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Abstract

The linear stability of a magnetohydrodynamic duct flow with
heating from below is investigated and serves as an extension
to the class of Poiseuille–Rayleigh–Bénard flows. Such flows
can be found in the blankets of nuclear fusion reactors and have
been of great interest in recent times due to the endeavour of
demonstrating the viability of nuclear fusion as a future energy
source. The flow is described by the quasi-two-dimensional
model proposed by Sommeria and Moreau [12] coupled with
the energy transport equation through the Boussinesq approxi-
mation. The onset of several instability modes in this system is
studied as functions of the non-dimensional governing param-
eters: Reynolds numberRe, Rayleigh numberRa, and modi-
fied Hartmann numberH. As H → 0, the classical plane plane
Poiseuille and Rayleigh–Bénard flows are recovered with crit-
ical values that are in agreement with previous literature.As
H → ∞, the relationshipsRec ∝ H1/2 andRac ∝ H are obtained.
Neutral stability curves are obtained for fixed values of lowRe
and lowRa conditions and are mapped ontoRac–H andRec–
H regimes, respectively. The critical eigenmodes feature char-
acteristics that are consistent with Tollmien–Schlichting waves
and Rayleigh–Bénard convection cells.

Introduction

The linear stability of an electrically conducting fluid flowing
through a rectangular duct subjected to a transverse magnetic
field and heating from below is investigated. There has been
growing interest in magnetohydrodynamic flows and fusion-
related applications in recent years due to its potentiallysig-
nificant contribution as a future energy source. The realisa-
tion of this potential energy source is most notably championed
through the International Thermonuclear Experimental Reactor
(ITER) project which is funded by several international entities.

This fundamental study is motivated in part by the desire to en-
hance heat transfer in the blanket ducts of nuclear fusion reac-
tors. The primary issue lies within the strong transverse mag-
netic field used to confine the plasma, as it causes the flow to be-
come quasi-two-dimensional and restricts the growth of distur-
bances to the horizontal walls. This consequence is detrimental
to the heat transfer properties of the flow. Several studies have
demonstrated heat transfer improvement with the implementa-
tion of turbulent promoters such as bluff bodies [2] and imposed
external forcing such as current injection [5]. However, these
flow modifiers are not always practicable and therefore the char-
acterisation of flow instabilities is required.

The stability of a magnetohydrodynamic duct flow to qua-
si-two-dimensional perturbations under a transverse magnetic
field, without consideration of thermal stratification, hasbeen
investigated previously by Pothérat [9]. It was found thatthe
critical modes of linear instability are Tollmien–Schlichting
waves. An asymptotic regime was observed forH& 2000 (large

Figure 1: The system under investigation with duct height 2L,
magnetic fieldB and the peak velocityU0. Unit vectors (̂ex, êy)
point in the (x,y) directions, respectively. The liquid metal flows
in the positive-x direction while the magnetic field acts in thez
direction (out-of-plane). Temperaturesθh (hot) andθc (cold)
are imposed on the bottom and top duct walls, respectively.

ratio between electromagnetic and viscous forces), with the
critical Reynolds number and streamwise wavenumber asymp-
totic relationships described byRec = 4.83504×104H1/2 and
kc = 0.161532H1/2, respectively. The results indicate that the
stability of the system in the limit ofH → ∞ is determined only
by the thickness of the Shercliff layer, which scales according
to δS ∝ 1/H1/2.

This paper extends the work of [9] through a linear stability
analysis of the same system with added thermal stratification.

Methodology

Problem Description

The system studied represents an electrically conducting fluid
with kinematic viscosityν, thermal diffusivity κ, volumetric
expansion coefficientα, densityρ, and electrical conductivity
σ, flowing through a horizontal rectangular duct of height 2L
and widtha, exposed to a transverse magnetic field of strength
B and a vertical temperature gradient. A schematic of the sys-
tem is shown in figure 1. The duct walls are electrically insu-
lated. Provided that the imposed transverse magnetic field is
sufficiently strong relative to the through-flow, the flow solu-
tion can be described accurately by the quasi-two-dimensional
model proposed by Sommeria and Moreau [12] (referred to as
the SM82 model hereafter). This is a result of the magnetic field
suppressing motions and gradients parallel to the magneticfield
in the interior of the flow. The SM82 model is used widely in
the field of magnetohydrodynamics as it reduces the dimension
of the problem to two-dimensions, and eliminates the need to
resolve the Hartmann layers, which are the smallest-scale struc-
tures in the system. Furthermore, the model has demonstrated
results consistent with three-dimensional magnetohydrodynam-
ic flows. Derivation and details of the SM82 model can be found
in [12, 10].



