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ABSTRACT 

The dissipation of vortex pairs is an important field of 

study for the aviation industry in which enhanced vortex 

dissipation may lead to increased efficiency of aircraft 

infrastructure. The growth of short-wave elliptical 

instabilities in a Lamb-Oseen vortex pair subject to non-

uniform strain fields at close vortex spacing is considered 

using direct numerical simulation techniques at a 

Reynolds number Re=20000. Much research has 

previously been conducted at relatively large vortex 

spacing where the mutually induced strain field causing 

the elliptical deformation of vortex cores is typically 

uniform. This study investigates the instability growth 

over a range of wave-numbers and analyses the change in 

growth as the vortex spacing is reduced. This is completed 

using linear stability analysis. The study demonstrates that 

as vortex spacing is reduced, the growth rate of all 

instability mode frequencies is enhanced relative to that of 

the fastest growing mode. A coupling of vortices is 

observed at close vortex spacing, which may lead to 

improved non-linear instability growth, and the 

development of fluid cross-over regions. These fluid cross 

over regions are shown to be products of a linear growth 

regime. They exist at large separations but are greatly 

enhanced at close separation distances.  

NOMENCLATURE 

a vortex core radius Ω domain 

b vortex separation  k wave-number 

a/b size / separation ratio 𝜆 wavelength 

𝛤 circulation 𝑡1 evolution time 

𝑡∗ normalized settling time  n profile steepness 

𝜔𝑧  axial vorticity component T time of  growth 

𝜎 instability growth rate 𝐿2 L2 Norm  

𝜇 stability multiplier 𝜈 viscosity 

Re Reynolds number   

INTRODUCTION 

The study of vortex dynamics is important to the mineral 

processes industry in relation to cyclonic separation. It is 

also pivotal to the aviation industry  in which the 

generation of large-scale, coherent vortices at the wingtips 

of large aircraft can present a significant hazard to aircraft 

downstream, where air flows are not uniform (Spalart, P. 

1998).  Thus a minimum safe distance between aircraft 

launches must be maintained. 

A pair of counter-rotating vortex pairs is created at the 

wing tips of aircraft as a product of the lift produced on 

the wings (Phillips 2004). Studies of these vortices have 

generally considered vortices with a Lamb-Oseen profile 

(figure 1), which is a counter-rotating pair with Gaussian 

vorticity profile. The vorticity profile of the Lamb-Oseen 

Vortex pair may be expressed mathematically by 

𝜔𝑧 =
Γ

𝜋𝑎0
2 𝑒

𝑟2 𝑎0
2 ,            (1) 

where ωz is the axial vorticity component, a is the 

characteristic core radius of the vortex (a0 is the core 

radius at time t = 0), and Γ is the circulation.  

Over time aircraft wakes develop the Gaussian profile of 

the Lamb-Oseen vortex pair, with an additional velocity 

component in-line with the axis of the vortex. Many 

factors may contribute to the strength of the Lamb-Oseen 

pair, including aircraft size, speed, weight and lift 

coefficient (Phillips 2004). In their investigation of co-

rotating vortices, Le Dizes and Verga (2002) show that 

diffusion relaxes any non-Gaussian axis-symmetrical 

vortex towards that of a Gaussian profile. Thus the 

Gaussian profile of a Lamb-Oseen vortex pair offers a 

reasonable approximation to wing-tip vortices. 

 

Figure 1: Schematic representation of flow in a counter-

rotating Lamb-Oseen pair with a Gaussian profile. a is the 

characteristic core radius, b is the separation distance. 

 

Le Dizes and Laporte (2002) described the capacity of 

paired vortices to exert reciprocal strain fields that 

elliptically deform each vortex core. Le Dizes and Verga 

(2002) identified three key parameters contributing to the 

elliptical deformation process: vortex steepness n, 

Reynolds number and separation ratio (a/b). Vortex 

steepness is described by,  

𝜔0 𝑟 = 𝑒𝑥𝑝 −𝑟2𝑛         (2) 

where n is the vortex steepness and n=1 gives a Gaussian 

vortex, and ω0 is the vorticity. Reynolds number is defined 

as, 

𝑅𝑒 = Γ
𝜈                                (3) 

where Γ is the circulation and υ is the viscosity.  

