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ABSTRACT 
The Boussinesq approximation considers density variations 

due to the gravitational buoyancy, and is commonly used to 

model natural convection. However, this approximation neglects 

centrifugal buoyancy effects which have been shown to play a 

significant role in the flow development and stability of rapidly-

rotating flows, such as those present in astrophysical and 

geophysical systems. Thus, this paper investigates the 

centrifugal buoyancy effects in rotating horizontal convection. 

This numerical study considers a rotating cylindrical tank 

subjected to a linear temperature gradient extending radially over 

the base. The flow is governed by the time-dependent Navier–

Stokes equations coupled with a thermal-transport equation, 

incorporating centrifugal buoyancy terms. A high-order spectral-

element solver is used to compute the axisymmetric base-flow 

solutions for a range of governing parameters including the 

Rayleigh number Ra, rotational parameter Q, and Froude 

number Fr. Suppression of convection is observed with 

increasing Q as expected. In contrast, variations in Fr 

demonstrate enhanced heat transfer due to centrifugal buoyancy 

effects under appropriate flow conditions.  

 

1 INTRODUCTION 
Horizontal convection (HC) is a class of flow induced by a 

variation of temperature imposed along a horizontal boundary in 

a fluid-filled enclosure. The key resulting feature from this 

forcing is a large-scale overturning circulation which is 

particularly relevant to geophysical, industrial and astrophysical 

systems [1]. An example is the differential heating along the 

ocean’s surface (from equator to pole). Thus, HC is typically 

used as a simple model to study the dynamics, heat transport, and 

dissipation properties of buoyancy driven flows.  

The study of HC primarily comprises of two branches: 

planar and rotating. Extensive literature concerning the effect of 

thermal forcing, aspect ratio and fluid properties on planar HC 

in rectangular enclosures exists [2,3], including the stability 

properties of the flow [4]. HC transitions through several 

regimes as the Rayleigh number is increased. The Rayleigh 

number, Ra, describes the ratio between buoyancy and viscous 

forces. At low Rayleigh numbers, the flow is diffusion 

dominated and described by a near-symmetrical overturning 

circulation created by cooler flow travelling along the base 

towards the hotter boundary. Buoyant destabilisation drives the 

fluid above the hotter boundary upwards along the sidewall and 

completes the circulation once it sinks due to the cooler forcing. 

Convection begins to set in above a critical Rayleigh number 

where plumes develop over the hotter region of the boundary. 

The pioneering work by [5] determined a Nusselt number scaling 

of Nu ∝ Ra1/5 in this convective regime which has been supported 

in subsequent HC studies [2,3,6]. The flow begins to become 

unsteady as the Rayleigh number continues to increase.  

Similar aspects of planar HC have been studied for rotating 

HC, although to a lesser extent [7–10]. The addition of rotation 

to the HC system introduces an Ekman layer which forms over 

the base. The square of the ratio of the thermal and Ekman layer 

thicknesses, denoted as the rotation parameter Q, is useful in 

characterising the flow. Reference [9] categorises the flow into 

three regimes as follows: weak rotation (regime III, 0 < Q < 1), 

strong rotation (regime II, 1 ≪ Q ≪ Ra4/15) and very strong 

rotation (regime I, Q ≫ Ra4/15). These categories are coincident 

with the six regimes proposed by [7]. Reference [9] showed that 

for weak rotation (Q < 1) the flow exhibits the same scaling as 

the non-rotating case such that Nu ∝ Ra1/5. However, increasing 

the rotation to moderate values (Q > 1) suppresses the onset of 

convection and causes the scaling to deviate from the 1/5 

exponent.  

Numerical simulations of HC to date typically adopt the 

Boussinesq approximation to model density variations only in 

terms in the governing equation which involve accelerations due 

to gravity. This traditional approach of the approximation is 

widely used to model thermal convection in both non-rotating 

and rotating flows. However, centrifugal buoyancy may have 

significant effects in rapidly rotating flows with differential 

rotation or strong eddies as it directly affects the upwards 

advection of the basic-state vertical shear by the perturbation 

rolls and modifies the mean thermal stratification [11]. 

Reference [12] proposes a new Boussinesq-type approximation 

that incorporates centrifugal buoyancy by retaining density 

variations in the advection term of the Navier–Stokes equations. 

