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Abstract 

Horizontal convection driven by a linear temperature profile 

along the bottom of a two dimensional rectangular enclosure is 

perturbed by a small tuned zero-net-mass-flux (ZNMF) jet.  At a 

Rayleigh number below the natural onset of instability, the 

boundary layer is found to be convectively unstable, exhibiting a 

disturbance pattern consistent with a Rayleigh-Bénard 

mechanism.  Nusselt number is enhanced across a range of 

frequencies for all perturbation amplitudes, with the response 

dominated by two frequencies differing by approximately a 

factor of two: each invokes the shedding of pulsing vortices 

moving through the vertical end-wall plume at the higher 

frequency.  This points to a natural sensitivity in this flow to 

disturbances convecting in the upstream boundary layer. 

Introduction  

Horizontal convection is a form of convection in which the flow 

is triggered by a heating differential applied across one horizontal 

boundary, either at the top or bottom boundary.  Unlike the 

comprehensively studied Rayleigh-Bénard convection, in which 

vertical heating from below promotes overturning, in horizontal 

convection the heating on the uneven forcing boundary leads to 

overturning of the fluid [3].  Horizontal temperature gradients are 

found in geophysical flows, including the Earth’s oceans, 

atmosphere and mantle [1]. 

The characteristics of horizontal convection are highly dependent 

on the Rayleigh number, which indicates the strength of the 

heating differential.  Fluid flow at low Rayleigh numbers is 

laminar and diffusive in nature; no boundary layer is present.  

Overturning circulation is approximately symmetrical and is 

caused by the destabilizing buoyancy input.  At higher Rayleigh 

numbers the fluid flow moves from diffusion-dominated to 

convection-dominated and a thermal and velocity boundary layer 

begin to form along the horizontal boundary where the 

differential temperature is applied [9]. 

Above a critical Rayleigh number the flow becomes unsteady.  

Instability presents as mushroom shaped plumes breaking out 

from the boundary layer and eddies forming within the vertical 

plume, which transports the hotter, more buoyant fluid towards 

the top of the tank before it recirculates horizontally along the top 

and diffuses in the interior of the box.  Understanding the nature 

of the instabilities in horizontal convection is important as 

controversy remains regarding both the transition to unstable 

flow and the role of turbulence in the flow.  Earlier research 

suggested that horizontal convection is not turbulent [8], however 

recent experimental and numerical studies have indicated 

horizontal convection does feature instabilities and turbulence 

[7,9,2]. 

While the manifestation of instability in horizontal convection is 

increasingly well understood [2,3,9], the characteristics of the 

underlying instability mechanism is less clear.  Working on the 

hypothesis that instability originates within the forcing boundary 

 

Figure 1. Schematic representation of the two-dimensional problem under 

consideration. 

layer, the present study seeks to investigate the response of a 

horizontal convection flow a little below the onset of unsteady 

flow to a controlled, localized perturbation.  The perturbation is 

implemented using a periodic oscillation of a small ZNMF jet 

embedded flush with the forcing boundary. 

Numerical Model and Methodology 

Model Description 

Figure 1 shows a schematic of the problem being investigated – a 

two dimensional fluid undergoing horizontal convection in a 

rectangular box with height, 𝐻, and width, 𝐿, where consistent 

with Mullarney et al. [7], a fixed 𝐻/𝐿 = 0.16 is used.  The flow 

is instigated by applying a linear temperature profile on the base 

of the enclosure.  The remaining three walls are perfectly 

insulated.  The two side walls have a no slip boundary condition.  

The bottom surface has a no slip boundary condition with the 

exception of the ZNMF jet location, while the upper horizontal 

boundary has a second broad and weak ZNMF jet to satisfy 

conservation of mass.  There are numerous parameters involved 

in quantifying the periodic perturbation – these include the 

ZNMF jet amplitude, 𝐴, frequency, ω, position, 𝑥𝑗  and orifice 

width, 𝑑. 

This work seeks to characterise the response of the flow via the 

Nusselt number to boundary-layer perturbation of specific 

amplitude and frequency. 