Elliptical deformations are driven by the mutually induced 

strain field of the vortex core. At large separations the 

strain field near the partner vortex core may be assumed 
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uniform, at closer separations however the strain field is 

curved.  

Sipp et al (2000) also showed that the elliptical 

deformation proceeds regardless of the initial vorticity 

profile, relaxing the vortices to a unique Gaussian state 

which is independent of the Reynolds number. This 

validates the use of a Lamb-Oseen pair in examining 

elliptical instabilities. 

Previous studies of vortex pair dissipation have identified 

factors that contribute to the growth rate of instabilities in 

vortex pairs. These include centrifugal instability, vortex 

merging, vortex straining, and the effect of viscous 

damping, (Le Dizes & Laporte 2002).  The elliptic 

instability mechanism has been identified as the greatest 

dissipating force of Lamb-Oseen vortex pairs. This results 

from the resonant coupling of two vortex modes, with the 

strain field produced by the vortex pair (Le Dizes & 

Laporte 2002). 

Instabilities may be classified as either long-wavelength 

Crow instabilities or short-wavelength elliptical 

instabilities shown in figure 2. In a numerical study, Le 

Dizes and Laporte (2002) observed the short-wave 

instabilities as in-phase oscillations of the vortex core.  

 

 
Figure 2: Visualization of vortices under combined long 

and short-wavelength instabilities. The sinusoidal wave-

packet of the vortex axis is induced by Crow instabilities. 

The inner high frequency oscillation results from short-

wave instabilities. Source: Leweke and Williamson (1998) 

 

Leweke and Williamson (1998) concluded the elliptical 

instability of the two vortices evolves in a distinct phase 

relationship, breaking the initial symmetry of the pair. 

This they attribute to the coupling of instabilities, which 

produces an asymmetric mode to satisfy kinematic 

matching conditions. Leweke and Williamson’s study also 

described the long-term evolution of the instability, 

demonstrating that the growing deformation of the short- 

wave instabilities gives rise to periodic cross-over of fluid 

between vortices. This creates an array of secondary 

vortices perpendicular to the primary pairs. The secondary 

vortices quickly lead to the breakdown of primary vortex 

circulation, as observed by Ryan and Sheard (2002). 

Leweke and Williamson proposed that the classical Crow 

instability is in fact the result of a long and short-wave 

instability interaction. They suggested that the long-wave 

instability causes vortex cores to exist closer in certain 

regions, leading to an increased growth rate of short-wave 

instabilities and hence secondary vortex formation in these 

regions. 

The array of secondary vortices indentified by Leweke and 

Williamson (1998) evolve in the non-linear growth phase 

of the (-1, 1) Kelvin mode. Ryan and Sheard (2007) 

demonstrated that the (-1, 1) Kelvin mode has the greatest 

dissipation rate for flows of this type as a result of 

production of secondary vortices. This is due to a non-

linear growth zone of short-wave instabilities. A large 

growth rate during the linear phase proved insufficient to 

produce enhanced vortex dissipation in a Kelvin type 

mode. (Kelvin modes are a classification scheme for the 

eccentricity and ellipticity of instability modes). The 

numerical study employed may not have accounted for 

viscous diffusion, which moves the vortices closer 

together over time. This in turn may assist in the 

production of secondary vortices. 

Review of pertinent literature indicates that these 

relationships are only consistent when vortices are 

sufficiently separated so as to feel only a uniform strain 

field. Little is known about the propagation of short-wave 

instability modes at small vortex spacing (Le Dizes & 

Laporte 2002).  As such this investigation aims to analyse 

the effects of short-wave instability modes at small vortex 

spacing. Previous work has been limited to a maximum 

vortex separation ratio a/b=0.25. This will be the lower 

limit of the determining parameter on the elliptical core 

deformation. The analysis is to be executed at a Reynolds 

number of 20,000.  

Elliptical instabilities are formed in both co-rotating 

(Leweke & Meunier 2005) and counter-rotating vortex 

pairs (Leweke & Williamson 1998), however for the 

purpose of aeronautical applications this paper will 

concentrate only on the counter-rotating case, for which 

vortex merging does not occur. 

METHODOLOGY 

The stability of a closely spaced Lamb-Oseen vortex pair 

is studied. A series of base flows are created in which the 

vortices are placed successively closer to each other 

relative to their size. The flow structures being studied are 

shown in figure 3. 