The study demonstrates discrepancies in critical values between 

the traditional and new approximations for Taylor–Couette flow, 

as well as illustrating traditional effects to be qualitatively 

incorrect under certain conditions.  
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The effect of centrifugal buoyancy in rotating Rayleigh–

Bénard convection and Taylor–Couette configurations have 

been studied previously, but not in rotating horizontal 

convection. Hence, this paper addresses the effect of centrifugal 

buoyancy in rotating HC by characterising the axisymmetric 

base flows for a wide range of governing parameters. 

 

2 METHODOLOGY 
 

2.1 PROBLEM DESCRIPTION 

This paper investigates flow in a cylindrical enclosure with 

a radius R and height H rotating at angular velocity Ω. The aspect 

ratio is fixed at A = H/L = 0.4 in this study, following [9] and 

[10]. A schematic of the system is shown in Figure 1.  

The enclosure is filled with a fluid of kinematic viscosity ν, 

thermal diffusivity κ, volumetric expansion coefficient α, and 

density ρ. The base (z = 0) and sidewalls (z = R) rotate at an 

angular velocity while the top boundary (z = H) is treated as a 

stress-free surface. A linearly increasing temperature profile is 

imposed on the base while all other boundaries are thermally 

insulated. 

 

 

Figure 1: A schematic diagram illustrating the following key 

parameters in the semi-meridional domain: tank radius R, tank height 

H, gravity vector g, rotation rate Ω, and the linear temperature profile 

imposed along the base of the tank which varies from a reference 

temperature θ0 to θ0 + δθ. The cylindrical coordinate system is adopted 

where (r, φ, z) denotes the radial, azimuthal and upward directions, 

respectively. The origin is located at the point where the axis of 

rotation and base coincide. The contours represent temperature with 

dark and light contours representing low and high values, respectively. 

 
2.2 GOVERNING EQUATIONS AND PARAMETERS  

The time-dependent Navier–Stokes equations coupled with 

a thermal transport equation through a Boussinesq 

approximation, including centrifugal buoyancy effects, are used 

to describe the rotating HC flow. By normalising lengths by R, 

velocity by ΩR, time by 1/Ω, pressure by ρR2Ω2 and temperature 

by δΩ, the governing equations in non-dimensional form are 

written as 

𝜕𝐮

𝜕𝑡
= −(𝐮 ∙ ∇)𝐮 − ∇𝑝 +

2

𝑄𝑅𝑎2/5
∇2𝐮 

−
4𝑅𝑎1/5

𝑃𝑟𝑄2 θ[𝐠̂ − 𝐹𝑟(𝐮 ∙ ∇)𝐮]               (a) 

  
𝜕θ

𝜕𝑡
= −(𝐮 ∙ ∇)θ +

2

𝑃𝑟𝑄𝑅𝑎2/5 ∇2θ (b) 

∇ ∙ 𝐮 = 0 (c) 

where u is the velocity vector, t is time, p is pressure, and 𝒈̂ is a 

unit vector in the direction of gravity (negative y direction). The 

non-dimensional parameters Q (rotational parameter), Ra 

(horizontal Rayleigh number), Pr (Prandtl number), and Fr 

(Froude number) are respectively defined as 

𝑄 =
1

𝐸𝑅𝑎2/5𝐴2 (a) 

 𝑅𝑎 =
𝑔αδθ𝑅3

𝜈𝜅
 (b) 

 𝑃𝑟 =
𝜈

𝜅
 (c) 

𝐹𝑟 =
𝑅Ω2

𝑔
 (d) 

where E is the Ekman number representing the balance between 

viscous and Coriolis effects [7]. The Ekman number is defined 

as 

 𝐸 =
𝜈

2Ω𝐻2 () 

The rotational parameter Q characterises the importance of 

rotation in the system through the square of the ratio of boundary 

layer thicknesses (thermal to Ekman layers). Rotation is 

considered important when Q > 𝒪(1) and corresponds to the 

thermal boundary layer being thicker than the Ekman layer. In 

contrast, viscous dissipation is considered dominant when 

Q < 𝒪(1) and corresponds to the Ekman layer being thicker than 

the thermal boundary layer. Reference [7] uses the Q parameter 

to classify six different regimes, ranging from no rotation (Q = 0) 

to very strong rotation (Q ≫ Ra4/5). This study focuses on Q = 1.  

The convective heat transfer through the base can be 

characterised by the Nusselt number Nu, which is defined as 

 𝑁𝑢 = |
𝜕θ

𝜕𝑧

̅
|

𝑅

𝛿θ
 () 

where |𝜕θ/𝜕𝑧̅̅ ̅̅ ̅̅ ̅̅ | is the integral of the absolute value of 

temperature flux over the base. It should be noted that (4) does 

not follow Nu → 1 for diminishing convection as the definition 

is the relativity of vertical heat flux with horizontal conduction.  

