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Abstract

The linear stability of a magnetohydrodynamic duct flow with
heating from below is investigated and serves as an extensio
to the class of Poiseuille—Rayleigh-Bénard flows. Suchslow
can be found in the blankets of nuclear fusion reactors ane ha
been of great interest in recent times due to the endeavour of
demonstrating the viability of nuclear fusion as a futurergy
source. The flow is described by the quasi-two-dimensional
model proposed by Sommeria and Moreau [12] coupled with
the energy transport equation through the Boussinesq ®ppro
mation. The onset of several instability modes in this syste
studied as functions of the non-dimensional governingmpara
eters: Reynolds numbdke Rayleigh numbeRa and modi-
fied Hartmann numbéd. As H — 0, the classical plane plane
Poiseuille and Rayleigh—Bénard flows are recovered with cr
ical values that are in agreement with previous literatue.

H — o, the relationshipRe. 0 HY/2 andRa, O H are obtained.
Neutral stability curves are obtained for fixed values of Re
and lowRa conditions and are mapped orfa.—H and Re—

H regimes, respectively. The critical eigenmodes featues-ch
acteristics that are consistent with Tollmien—Schliciptiraves
and Rayleigh—Bénard convection cells.

Introduction

The linear stability of an electrically conducting fluid flowg
through a rectangular duct subjected to a transverse magnet
field and heating from below is investigated. There has been
growing interest in magnetohydrodynamic flows and fusion-
related applications in recent years due to its potentisilly
nificant contribution as a future energy source. The realisa
tion of this potential energy source is most notably chamgib
through the International Thermonuclear Experimentaldea
(ITER) project which is funded by several internationalibes.

This fundamental study is motivated in part by the desiretto e
hance heat transfer in the blanket ducts of nuclear fusiac-re
tors. The primary issue lies within the strong transversg-ma
netic field used to confine the plasma, as it causes the flowto be
come quasi-two-dimensional and restricts the growth dfidis
bances to the horizontal walls. This consequence is deattahe
to the heat transfer properties of the flow. Several studies h
demonstrated heat transfer improvement with the impleasent
tion of turbulent promoters such as bluff bodies [2] and isgab
external forcing such as current injection [5]. Howevegsi
flow modifiers are not always practicable and therefore tle-ch
acterisation of flow instabilities is required.

The stability of a magnetohydrodynamic duct flow to qua-
si-two-dimensional perturbations under a transverse etagn
field, without consideration of thermal stratification, Haesen
investigated previously by Pothérat [9]. It was found ttiet
critical modes of linear instability are Tollmien—Schliiciy
waves. An asymptotic regime was observedHgr, 2000 (large
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Figure 1: The system under investigation with duct heidht 2
magnetic field and the peak velocityg. Unit vectors &, &)
point in the &,y) directions, respectively. The liquid metal flows
in the positivex direction while the magnetic field acts in tke
direction (out-of-plane). Temperatur®g (hot) and6. (cold)
are imposed on the bottom and top duct walls, respectively.

ratio between electromagnetic and viscous forces), with th
critical Reynolds number and streamwise wavenumber asymp-
totic relationships described Bye. = 4.83504x 10*HY/2 and

ke = 0.16153H1/2, respectively. The results indicate that the
stability of the system in the limit dfi — o is determined only

by the thickness of the Shercliff layer, which scales acogrd

to 8s 0 1/HY/2.

This paper extends the work of [9] through a linear stability
analysis of the same system with added thermal stratifizatio

Methodology

Problem Description

The system studied represents an electrically conductird fl
with kinematic viscosityv, thermal diffusivity K, volumetric
expansion coefficientt, densityp, and electrical conductivity

o, flowing through a horizontal rectangular duct of height 2
and widtha, exposed to a transverse magnetic field of strength
B and a vertical temperature gradient. A schematic of the sys-
tem is shown in figure 1. The duct walls are electrically insu-
lated. Provided that the imposed transverse magnetic feld i
sufficiently strong relative to the through-flow, the flow ol
tion can be described accurately by the quasi-two-dimeasio
model proposed by Sommeria and Moreau [12] (referred to as
the SM82 model hereafter). This is a result of the magnetit fie
suppressing motions and gradients parallel to the magfiedtic

in the interior of the flow. The SM82 model is used widely in
the field of magnetohydrodynamics as it reduces the dimensio
of the problem to two-dimensions, and eliminates the need to
resolve the Hartmann layers, which are the smallest-stale-s
tures in the system. Furthermore, the model has demortstrate
results consistent with three-dimensional magnetohydraih-

ic flows. Derivation and details of the SM82 model can be found
in[12, 10].