 
 (a)                                    (b) 

Figure 3: Vorticity profiles of vortex pairs a) is at 

a/b=0.25, b) is at a/b=0.481. Note the elliptical 

deformation in case b.  

 

A spectral element technique is used to solve the 

incompressible Navier-Stokes equations 

 
𝜕𝑢

𝜕𝑡
+  𝒖 ∙ ∇ 𝒖 = −∇𝑃 + 𝜐∇2𝒖     (4a) 

∇ ∙ 𝒖 = 0     (4b) 

where u is the velocity vector, ∇ is the gradient operator, P 

is a scalar pressure and t is time. 

The package uses an operator splitting technique 

(Karniadakis, Israeli & Orzay 1991), which allows the 

advection and diffusion terms to be solved independently 

for each time step. A spectral element method is used to 

discretise spatial terms. The domain is discretised into a 

series of macro elements within which, high-order tensor-

product Lagrangian polynomials are employed as shape 

functions to solve the partial differential equations. A 3rd 

order accurate, backward multi-step method using a three-
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step splitting scheme evolves the solution in time to solve 

the linearised time dependent Navier-Stokes equations.  

During the perturbation study, a disturbance of single 

frequency is propagated in the vortex perpendicular to the 

2D plane, acting along the axial direction of a vortex 

stream tube, allowing investigation of the susceptibility of 

the vortices to instabilities in the third dimension. To this 

end a global stability analysis is conducted in which the 

velocity and pressure fields (𝒖, 𝑝) are broken up in to a 

two dimensional base flow (𝑼 , 𝑝 ) and a three dimensional 

disturbance (𝒖′,𝑝′) 

𝒖 = 𝑼 + 𝒖′ ,    𝑝 = 𝑝 + 𝑝′    (5a, b) 

Substituting these into the Navier stokes equations, 

cancelling the base flow terms and neglecting products of 

the (small) perturbation field yields, 

𝜕𝒖′

𝜕𝑡
+  𝑼 ∙ ∇ 𝒖′ +  𝒖′ ∙ ∇ 𝑼 = −∇𝑃′ + 𝜐∇2𝒖′    (6) 

The stability analysis is then carried out simply by 

integrating the perturbation field forward in time and 

monitoring the growth or decay of the field. The 

perturbation field evolves over one period subject to an 

operator A as 

𝒖𝒏+𝟏
′ = 𝑨 𝒖𝒏

′        (7) 

The eigen-values of A correspond to the Floquet 

multipliers of the system, µ, 

𝜇 = 𝑒𝜎𝑇        (8) 

for which σ is the instability growth rate.  

The two dimensional solver and stability analysis code has 

been used previously for a variety of flow problems for 

example Sheard, Leweke, Thompson & Hourigan (2007); 

Sheard, Fitzgerald & Ryan (2009) 

SIMULATION OPTIMISATION 

The mesh used in the vortex analysis consisted of an 

internal fine region and a coarser outer region which 

stretches to the edge of the domain where the boundary 

conditions were applied. When created, the vortices exist 

in the centre of the fine region. This is where the vorticity 

is most concentrated and accuracy is most important.  

The two counter rotating vortices are created with a 

characteristic radius less than 2% of the computational 

domain width in all directions. Transient Dirichlet 

boundary conditions are added at the extents of the 

domain, which assesses the rate at which the vortices are 

advecting out of the central refined mesh region and apply 

a force which acts to keep the vortices fixed in space. This 

is done in order to accurately simulate the flow, ensuring 

no reflection off boundaries and maintaining the vortex 

position in the centre of the refined region of the mesh. 

The boundary is located over 100 vortex radii from the 

vortex pair which ensures the transient boundary 

conditions do not affect the underlying physics of the 

vortex interaction. 

In order to optimise the accuracy of the grid a P-type grid 

resolution study was conducted; global and local noise 

parameters were measured in order to assess the grid’s 

accuracy 

To measure the global accuracy of the flow field, two 

parameters were measured. Integration over the domain 

provided an estimate of the vortex circulation, which may 

be compared to the input value. The second parameter was 

the L2-norm, given by: 

𝐿2 =   𝑢 𝑑Ω,       (9) 

where  𝑢  is the magnitude of the velocity vector and Ω is 

the computational domain. The strain rate magnitude at 

the vortex core was used to assess the local noise in the 

solution. 