Rayleigh numbers ranging 101 ≤ Ra ≤ 109 are explored to 

capture diffusion and convective-dominant regimes. The Prandtl 

number is fixed at Pr = 6.14 to represent water at laboratory 

conditions. The Froude number is varied through 0 ≤ Fr ≤ 10 to 

observe the effect of centrifugal buoyancy in the system. 
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2.3 NUMERICAL TREATMENT 

A nodal spectral-element method is used to spatially 

discretise the non-dimensional governing equations (1). High-

order Gauss–Lobatto–Legendre polynomials are used as 

interpolants within each macro element, which can be varied to 

control the spatial resolution. A third-order accurate operator 

splitting scheme based on backwards differentiation is 

performed to integrate the governing equations through time. 

These techniques have been described in detail by [13] and [14]. 

The present code has been successfully implemented on 

buoyancy-driven flows in both cylindrical [9,10] and Cartesian 

formulations [4,15]. 

 
2.4 GRID INDEPENDENCE 

To ensure grid independence, the convergence of several 

parameters with increasing element polynomial order Np, has 

been computed for several flow conditions. Three parameters for 

convergence are adopted: measure of L2 norm of velocity, 

integral of the temperature within the domain, and Nu. The first 

two parameters represent global measures while the third 

represents errors localised at the forcing boundaries, and 

therefore are considered the most significant. 

Typical results are shown in Figure 2 for Ra = 108, Q = 1 

and Fr = 0.1. The results demonstrate a decreasing error with 

increasing Np. A threshold criterion of 𝒪(10−2) is sought to 

ensure that solution error due to finite spatial resolution is much 

smaller than likely laboratory sources of error. This criterion is 

satisfied for all measures with Np ≥ 6. Hence, this study adopts a 

minimum of Np = 6. 

 

 

Figure 2: The relative percentage error ε (relative to Np = 8) in the 

measure of L2 norm (square), integral of the temperature within the 

domain (triangle), and Nu (diamond), for Ra = 108, Q = 1 and Fr = 0.1.  

 

 

3 RESULTS AND DISCUSSION 

3.1 FLOW FEATURES AND NU MEASUREMENTS 

Axisymmetric solutions have been obtained primarily for 

the parameter space 10 ≤ Ra ≤ 109, and 0 ≤ Fr ≤ 10, with Q = 1. 

Time-evolved solutions are considered to be steady when 

velocity and temperature variations between successive time 

steps are each smaller than 10−10 and 10−9, respectively.  

Contours of relative azimuthal velocity uφ,rel (relative to the 

tank rotation) and temperature are shown in Figure 3, for Fr = 0 

at various Ra. As expected, at low Ra the θ contours are largely 

vertical along the base with gradual variations throughout the 

enclosure due to the flow being diffusion dominated. The 

corresponding uφ,rel contours show the majority of the flow 

moving faster than the tank rotation with slower-rotating fluid 

existing along the base of the enclosure. These characteristics 

resemble regime-I flows as described by [9] and are typical of 

what is observed in non-rotating (and weakly rotating) horizontal 

convection [8,10]. Also, this solution is representative of Fr ≤ 10 

cases as centrifugal buoyancy was found to play a negligible role 

in diffusion-dominated flows at these Froude numbers. 

However, there are important differences in uφ,rel that influences 

Nu, which will be described later for higher Ra where the effect 

is more apparent. 

   

𝑅𝑎 = 104 

 
 

 

 

𝑅𝑎 = 107 

 
 

 

 

𝑅𝑎 = 109 

 
 

 

 

Figure 3: Contours of (left) azimuthal velocity relative to the tank 

rotation uφ,rel, and (right) temperature θ, for Q = 1 and Fr = 0 at 

Ra = 104, 107 and 109. Contours of temperature with dark and light 

contours represent low and high values, respectively. Dashed and solid 

contour lines represent negative and positive contours, respectively. 

 

Increasing Ra causes the isotherms to deviate away from the 

vertical and incline towards the axis of rotation, while the 

slower-rotating fluid decreases in volume. At Ra = 109, a very 

thin thermal boundary layer has developed with strong 

stratification in the vertical direction. Features of a high Ra flow 

resemble those exhibited by regime-III flows, as described by 

[9]. 