Governing Equations and Parameters

The SM82 equations are coupled with a thermal transport-equa
tion through a Boussinesq approximation to describe the-mag
netohydrodynamic duct flow with vertical thermal stratifioa.

The non-dimensional equations
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are obtained by normalising lengths by the half the ducthteig
L, velocity by the maximum velocity of the base flow profilg,
time byL /Ug, pressure bpug and temperature 0 = 6, — 6
(temperature difference between the hot and cold wallsje He
&y is a unit vector in positivg direction. The non-dimensional
parameterfke Ra H, andPr are respectively defined as

3 2
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wheren = 2 the number of Hartmann layers on out-of-plane
walls imparting friction on the quasi-two-dimensional fland

Ha is the Hartmann number describing the relative influence
of magnetic to viscous forces on the flow, defined Hig =
aBy/o/(pv). The Prandtl number (ratio of momentum diffu-
sivity to thermal diffusivity) is fixed aPr = 0.022 to represent
the eutectic liquid metal alloy Galinstan (GalnSn) thatsedi

in a number of modern magnetohydrodynamic experiments [8].
Equation 1 is used for flows with both through-flow and heating
(i.e. Re> 0, Ra> 0). Different normalisations are adopted to
facilitate computations of the bookend caBes= 0 andRa= 0.

The details have been omitted here.

@)

The base flow solutions for velocify= u(y)& and temperature
B(y)& are taken to be fully developed (i.e. time invariant and
dependent only ory), and are therefore defined based on the
known analytical expressions. The base temperature pisfile
given by6(y) = (1—y)/2. ForH = 0, the base velocity profile

is described byi(y) = 1—y2 and forH > 0,

_ [ coshvH) cosh(vHy)
u(y) = (W) (1— 7) . (3)

cosh{vH)
Linear Stability Analysis

The governing equations are linearised by decomposingvelo
ity, temperature and pressure solutions into the mean compo
nent (base flow) and a fluctuating component (perturbation).
That is, f = f + f’ where the overbar and prime symbols rep-
resent the mean and fluctuating quantities, respectivaty,fa

is any ofu, v, p or 8. Due to the translational invariance
of the problem in thex direction, the perturbations comprise
travelling waves in thex direction and take the modal form
of ' = 8f(y)expli(kx— wt)], whered is taken to be a small
parameterk is the streamwise wavenumbep, is a complex
eigenvalue related to the frequency and growth rate of thenei
vector, and the tilde components, {;p,0) are eigenfunctions.
Substituting these expressions into equation (1) Rer> 0,
Ra> 0) and retaining the terms up to ord€(d) yields

iM2\7+ ik — i KMV

Re
H Ra ~
——MV— K28 = —iMV 4a
Re REPr ' (4a)
—0/—iki®+ iMé:-iwé, (4b)

RePr

where D is the differentiation operator with respectytand

M = D2 — k2. The linearised equations are limited to transverse
rolls since longitudinal rolls are outside the scope of tM83
model and therefore not considered in this study.

The linearised governing equations are treated as an eilyenv
problem posed in the standard form following McBain, Chubb
and Armfield [7], whereby the eigenvectors contaiantd6. A
MATLAB eigenvalue solver is used to obtain the leading eigen
values and corresponding eigenvectors for equatiorRd)-(0,
Ra> 0). To begin searching for the critical conditions, two of
the three governing parameters (eitfRe Raor H) are fixed
while the third parameter is varied to seek{®m} = 0. The
flow condition is considered to be critical once the varyirg p
rameter (eitheRe;, Ra: or H¢) and corresponding growth rate
have converged to at least 5 significant figures.