These parameters were measured as the order of the 

polynomial used was changed. A 14th degree polynomial 

gave the most accurate solution with respect to both local 

and global noise. A Richardson extrapolation of both 

global noise measurements, using a power law fit 

estimated a maximum error of 3.8%.  

BASE FLOW EVOLUTION 

Le Dizes and Verga (2002), showed that vortices will 

grow larger in size over time, as a natural result of viscous 

diffusion. The initial separation distance of a/b=0.25 was 

formed at the conclusion of the grid resolution study. The 

amount the vortex core will diffuse is described by 

 𝑎 =  𝑎0
2 + 4𝜐𝑡1,       (10) 

where a0 is the initial vortex characteristic radius, t1 is the 

time taken to evolve this solution and ν is the viscosity. 

And 

𝑡∗ =
𝑡1Γ

2𝜋𝑎0
2,       (11) 

where t* is the normalised time defined by Le Dizes and 

Verga (2002), and Γ is the circulation. Le Dizes and Verga 

(2002) showed that a settling time of t*=40 is sufficient for 

the vortices to adjust to the induced strain fields and form 

stable elliptical deformations.  

Base flows of varying separation ratios were created using 

the viscous diffusion method employed by Le Dizes and 

Verga (2002). By lowering the Reynolds number to 

Re=15π the influence of the viscous term in the Navier-

Stokes equations is enhanced and the vortices are allowed 

to diffuse, increasing the characteristic radius a and thus 

increasing the separation ratio.  

Figure 3 shows two different vortex spacings after viscous 

diffusion has been used to change the vortex core radius. 

At small vortex separations there is significant elliptical 

deformation of the core. Figure 4 shows the strain fields of 

the largest separation case considered, a/b=0.481. It can be 

clearly seen that the strain field is now curved close to 

each vortex core. It was a major assumption in analytical 

formulations such as those of Le Dizes and Laporte  

(2002) that vortices were sufficiently separated such that a 

uniform strain field could be assumed at the core. 

  
Figure 4: Stain field at vortex separation 0.481. Note the 

curved nature of the strain field at the cores  
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VORTEX SPACING LIMIT 

During the evolution of the vortex base flows an upper 

limit for the separation ratio was discovered. The vortex 

spacing was accurately determined using a Simpson’s 

1/3rd quadrature method interpolating over the vortex 

region to find locations of maximum voriticity. The 

characteristic radius was determined using the axial 

vorticity ω0 described by,  

 𝜔0 =
Γ

𝜋𝑎 2
𝑒𝑥𝑝  − 

𝑟

𝑎
 

2
      (12) 

It was found that as the vortices grew closer, the strain 

field of each vortex pushed on the neighbouring vortex 

forcing the pair further apart. Figure 5 shows that an upper 

limit of 0.5 for the vortex separation ratio. This implies 

that two vortices will never exist in the same space as 

defined by their characteristic core radii, i.e. their cores 

may never overlap. This also indicates that the strain field, 

while curved, will not permit periodic crossing of a shared 

vortex boundary. Given the majority of the vorticity is 

contained within the characteristic core radius; we would 

not physically expect counter-rotating vortices to be able 

to violate this boundary without destruction of the vortex 

structure. 

 
Figure 5: Vortex separation ratio varying as radius a is 

diffused. Separation ratio converges toward 0.5. 

PERTURBATION STUDY 

A stability analysis was conducted on the vortex pair in 

which small disturbances were introduced of a specified 

axial wave-number. In this analysis the disturbance was 

evolved in a perturbation field, the effects of which may 

be observed by overlaying it over the frozen vortex base 

flow. Vortices of separation ratios a/b=0.251, 0.3625, 

0.4063, 0.4257, 0.4385, and 0.447 were investigated. Each 

was subject to a series of disturbances in the normalised 

wavelength range of λ/a=0.2 to 5.0.  Le Dizes and Laporte 

(2002) showed that this range is sufficient to describe the 

development of short-wavelength instabilities growing on 

a counter-rotating Lamb-Oseen vortex pair for small a/b. 

The following sections describe the instability growth in 

the vortex pair as the separation distance is changed.  