Figure 4 illustrates the Nusselt number values against Ra for 

various Fr. At low Rayleigh numbers (Ra ≤ 104), the flow is 

diffusion dominated and therefore the Nusselt numbers remain 
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constant at Nu ≈ 2.18 for all Fr. Nu begins to increase when 

Ra > 104 and displays a strong dependence on Fr. The base case 

of Fr = 0 demonstrates a Nu ∝ Ra1/5 scaling at high Ra, a result 

which was obtained by [9] through a scaling analysis of the 

governing equations and via numerical simulations. This is the 

same scaling observed in planar horizontal convection [5]. 

Additionally, an equivalent scaling can be derived for Q = 1 

using the thermal boundary layer thickness relationships 

presented by [16] and [17]. That is, Nu ∝ Q−3/4Ra1/5 and 

Nu ∝ Q−1/3Ra1/5, respectively. The former scaling has been found 

to be more appropriate over 1 ≲ Q ≲ 10 by [10]. However, this 

scaling is lost as Fr begins to increase and no clear power law is 

identified over this parameter range.  

 

Figure 4: Nu-Ra curves for various Fr values with Q = 1. Solid curves 

denote highlighted Fr cases as shown in the legend, while dotted 

curves illustrate trends of intermediate Fr values. 

 

With increasing Fr at a fixed Ra, the flow exhibits Nu 

increasing to a maximum, then rapidly decreasing to a minimum 

before remaining relatively constant. This is illustrated in Figure 

5. It is found that the maximum Nu points for Ra ≥ 104 

demonstrates a relationship of Numax = Fr-1 for Q = 1, as 

represented by the by the dashed-dot-dot line. Additionally, the 

maximum Nu data exhibits the relationship Numax ∝ Ra0.2265. 

Hence, a larger Ra flow will achieve its maximum Nu at smaller 

Fr. The solutions corresponding to maximum Nu are all steady 

state and it is unclear whether these relationships hold for 

unsteady flows found at higher Ra. Indeed, unsteady 

axisymmetric solutions have been obtained, albeit not at 

conditions achieving maximum Nu. The minimum Nu points 

appear to occur at Fr ≈ 1 for all Ra, a condition signifying the 

centrifugal force being stronger than or comparable to the 

gravitational force. 

The Fr corresponding to the minimum and maximum Nu, 

denoted as FrNu,min and FrNu,max, respectively. These conditions 

exhibit key features in the flow. The contours for various Fr at 

Ra = 108 are shown in Figure 6, noting that FrNu,max ≈ 0.05 and 

FrNu,min ≈ 1. For Fr < FrNu,max, fluid in the vicinity of the base 

travels toward the heated-end of the enclosure as expected, while 

the interior is dominated is dominated by azimuthal velocities 

that are stronger than the tank rotation. Also, a thermal boundary 

layer develops with a strong stratification in the vertical direction 

which quickly plateaus in the interior. 

 

Figure 5: Nu-Fr curves for various Ra values with Q = 1.  

 

 

𝐹𝑟 = 0.04 

 
 

 

 

𝐹𝑟 = 0.1 

 
 

 

 

𝐹𝑟 = 1 

 

 

 
 

Figure 6:  Contours of (left) azimuthal velocity relative to the tank 

rotation and (right) radial velocity for Fr = 0.04, 0.1 and 1 are shown 

for Ra = 108 and Q = 1. Dashed and solid contour lines represent 

negative and positive contours, respectively. 

 

The flow maintains positive radial velocities along the entire 

base as Fr → FrNu,max and causes a thicker region of flow to 

exhibit negative uφ,rel to develop. Most importantly, the stronger 

effect of centrifugal buoyancy causes the flow to reach a state of 

solid-body rotation as Fr → FrNu,max. Consequently, the heat 

transfer through the base is maximised as there is no minimal 

azimuthal motion disrupting the flow development in the 

meridional plane. The flow reintroduces non-zero uφ,rel with 

increasing Fr whereby the boundary layer and interior fluid 

rotates faster and slower than the tank, respectively. 
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Correspondingly, the Nu is observed to decrease for 

FrNu,max < Fr < FrNu,min. 

Significant changes in the flow are observed for 

Fr ≥ FrNu,min, where Nu remains relatively constant. Firstly, an 

additional region of faster-rotating fluid near the sidewall begins 

to develop and eventually extends the entire depth of the tank 

(see Figure 6, Fr = 1). The fluid in these regions are most 

susceptible to baroclinic instability, seeking different 

equilibrium positions due to the uneven heating along the base. 

These characteristics are typical of what is observed in rotation-

dominated flows [8,10]. Lastly, the velocity boundary-layer 

thickness has decreased, and negative radial velocities have 

emerged along the base near the sidewall. 