Governing Equations 

The governing equations are the dimensionless Navier-Stokes 

equations for a Boussinesq fluid, which are expressed as 

𝜕𝒖

𝜕𝑡
=  −(𝒖 ∙ 𝛻)𝒖 − 𝛻𝑝 + 𝑃𝑟𝛻2𝒖 − 𝑃𝑟𝑅𝑎𝒈̂𝑇,           (1) 

𝛻 ∙ 𝒖 = 0,                                      (2) 

𝜕𝑇

𝜕𝑡
=  −(𝒖 ∙ 𝛻)𝑇 +  𝛻2𝑇,                           (3) 



where 𝒖, 𝑡, 𝑝, 𝑃𝑟, 𝑅𝑎, 𝒈̂ and 𝑇 are the velocity vector, time, 

static pressure (kinematic), Prandtl number, Rayleigh number, 

gravity unit vector and temperature of the fluid respectively.  In 

this study lengths, velocities, time, pressure and temperature are 

scaled by 𝐿, 𝜅𝑇/𝐿, 𝐿2/𝜅𝑇, 𝜌0𝜅𝑇
2/𝐿2 and 𝛿𝑇 respectively.  𝜅𝑇 is 

the thermal diffusivity of the fluid, 𝜌0 is a reference density and 

𝛿𝑇 is the temperature difference applied along the bottom 

boundary. 

The Rayleigh number is defined as 

𝑅𝑎 =  
𝑔𝛼𝛿𝑇𝐿3

𝜐𝛫𝑇
 ,                                    (4) 

where 𝑔 is the acceleration due to gravity , 𝛼 is the thermal 

expansion coefficient and 𝜐 is the kinematic viscosity of the 

fluid. 

The Prandtl number is defined as 

𝑃𝑟 =  
𝜐

𝛫𝑇
 .                                           (5) 

A Prandtl number of 6.14 is used for this study, which is 

consistent with water at room temperature. 

The Nusselt number, which is the ratio of convective to 

conductive heat transfer, is defined as 

𝑁𝑢 =  
𝐹𝑇𝐿

𝜌0𝑐𝑝𝛫𝑇𝛿𝑇
 ,                                   (6) 

where 𝐹𝑇 is the time average of the absolute heat flux along the 

forcing boundary and 𝑐𝑝 is the specific heat capacity of the fluid. 

The velocity profile for the ZNMF jet applied at the forcing 

boundary is parabolic with position and sinusoidal with time and 

is defined as 

𝑣𝑗 = [1 −
4

𝑑2 (𝑥 − 𝑥𝑗)
2

] 𝑣1 𝑠𝑖𝑛(𝜔𝑡) ,                    (7) 

where 𝑣1 is the maximum velocity of the ZNMF jet.  The 

velocity, 𝑣𝑗 , is valid over 𝑥𝑗 − 𝑑/2 ≤ 𝑥 ≤ 𝑥𝑗 + 𝑑/2,   𝑡 ≥ 0. 

A jet position of 𝑥𝑗 = 0.75𝐿 and width of 𝑑 = 0.1 was used for 

the entirety of the analysis with the intention of positioning the 

jet where instabilities are first identified in the non-perturbed case 

and selecting a width such that the ZNMF jet would not 

significantly disrupt the boundary layer. 

Previous studies of a similar numerical model identified 

instabilities within the flow occurring at Rayleigh numbers 

beyond 109 [9].  A Rayleigh number of 2.5 × 108 is used for this 

study, which is below the critical Rayleigh number but 

sufficiently high to enable instabilities initiated by the ZNMF jet 

to propagate downstream. 

Jet amplitudes up to 𝑣1 = 1000 are considered in this study, 

which corresponds to the maximum jet flow rate being 

approximately two-thirds of the horizontal flow in the kinematic 

boundary layer at that point.  Hence the jet flows are always less 

than the unperturbed boundary layer flow and can therefore be 

regarded as a perturbation of, rather than an obliteration of, the 

boundary layer. 

Numerical Method 

The governing equations are solved numerically using a high-

order solver implementing a spectral element method for spatial 

discretisation and a third-order time integration scheme for the 

two dimensional rectangular enclosure with the aforementioned 

applied perturbation.  The solver has been validated and 

employed for horizontal convection flows, including in Sheard 

and King [9] and Hussam et al. [4].  The spectral element method 

combines the desirable convergence properties of the spectral 

 

Figure 2. Percentage error for the global temperature integration, 𝐿2 norm 
and the Nusselt number at the lower boundary against polynomial degree.  
The degrees of freedom (DOF) for each polynomial degree is also shown. 

method and the geometric flexibility of the finite element method 

[5]. 