INSTABILITY GROWTH RATE 

The growth rate of the leading instability mode was 

monitored. For each case a disturbance was introduced 

characterised by its wave-number 

𝑘 = 2𝜋
𝜆 ,                   (13) 

where λ is the axial wavelength of the disturbance. The 

wave-number, k was changed such that results were taken 

at consistent values of normalised wavelength𝜆 𝑎 . 

Figure 6 shows a comparison of the linear growth rate of 

elliptical instabilities as a function of the normalised axial 

wavelength, over different separation ratios a/b. The 

number of principal modes evident in each separation case 

varies as the non-uniform strain field acts to enhance or 

suppress instability modes. At a separation of a/b=0.251 

three principal modes are evident. The first has a peak 

growth rate at λ/a=1.15, this peak was not reported by 

Le Dizes and Laporte (2002). The remaining peaks occur 

at λ/a=1.6 and at λ/a=2.8. The positions of this peak 

growth rate correlate with Le Dizes and Laporte’s (2002) 

results for a/b=0.18 at Re=∞, also shown in figure 6.  

 

Figure 6:  Growth rate of the elliptical instability as a 

function of the normalised axial wave-number. The dashed 

black line is Le Dizes and Laporte’s results for a/b=0.18 

case at Re=∞. Legend describes a/b ratio. 
 

The significant finding shown in figure 6 is that at closer 

vortex spacing the growth rate at all wavelengths is 

enhanced, relative to the peak growth rate. In addition we 

note the damping out of the λ/a=1.15 peak found in 

a/b=0.251. It is observed that in distantly separated cases 

the peak growth rates are sharp and well defined. As the 

vortices are bought closer together however, each peak 

broadens.  

Critical wave-lengths where a local peak in growth rate is 

observed decrease as the distance between vortices 

decreases. The strongest mode is at λ/a=2.8 at a separation 

distance of a/b=0.251 but decreases to λ/a=1.8 at 

a/b=0.447, this is observed as a lateral shifting of the peak 

structures in figure 6. Furthermore the growth rates of the 

instabilities vary with vortex separation. Figure 7 shows 

the normalised growth rate of the peak instability mode in 

each separation case. It can be seen that after an initial 

increase in growth rate, the growth rate of the peak 

instability mode decreases as the vortices are bought 

closer together 
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Figure 7: growth rate of peak instability mode for each 

separation case. 

COUPLING OF VORTICES 

Figure 8 shows the perturbation fields of the dominant 

instability modes for a range of a/b. The images are 

created by subtracting two slices of the vorticity field half 

a period out of phase. The blue and red zones in figure 8 

are the same structure at different points in the stream 

tube. 

 
    (a) 

 
    (b) 

 
    (c) 

Figure 8: Contours of the vorticity fields for the principal 

mode corresponding to the λ/a =2.8 peak in figure 6, a) 

a/b=0.251, b) a/b=0.3625, c) a/b=0.4385. 

 

At large separation distances, as seen in figure 8a), the 

perturbation vorticity field in each vortex stream tube is 

comprised of two distinct regions. An inner region exists 

of high perturbation vorticity that sits within the 

characteristic core radii, and a less intense outer region 

that curls around in a crescent shape offset from the vortex 

core. These may be analyzed as a pair of co-rotating 

perturbation vortices formed in each stream tube of the 

perturbation field. Figure 9 shows a three dimensional 

representation of the perturbation field for a/b=0.251. 

 
Figure 9: a 3D extrapolation of the perturbation vorticity 

field at relatively distant vortex spacing a/b=0.251. 

Vorticity of each iso-surface is ωz=4.0 Note the sinusoidal 

nature of the perturbation fields with the pairs of vortices 

seen in figure 8a).  

As the two base vortices are brought closer together, the 

outer perturbation vortices from each stream tube undergo 

vortex merging, coupling the perturbation vortices. This 

region spikes up sharply along the centreline between the 

stream tubes. This occurs because the stream tubes are 

close enough for each of the outer co-rotating vortices to 

merge, forming a single perturbation vortex core. Leweke 

and Meunier (2005) demonstrated this in co-rotating pairs 

and is shown in figure 10. The correlation between the 

periodic nature of the convergence and the phase of the 

disturbance indicates a direct relationship between the 

procession rate of the co-rotating vortices and the 

disturbance frequency.  