 

3.1 Thermal and velocity boundary layer thicknesses 

It is also found that the maximum Nu is achieved when the 

velocity-boundary layer thickness δu, is at its thickest while the 

thermal boundary-layer thickness δθ, is at its thinnest. The 

velocity boundary-layer thickness is measured from the bottom 

wall to the height that corresponds to the nearest local 

minimum/maximum in the profile of radial velocity. The thermal 

boundary-layer thickness is measured from the bottom wall to 

where the temperature first achieves 95% of the temperature at 

the surface. The thermal and velocity profiles are extracted at 

mid-radius (r = 0.5) across the entire depth of the tank, following 

the approaches of [9] and [10]. The velocity and thermal 

boundary-layer thicknesses are shown in Figure 7. 

Increasing Fr → FrNu,max for a constant Ra causes δu to 

increase as shown in Figure 7 (top). The dash-dot-dot line 

represents the maximum δu and exhibits the relationship 

δu,max ∝ Fr1. Therefore, the heat transfer in the system scales 

linearly with the reciprocal of the velocity boundary layer 

thickness in the convective regime (i.e. Ra ≥ 105). Further 

increasing Fr > FrNu,max causes δu to decrease at two distinct 

stages. The range FrNu,max  < Fr < FrNu,min exhibits δu varying 

approximately with Fr-1/3 and with Fr-1/2 thereafter. No clear 

changes in flow behaviour is observed despite the change in Fr 

scaling exponent beyond Fr = 1. 

The thermal boundary-layer thickness demonstrates 

different behaviour to δu as shown in Figure 7 (bottom). There is 

a decrease in δθ as Fr → FrNu,max due to the increased effect of 

rotation, causing strong stratification in the vicinity of the base 

as illustrated by the concentration of isotherms in (see Figure 3). 

Increases in δθ is observed in the intermediate regime 

FrNu,max  < Fr < FrNu,min where the concentrated isotherms begin 

to deviate away from the axis of rotation towards the top surface. 

The thermal boundary-layer thickness does not display a 

consistent power-law dependence on Fr across the Rayleigh 

numbers studied here. The flow eventually becomes diffusion 

dominated at very-high Fr conditions and therefore does not 

reveal a clear thermal boundary layer (see Figure 7). This 

explains, in part, the overlaying of δθ values at high Fr for 

various Ra. 

 

 
 

 

Figure 7: (Top) Velocity and (bottom) thermal boundary-layer 

thicknesses plotted against Fr at Q = 1. 

 

4 CONCLUSIONS 
This paper investigated the effect of centrifugal buoyancy in 

rotating horizontal convection. The results show that centrifugal 

buoyancy effects due to rotation may enhance convective 

features under the appropriate conditions. Variations in the 

Froude number demonstrated significant differences in the 

convective heat transfer through the base, as measured by the 

Nusselt number. It was determined that the maximum Nu is 

achieved when the relative azimuthal velocity above the base of 

the enclosure is zero, while the minimum Nu is obtained when 

Fr is approximately unity. Correspondingly, it was found that the 

maximum Nu is measured when the thermal boundary-layer 

thickness is at its thinnest while the velocity-boundary layer is at 

its thickest.  

For future work, it would be interesting to explore smaller 

and larger values of Q to further investigate its relationship with 

Fr. Additionally, the linear stability of these flows should be 

studied to determine the effect of centrifugal buoyancy in 

rotating horizontal convection. 
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NOMENCLATURE 
α volumetric expansion coefficient 

δ change in 

δθ thermal boundary layer thickness 

δu velocity boundary layer thickness based on radial 

velocity 

𝜀 relative percentage error 

θ temperature 

θ0 reference temperature 

κ thermal diffusivity 

ν kinematic viscosity 

ρ density 

φ azimuthal coordinate 

Ω rotation rate of the tank 

A tank height to radius aspect ratio 

E Ekman number 

Fr Froude number 

FrNu,max Froude number corresponding to maximum Nu 

FrNu,min Froude number corresponding to minimum Nu 

g gravitational acceleration 

𝒈̂ unit vector in the direction of gravity 

H height of the tank 

Np polynomial degree 

Nu Nusselt number 

𝒪 order 

p pressure 

Pr Prandtl number 

Q rotational parameter 

r radial coordinate 

R radius of the tank 

Ra Rayleigh number 

t time 

u velocity vector 

uφ,rel azimuthal velocity relative to the tank rotation 

z axial coordinate 
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