The recovered critical values for Rayleigh—Bénard and
Poiseuille flow were recovered and agree very well with pre-
vious literature [3, 4]. Additional validation studies veeton-
ducted but are not presented here. The present code has been
successfully implemented for flows driven by horizontal con
vection [13] and is based on several numerical methodaogie
referenced therein.

Results and Discussion

Stability for Re = 0and Ra=0

The neutral stability curves foRe for a range of Rayleigh
numbers (0< Ra< 1 x 10%) and the corresponding critical
wavenumberk. are provided in figure ). This section is
first dedicated tdRa= 0. An excellent agreement iRe. val-

ues between the present study and [9] was achieved with a
maximum percentage error of less that% across the range
of 1072 < H < 10*. The neutral stability curve foRa= 0
demonstrates thaRe. increases monotonically with increas-
ing H which is due to a stronger through-flow being required
to counteract the increased damping induced by the inalease
magnetic field strength. All — 0, the flow becomes purely
hydrodynamic and is unstable to Tollmien—Schlichting veave
(shear-dominant instability) &e. = 577222 [4]. ASH — o,

the onset of instability is described by an asymptotic trend
regimeRe, = 4834H /2 for H > 2000 governed by the Sher-
cliff layers. The streamwise wavenumber of the instabikta
constantkc = 1.02 at lowH and adopts an asymptotic trend at
high H described by = 0.1618H /2.

The neutral stability curves fdRa; at various Reynolds num-
bers (0< Re< 300) and the corresponding wavenumbers are
shown in figure 2§). This section is focused dRe= 0 (rep-
resented by the dashed-line in the figure). s~ 0, classi-

cal plane Rayleigh—-Bénard flow is recovered and the pertur-
bations are controlled by the balance between buoyancy and
viscous dissipation. Therefore, the appearance of theecsnv
tion cells takes place at constdRé; = 21347 (corresponding

to Ra= 17077 based on full duct-height length scale). How-
ever, asH — o the neutral stability curve approaches a trend
described byRa = 21.672H%99 for 2000< H < 10%. It is
expected here that the exponem®L will approach unity as

H — o« and may be understood as follows. In the liit> o,
Hartmann friction dominates and has to be balanced by buoy-
ancy for convection to set in. Hence, at the onset the balagce
tween these forces implid®a~ H, which scales with the duct
height 2.. The critical wavenumber of the instability remains
relatively constant across &l with ke — 1.5582 aH — 0, and

ke — 1/2 asH — «. TheRa; andk. scalings are in agreement
with the linear stability analysis performed by Burr and il

[1] who studied Rayleigh—Bénard convection in liquid nheta
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Figure 2: Neutral stability curves o) Ra: and p) Re. and
their correspondindtc. The symbols identify th&®e or Rafor
each curve. Shaded regions represent unstable flow camslitio
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Figure 3: @) Vorticity in the eigenvector field ofReRaH) =
(100330, 1) for ke = 0.9713 with closeup of boundary layer in
the inset. Vorticity (top panel) and temperature (bottomgba

for (b) (0,235, 1) with k. = 1.5657, and¢) (0,1995131 x 10%)

with ke = 1.5929. Dark and light shading represent negative and
positive values, respectively.

layers under the influence of a horizontal magnetic field. The
streamwise wavenumber scaling for béte= 0 andRa= 0
cases abl — o support the view that the instability scales with
the Shercliff layer thickness and channel height, respelgti

A typical plot of vorticity in the eigenvector field fdRe: with
Ra= 0 (no heating) anti = 1 is illustrated in figure 3). The
instability caused by the shearing through-flow is most dom-
inant along the horizontal walls in the boundary layers. - Fur
ther increasingH only results in thinner Shercliff layers and
therefore decreasing the region occupied by instabilisguai
bance structures (similar to figur€)3 For all H, the leading
eigenvalue was consistently found to lie on the A branch of
the eigenvalue spectrum (referred to as wall modes [11]), in
agreement with [9]. For the case of heating and no through-
flow, it is found that the vorticity disturbances occupy both
gions along the walls and throughout the interior of the disct
shown in figure 3f)(top panel) forH = 1. The interior distur-
bances are evident only at Idwas the strength of the counter-
rotating Rayleigh—Bénard-like cells are comparable towkall
disturbances. Increases to the magnetic field strengtlesdlis
vorticity in the interior to weaken and diminish and ultiralgt
lead to an eigenvector field that is devoid of any vorticitstdi-
bances in the interior. Despite this, the structure of tleerttal
disturbances appear to be unaffected and is insensitide to