A mesh consisting of 3692 rectangular elements with a coarser 

mesh in the centre of the domain and a greater number of 

elements in close proximity to the boundaries to resolve the flow 

was used. 

Three parameters were monitored in a grid resolution study – the 

integration of the temperature over the whole domain, the 𝐿2 

norm of the flow and the Nusselt number at the lower boundary.  

The results for varying polynomial degree are shown in figure 2.  

The percentage error is defined as the difference between the 

parameter value at the current element polynomial degree and the 

previous polynomial degree divided by the parameter value at the 

previous polynomial degree.  The percentage error approximately 

decreases exponentially as the order of the shape function 

increases, which is a desirable property of the spectral element 

method [6].  An element polynomial degree of six is used 

henceforth, resulting in a total of 132,912 nodes (36 nodes per 

element) and 372,564 degrees of freedom. 

Results and Discussion 

Figure 3 plots the Nusselt number at the lower boundary of the 

enclosure against the frequency of the ZNMF jet for a variety of 

amplitudes of the ZNMF jet.  The baseline case (no perturbation) 

is shown on the plot as a horizontal dashed line.  Each curve 

displays a substantial increase in the Nusselt number initially 

over a large range of frequencies (0 < 𝜔 ≲  104).  As the 

perturbation frequency continues to increase, the elevated levels 

of heat transfer decrease until the Nusselt number approaches the 

baseline case at larger frequencies. 

Two distinct peaks are evident in the Nusselt number within the 

excited frequency range.  Firstly, a frequency of 𝜔 ≈ 4000 

results in a spike in the Nusselt number at higher amplitudes 

(𝐴 ≳ 10). 

This lower frequency mode is likely to be associated with a 

forced convection arrangement.  Secondly, at lower amplitudes 

(𝐴 ≲ 100) a perturbation frequency of approximately 7500 

results in a strong peak in the Nusselt number, indicating a 

natural convection regime. 

The appearance of two distinct local maxima at different 

frequencies is strongly suggestive of two unique modes of 

response being excited by the applied perturbation.  To explore 

this further, the dependence of each of these peaks on  



 

Figure 3. Nusselt number at the lower boundary against the frequency of 

the ZNMF jet.  Akima splines have been fitted to the data. 

perturbation amplitude is analysed and subsequently visualisation 

of the disturbed flows is included. 

The peak Nusselt number against amplitude is shown in figure 4, 

which reveals the scaling of heat transfer with perturbation 

amplitude.  The peak Nusselt number changes from the forced 

convection peak to the natural convection peak at a crossover 

amplitude of approximately 𝐴𝑐 ≈ 75.  It is found that the Nusselt 

number increase over the baseline case (∆𝑁𝑢 = 𝑁𝑢 − 𝑁𝑢0, 

where 𝑁𝑢0 is the Nusselt number of the baseline case) scales 

with amplitude through ∆𝑁𝑢 ~ 𝐴3/5 at higher amplitudes.  For 

varying perturbation amplitude, Peak 1 consistently occurs at a 

frequency of approximately 4000, while Peak 2 is observed at a 

frequency of approximately 7500. 

Figures 5 shows a snapshot of the temperature field for a 

perturbation amplitude of 32 and frequency of 4000.  The effects 

of the perturbation are evident in the oscillating boundary layer 

downstream of the ZNMF jet (located at 𝑥 = 0.7𝐿).  As the 

amplitude is increased the effect on the boundary layer becomes 

more pronounced.  Peak 1, which occurs at a lower frequency, 

shows an unsteady circulation forming beyond the perturbation, 

which continues to propagate downstream until the end wall is 

reached.  The end wall plume transfers the destabilizing 

buoyancy to the top of the enclosure before it diffuses into the 

centre of the enclosure.  As the perturbation frequency is 

increased to the frequency which correlates with Peak 2, the 

spatial horizontal wavelength of the disturbance wave along the 

boundary layer decreases. 

The fast Fourier transform (FFT) of the 𝐿2 norm time history for 

the two dominant modes at frequencies 4000 and 7500 and an 

amplitude of 32 are shown in figure 6.  The first harmonic occurs 

at the perturbation frequency for each case and subsequent 

harmonics occur at multiples of the perturbation frequency 

(𝜔,   2𝜔, … , 𝑛𝜔).  Significantly more harmonics are seen in Peak 

1 (𝑛 = 11) than Peak 2 (𝑛 = 6).  The second harmonic of Peak 1 

is similar in magnitude to the first harmonic, while the harmonics 

of the Peak 2 case decay monotonically with increasing 

frequency.  This second harmonic for Peak 1 reveals a strong 

response in the flow that corresponds to a frequency that is 

approximately the same as the perturbation frequency for Peak 2.  