Governing Equations and Parameters

The SM82 equations are coupled with a thermal transport equa-
tion through a Boussinesq approximation to describe the mag-
netohydrodynamic duct flow with vertical thermal stratification.
The non-dimensional equations
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are obtained by normalising lengths by the half the duct height
L, velocity by the maximum velocity of the base flow profileU0,
time byL/U0, pressure byρU2

0 and temperature by∆θ= θh−θc
(temperature difference between the hot and cold walls). Here,
êy is a unit vector in positivey direction. The non-dimensional
parametersRe, Ra, H, andPr are respectively defined as
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wheren = 2 the number of Hartmann layers on out-of-plane
walls imparting friction on the quasi-two-dimensional flow, and
Ha is the Hartmann number describing the relative influence
of magnetic to viscous forces on the flow, defined byHa =
aB
√

σ/(ρν). The Prandtl number (ratio of momentum diffu-
sivity to thermal diffusivity) is fixed atPr = 0.022 to represent
the eutectic liquid metal alloy Galinstan (GaInSn) that is used
in a number of modern magnetohydrodynamic experiments [8].
Equation 1 is used for flows with both through-flow and heating
(i.e. Re> 0, Ra> 0). Different normalisations are adopted to
facilitate computations of the bookend casesRe= 0 andRa= 0.
The details have been omitted here.

The base flow solutions for velocitȳu= ū(y)êx and temperature
θ̄(y)êx are taken to be fully developed (i.e. time invariant and
dependent only ony), and are therefore defined based on the
known analytical expressions. The base temperature profileis
given byθ̄(y) = (1−y)/2. ForH = 0, the base velocity profile
is described by ¯u(y) = 1−y2 and forH > 0,
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Linear Stability Analysis

The governing equations are linearised by decomposing veloc-
ity, temperature and pressure solutions into the mean compo-
nent (base flow) and a fluctuating component (perturbation).
That is, f = f̄ + f ′ where the overbar and prime symbols rep-
resent the mean and fluctuating quantities, respectively, and f
is any of u, v, p or θ. Due to the translational invariance
of the problem in thex direction, the perturbations comprise
travelling waves in thex direction and take the modal form
of f ′ = δ f̃ (y)exp[i(kx−ωt)], whereδ is taken to be a small
parameter,k is the streamwise wavenumber,ω is a complex
eigenvalue related to the frequency and growth rate of the eigen-
vector, and the tilde components ( ˜u, ṽ, p̃, θ̃) are eigenfunctions.
Substituting these expressions into equation (1) (forRe> 0,
Ra> 0) and retaining the terms up to orderO(δ) yields

1
Re

M
2ṽ+ ikū′′ṽ− ikūMṽ

− H
Re
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Re2Pr
k2θ̃ =−iωMṽ, (4a)
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RePr
Mθ̃ =−iωθ̃, (4b)

where D is the differentiation operator with respect toy and
M= D2−k2. The linearised equations are limited to transverse
rolls since longitudinal rolls are outside the scope of the SM82
model and therefore not considered in this study.

The linearised governing equations are treated as an eigenvalue
problem posed in the standard form following McBain, Chubb
and Armfield [7], whereby the eigenvectors contain ˜v andθ̃. A
MATLAB eigenvalue solver is used to obtain the leading eigen-
values and corresponding eigenvectors for equation (4) (Re> 0,
Ra> 0). To begin searching for the critical conditions, two of
the three governing parameters (eitherRe, Ra or H) are fixed
while the third parameter is varied to seek Im{ω} = 0. The
flow condition is considered to be critical once the varying pa-
rameter (eitherRec, Rac or Hc) and corresponding growth rate
have converged to at least 5 significant figures.

