder inclinations on the other hand possesses a

more consistent wavelength, with λA decreasing from 4.3h at

α= 56◦ to 4.2h at α= 60◦. Results for λA for the two differ-

ent Mode A branches appear significantly different, with the

smallest λA of the low-α Mode A branch being ≈ 4.7h, while

the largest λA for the higher α Mode A branch being ≈ 4.3h.

Comparing these values to those arising from other bluff-body

wakes show λA of the low-α Mode A branch (re-scaled by the

cylinder side length d as shown in figure 6) to be similar to

that from the square cylinder wake (λA ≈ 4.2 to 5.7 times the

square cylinder side length [13]), and λA of the higher α Mode

A branch to be similar to that of the circular cylinder’s Mode

A (λA ≈ 3.96 times the cylinder diameter [1]). The instability

wavelength of the subharmonic Mode C (λC) instead appears

consistent at λC ≈ 1.6h–1.8h, in agreement with values quoted

from previous studies [13, 14].

Conclusions

The stability of the wakes produced by a triangular cylinder at

various inclination angles (α) is elucidated. Transition from

two- to three-dimensional flow is predicted to manifest through

either a synchronous instability mode consistent with Mode A



Figure 6: Predicted instability wavelength at transition. Mark-

ers and lines used are as defined in figure 5.

or the subharmonic Mode C at various ranges of α. For incli-

nations up to α≈ 34◦, the wake becomes unstable through an

instability consistent with Mode A with little or no indication

of Mode C becoming unstable; the transition Re for this insta-

bility mode increasing with α. This instability mode is lost for

α& 36◦ but becomes observable again at higher inclinations of

α& 56◦ as the geometry and wake approximately recovers a

streamwise symmetry. Both aforementioned instabilities pos-

sess initial wavelengths of approximately 4.7h–6.1h at low α
and later approximately 4.2h–4.3h when the instability mode

becomes the first-occurring again.

At intermediate inclination angles from approximately α= 36◦

to α= 54◦, the subharmonic Mode C was predominantly the

only instability observed over the range of wavenumbers, lack-

ing the synchronous mode branch almost entirely. The instabil-

ity wavelength decreases from approximately 1.8h–1.6h with

increasing α at its onset. It is interesting to note that this insta-

bility mode appears to be most unstable at an angle α≈ 45◦,

which contrasts to previous studies showing the Mode C to be

stronger in wakes with stronger asymmetries induced by the

geometry—the wake at α≈ 30◦ possesses the largest lift co-

efficient (associative with least symmetry in the flow field about

the body) but still shows the synchronous instability mode to de-

velop even past this inclination. Further direction for this study

could attempt to determine the metrics of any wake asymme-

tries present, and features of the flow which give rise to, and

amplifies, the Mode C instability.
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