Stability for 0 < Re < 300

Figure 2@) shows neutral stability curves for several Reynolds
numbers over & Re< 300. Throughout this range &e the
neutral stability curves maintain their continuous prafileith
slight changes with increasii®e These curves reveal the,

is Reynolds number-dependent in the litdit> O, but develops
an independent relationship describedfeg = 21.672H0991
asH — «. As H increases, the Hartmann friction becomes the
dominant damping process over viscous dissipation actng o
the instabilities and therefore at sufficiently ladgethe insta-
bility threshold becomes insensitive to the Reynolds numbe
However, for low to moderate values bf, the viscous dissi-
pation influence®Ra; causing it to increase with increasife
The stabilisation can be explained by the disruption in fogn
recirculating convection cells caused by the shear aneéfiwer

a stronger thermal gradient is required to overcome thaigiro
flow. This is a well known result and demonstrated by experi-
ments by Luijkx, Platten, and Legros [6]. Correspondingty,
creasingRedemonstrates a decreasekjn(i.e. increased wave-
length) caused by the stronger shear which elongates ttre for
ing convection cells. The increaseknat intermediate values of

H is related to the change in force balances at the onset of con-
vection cells. At higheH, the instability is determined solely
by the Hartmann layers and thereféeas independent oRe

Stability for 0 < Ra < 1x 103

The stability of finiteRa flows introduces a thermal-dominant
instability in addition to the shear-dominant instabilityserved

at Ra= 0. The stability of both these modes are presented in
figure 2p) as solid lines and dashed-lines, respectively. The
shear-dominant instability is a Tollmien—Schlichting waand

is found to be weakly sensitive to aRa investigated and
therefore appears as a single curve. In contrast, the therma
dominant instability is very sensitive fa and first develops
for Ra= 21347 provided that the through-flow is sufficiently
weak. A strong through-flow suppresses the developmentof th
thermoconvective cells. Hence, the solid-line curveses@nt
the suppression of the thermal instability and is the redson
why instability exists below the curves as opposed to aboee t
curves. Therefore, @&e— 0 the flow becomes more prone to
thermal instability whereas the flow is more susceptibléens
instability asRe— c. This result demonstrates that increasing
the Reynolds number acts to suppress the thermally-dominan
transverse rolls as has been discussed previously. Howtkiger
approach also demonstrates a progression from an unstable fl
to a stable flow, and to an unstable flow again with increasing
Re which was not observable in theH stability diagram.

The Re-H stability diagram shows that thermal disturbances
are weakly sensitive to the magnetic damping at kbwut are
abruptly suppressed when the magnetic field strength is suffi
ciently strong. Indeed the values corresponding to the verti-
cal neutral curves are precisely the critical values dertnatesl

in the Ra-H regime forRe= 0 (see figure &). The critical
wavenumbers associated with the shear-dominant ingafait
shown in figure B) are weakly sensitive to the rangeR&in-
vestigated here, which is not surprising given tRat is also
weakly sensitive. The thermal-dominant instability adopt
larger wavenumber structure which decreases with inargasi
Ra The eigenvectors appear similar to those shown in figure 3.

Conclusions

This paper describes the linear stability of PoiseuilleA8igh—
Bénard flows under the effect of a transverse magnetic fogld f
low Reand lowRaconditions. The onset of shear-dominant in-
stability and suppression of thermal-dominant instapiliere
determined and mapped onto stability diagrams over theerang

of 0 < H < 10*. Asymptotic relationships described Rg. O
H1/2 andRa O H asH — « were obtained. In the former case,
the flow stability is governed by the individual Shercliffyta
ers while in the latter case, the balance between buoyartty an
Hartmann friction dictates stability.
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