The recovered critical values for Rayleigh–Bénard and
Poiseuille flow were recovered and agree very well with pre-
vious literature [3, 4]. Additional validation studies were con-
ducted but are not presented here. The present code has been
successfully implemented for flows driven by horizontal con-
vection [13] and is based on several numerical methodologies
referenced therein.

Results and Discussion

Stability for Re = 0 and Ra = 0

The neutral stability curves forRec for a range of Rayleigh
numbers (0≤ Ra≤ 1× 103) and the corresponding critical
wavenumberskc are provided in figure 2(a). This section is
first dedicated toRa= 0. An excellent agreement inRec val-
ues between the present study and [9] was achieved with a
maximum percentage error of less than 0.1% across the range
of 10−2 ≤ H ≤ 104. The neutral stability curve forRa= 0
demonstrates thatRec increases monotonically with increas-
ing H which is due to a stronger through-flow being required
to counteract the increased damping induced by the increased
magnetic field strength. AsH → 0, the flow becomes purely
hydrodynamic and is unstable to Tollmien–Schlichting waves
(shear-dominant instability) atRec = 5772.22 [4]. As H → ∞,
the onset of instability is described by an asymptotic trend
regimeRec = 48347H1/2 for H & 2000 governed by the Sher-
cliff layers. The streamwise wavenumber of the instabilityis a
constantkc = 1.02 at lowH and adopts an asymptotic trend at
high H described bykc = 0.1615H1/2.

The neutral stability curves forRac at various Reynolds num-
bers (0≤ Re≤ 300) and the corresponding wavenumbers are
shown in figure 2(b). This section is focused onRe= 0 (rep-
resented by the dashed-line in the figure). AsH → 0, classi-
cal plane Rayleigh–Bénard flow is recovered and the pertur-
bations are controlled by the balance between buoyancy and
viscous dissipation. Therefore, the appearance of the convec-
tion cells takes place at constantRac = 213.47 (corresponding
to Ra= 1707.7 based on full duct-height length scale). How-
ever, asH → ∞ the neutral stability curve approaches a trend
described byRac = 21.672H0.991 for 2000≤ H ≤ 104. It is
expected here that the exponent 0.991 will approach unity as
H → ∞ and may be understood as follows. In the limitH → ∞,
Hartmann friction dominates and has to be balanced by buoy-
ancy for convection to set in. Hence, at the onset the balancebe-
tween these forces impliesRa∼ H, which scales with the duct
height 2L. The critical wavenumber of the instability remains
relatively constant across allH, with kc → 1.5582 asH→ 0, and
kc → π/2 asH → ∞. TheRac andkc scalings are in agreement
with the linear stability analysis performed by Burr and Müller
[1] who studied Rayleigh–Bénard convection in liquid metal
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Figure 2: Neutral stability curves of (a) Rac and (b) Rec and
their correspondingkc. The symbols identify theReor Ra for
each curve. Shaded regions represent unstable flow conditions.
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Figure 3: (a) Vorticity in the eigenvector field of(Re,Ra,H) =
(10033,0,1) for kc = 0.9713 with closeup of boundary layer in
the inset. Vorticity (top panel) and temperature (bottom panel)
for (b) (0,235,1) with kc = 1.5657, and (c) (0,199513,1×104)
with kc = 1.5929. Dark and light shading represent negative and
positive values, respectively.

layers under the influence of a horizontal magnetic field. The
streamwise wavenumber scaling for bothRe= 0 andRa= 0
cases asH → ∞ support the view that the instability scales with
the Shercliff layer thickness and channel height, respectively.

A typical plot of vorticity in the eigenvector field forRec with
Ra= 0 (no heating) andH = 1 is illustrated in figure 3(a). The
instability caused by the shearing through-flow is most dom-
inant along the horizontal walls in the boundary layers. Fur-
ther increasingH only results in thinner Shercliff layers and
therefore decreasing the region occupied by instability distur-
bance structures (similar to figure 3c). For all H, the leading
eigenvalue was consistently found to lie on the A branch of
the eigenvalue spectrum (referred to as wall modes [11]), in
agreement with [9]. For the case of heating and no through-
flow, it is found that the vorticity disturbances occupy bothre-
gions along the walls and throughout the interior of the ductas
shown in figure 3(b)(top panel) forH = 1. The interior distur-
bances are evident only at lowH as the strength of the counter-
rotating Rayleigh–Bénard-like cells are comparable to the wall
disturbances. Increases to the magnetic field strength causes the
vorticity in the interior to weaken and diminish and ultimately
lead to an eigenvector field that is devoid of any vorticity distur-
bances in the interior. Despite this, the structure of the thermal
disturbances appear to be unaffected and is insensitive toH.