 
Figure 10: A 3D extrapolation of the perturbation 

vorticity field at vortex spacing a/b=0.447. Each iso-

surface is ωz=0.28 Note the merged vortex structure in 3D 

which corresponds to the structure of 8b-c.  

 

As the base vortex pair is brought still closer together, we 

see an increase in the relative strength of this perturbation 

vorticity region compared to the maximum perturbation 

vorticity in the vortex plane. This is shown in the 

progression of contours in figure 8 a-c. The relative 

increase in the strength of the coupled region with respect 

to the vortex core region amplifies the coupling effect. 

THE COMPLETE THREE DIMENSIONAL FIELD 

Figure 11 shows a three dimensional reconstruction of the 

complete flow field defined as the addition of the base 
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field to the perturbation field multiplied by an arbitrary 

value. It shows a periodic crossover of fluid between the 

each vortex in the pair. This is observed as small bulges 

emanating from the vortex stream tubes. These features 

are better developed in figure 11 a) where the vortices are 

closely spaced. These structures are evident at both close 

and distant separations, however at the distant separation a 

resolution 31 times greater is required for them to be seen. 

 
               (a)                                           (b) 

Figure 11: A 3D reconstruction of vortex iso-surfaces 

with fluid crossover regions shown. a) is the case 

a/b=0.447, b) is the case a/b=0.251. 

Leweke and Williamson (1998) and Ryan and Sheard 

(2007) showed that growing deformations of the short-

wave instabilities give rise to periodic cross-over of fluid 

between vortices. This creates an array of secondary 

vortices perpendicular to the primary pairs, which quickly 

lead to the breakdown of primary vortex circulation. In 

figure 8 we see the growth of the periodic fluid cross-over 

regions. These form as the coupled region of the 

perturbation field acts as a vortex, drawing fluid from each 

base vortex stream tube, which in turn allows fluid cross-

over. This was previously only observed during the non-

linear growth period. However this analysis shows that it 

is in fact due to the principal linear growth mode. We 

postulate that the growth of the fluid crossovers and 

eventual secondary vortex production are accelerated by 

the non-linear growth regime as well as by close proximity 

of the vortices. In either case this allows coupling of the 

perturbation vorticity field (shown in figure 8). 

This study was limited in that it did not include turbulence 

modelling, or account for any axial flow. While an error of 

only 3.8% allows excellent qualitative analysis, 3D 

simulations with the addition of an axial velocity 

component, like that of a Batchelor vortex pair would 

further refine the analytical model and support the analysis 

conducted in this paper. 

CONCLUSIONS 
This investigation has considered the growth of short-

wave elliptical instabilities in a Lamb-Oseen vortex pair 

subject to non-uniform strain fields at close vortex 

spacing, using DNS. Previous research has been 

conducted at large vortex spacing, where the mutually 

induced strain field that causes the elliptical deformation 

of vortex cores is typically uniform. This study 

investigated the instability growth over a range of wave-

numbers as the vortex spacing is reduced. 

A limit of minimum vortex spacing was found via a 

viscous diffusion method previously employed by Le 

Dizes and Verga (2002). A counter-rotating vortex pair 

with equal circulation magnitude may not exist closer than 

a separation ratio of a/b=0.5. This indicates that the vortex 

pair exerts a mutual force on each vortex such that 

invariant streamlines may not overlap. 

The perturbation analysis of the vortices was conducted by 

developing linear modes over a frozen base flow. It was 

found that as vortex spacing is reduced, growth rate of 

non-principal wave-numbers is enhanced relative to 

principal wave-numbers. The peak growth rate of the 

principal instability mode reduced as the vortices were 

bought closer together. At other wave-numbers, the 

growth rate increased relative to the peak, resulting in a 

broadening of the growth rate profile.  

The perturbation field was shown to be composed of a pair 

of co-rotating vortices in each stream tube, which could 

merge at close vortex spacing to cause coupling of the 

vortex stream tubes in the fluid cross over region. These 

fluid cross over regions, which were shown to be products 

of a linear growth regime, were shown to exist at large 

separations but were greatly enhanced at close separations. 

The dissipation of vortex pairs is an important field of 

study for the aviation industry, in which enhanced vortex 

dissipation may lead to increased efficiency of air 

infrastructure. It should therefore be considered in future 

wing design. 
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