The Peak 1 case is being perturbed at approximately half the 

frequency of the Peak 2 case, but ultimately the end-wall plume 

emits vortices at a similar frequency to the Peak 2 mode.  This 

suggests that these two perturbation frequencies are exciting a 

natural frequency of the end wall plume at this Rayleigh number.  

This is shown in figure 4 (b), where the frequency of the second 

 

Figure 4. Delta peak Nusselt number at the lower boundary (log) against 

the amplitude of the ZNMF jet (log) (a) and peak perturbation frequency 

against the perturbation amplitude (b). 

Figure 5. Temperature field snapshot for a perturbation amplitude of 32 

and frequency of 4000 (Peak 1).  Cooler regions are black, hotter regions 

are white. 

harmonic for Peak 1 is similar in magnitude to the frequency of 

the Peak 2 perturbation. 

By subtracting the vorticity field of the baseline case from the 

vorticity field found with the ZNMF jet present, the disturbance 

vorticity field is produced, as is shown in figures 7 and 8 for a 

perturbation amplitude of 32 and frequencies of 4000 (Peak 1) 

and 7500 (Peak 2), respectively.  Both cases show similarities to 

Rayleigh-Bénard convection instability as evidenced by paired 

positive and negative vortices within the forcing boundary layer 

that grow in strength as they move towards the end wall.  There 

they seed the ejection of eddies vertically upward into the end-

wall plume.  Considering the Peak 1 case, the strong positive 

vorticity region (indicated in red) in the lower right hand corner 

is transported up the right hand wall to the top of the enclosure 

before it is ejected towards the centre of the domain.  Meanwhile, 

at approximately half the perturbation period, a second strong 

positive vortex begins to form, which follows the same sequence 

and is ejected from the end wall plume.  In contrast, Peak 2 

transports one strong positive vortex through the end wall plume 

over the oscillation period.  This demonstrates that the plume is 



 
Figure 6. FFT of the 𝐿2 norm for a perturbation amplitude of 32 and 
frequency of (a) 4000 (peak 1) and (b) 7500 (peak 2). 

 

Figure 7. Time sequence of the disturbance vorticity field for a 
perturbation amplitude of 32 and frequency of 4000 (Peak 1).  The area 

shown is the full height of the enclosure and 0.7𝐿 ≤ 𝑥 ≤ 𝐿.  Red 
indicates strong positive vorticity, blue is negative vorticity and white is 

zero vorticity.  The sequence is one perturbation period in length. 

shedding at the first harmonic frequency (8000) for Peak 1, and 

at the driving frequency (7500) for Peak 2.  This is reflected in 

the FFT spectra in figure 6, which shows Peak 1 has 

approximately twice as many distinct harmonics.  The jet 

disturbance is similar for both modes, suggesting that the 

different driving frequencies excite the same natural instability 

mechanism in the plume. 

Conclusions 

Numerical simulations of horizontal convection driven by a 

linear temperature profile along the bottom of a two dimensional 

rectangular enclosure with an applied periodic perturbation have 

been carried out.  These simulations demonstrate that a 

substantial increase in the Nusselt number over the non-perturbed 

case is exhibited over a large range of applied perturbation 

frequencies (0 < 𝜔 ≲  104).  Two distinct peaks of Nusselt 

number occur, suggesting a forced convection and natural 

convection mode.  Instabilities are evident in the forcing 

boundary layer that lead to ejection of eddies in the end wall 

plume and vortex pairs forming, similar to Rayleigh-Bénard 

convection instability.  Despite being driven by two perturbation 

frequencies that differ by a factor of approximately two, 

ultimately both of these resultant modes are a consequence of 

 

Figure 8. Time sequence of the disturbance vorticity field for a 

perturbation amplitude of 32 and frequency of 7500 (Peak 2).  The area 

shown is the full height of the enclosure and 0.7𝐿 ≤ 𝑥 ≤ 𝐿.  Red 

indicates strong positive vorticity, blue is negative vorticity and white is 
zero vorticity.  The sequence is one perturbation period in length. 

exciting the same natural frequency in the plume, which is 

approximately 7500. 
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