Stability for 0≤ Re ≤ 300

Figure 2(a) shows neutral stability curves for several Reynolds
numbers over 0≤ Re≤ 300. Throughout this range ofRe, the
neutral stability curves maintain their continuous profiles with
slight changes with increasingRe. These curves reveal thatRac
is Reynolds number-dependent in the limitH → 0, but develops
an independent relationship described byRac = 21.672H0.991

asH → ∞. As H increases, the Hartmann friction becomes the
dominant damping process over viscous dissipation acting on
the instabilities and therefore at sufficiently largeH, the insta-
bility threshold becomes insensitive to the Reynolds number.
However, for low to moderate values ofH, the viscous dissi-
pation influencesRac causing it to increase with increasingRe.
The stabilisation can be explained by the disruption in forming
recirculating convection cells caused by the shear and therefore
a stronger thermal gradient is required to overcome the through-
flow. This is a well known result and demonstrated by experi-
ments by Luijkx, Platten, and Legros [6]. Correspondingly,in-
creasingRedemonstrates a decrease inkc (i.e. increased wave-
length) caused by the stronger shear which elongates the form-
ing convection cells. The increase inkc at intermediate values of
H is related to the change in force balances at the onset of con-
vection cells. At higherH, the instability is determined solely
by the Hartmann layers and thereforekc is independent ofRe.

Stability for 0≤ Ra ≤ 1×103

The stability of finiteRa flows introduces a thermal-dominant
instability in addition to the shear-dominant instabilityobserved
at Ra= 0. The stability of both these modes are presented in
figure 2(b) as solid lines and dashed-lines, respectively. The
shear-dominant instability is a Tollmien–Schlichting wave and
is found to be weakly sensitive to allRa investigated and
therefore appears as a single curve. In contrast, the thermal-
dominant instability is very sensitive toRa and first develops
for Ra= 213.47 provided that the through-flow is sufficiently
weak. A strong through-flow suppresses the development of the
thermoconvective cells. Hence, the solid-line curves represent
the suppression of the thermal instability and is the reasonfor
why instability exists below the curves as opposed to above the
curves. Therefore, asRe→ 0 the flow becomes more prone to
thermal instability whereas the flow is more susceptible to shear
instability asRe→ ∞. This result demonstrates that increasing
the Reynolds number acts to suppress the thermally-dominant
transverse rolls as has been discussed previously. However, this
approach also demonstrates a progression from an unstable flow
to a stable flow, and to an unstable flow again with increasing
Re, which was not observable in theRa-H stability diagram.

The Re–H stability diagram shows that thermal disturbances
are weakly sensitive to the magnetic damping at lowH but are
abruptly suppressed when the magnetic field strength is suffi-
ciently strong. Indeed theH values corresponding to the verti-
cal neutral curves are precisely the critical values demonstrated
in the Ra–H regime forRe= 0 (see figure 2a). The critical
wavenumbers associated with the shear-dominant instability (as
shown in figure 2b) are weakly sensitive to the range ofRa in-
vestigated here, which is not surprising given thatRec is also
weakly sensitive. The thermal-dominant instability adopts a
larger wavenumber structure which decreases with increasing
Ra. The eigenvectors appear similar to those shown in figure 3.

Conclusions

This paper describes the linear stability of Poiseuille–Rayleigh–
Bénard flows under the effect of a transverse magnetic field for
low Reand lowRaconditions. The onset of shear-dominant in-
stability and suppression of thermal-dominant instability were
determined and mapped onto stability diagrams over the range

of 0≤ H ≤ 104. Asymptotic relationships described byRec ∝
H1/2 andRac ∝ H asH → ∞ were obtained. In the former case,
the flow stability is governed by the individual Shercliff lay-
ers while in the latter case, the balance between buoyancy and
Hartmann friction dictates stability.
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