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ABSTRACT 
Implementation of moving and deforming boundaries 
within fluid solvers presents possibilities for the numerical 
analysis of fluid-structure interactions. This could lead to 
the optimization of many industrial phenomena, such as 
heat exchangers, tethered cylinders or many other 
applications where a moving body is present within a 
fluid. This paper focuses on the implementation of a 
numerical algorithm which will allow the simulation of 
moving boundaries and coupled fluid-solid interactions 
within a spectral element solver. To achieve this, a 
technique for the representation of a boundary in a fluid 
simulation that does not align with the computational grid, 
an immersed boundary method, has been applied. This 
allows the body the freedom to move without violating or 
requiring the adjustment of a traditional mesh. Details of 
the integration of the immersed boundary technique into a 
spectral-element fluid solver, which uses a backwards 
multistep method to evolve the solutions in time, is 
discussed. A two-dimensional test case, considering a 
cylinder in a cross flow which does not coincide with the 
mesh, was compared to a body fitted technique to 
ascertain the validity of the imposition of the immersed 
boundary condition of the current implementation. The 
technique produced good results, predicting the 
recirculation length behind the cylinder to 4.30% and 
3.72% for the steady cases of Re = 25 and 30 respectively. 
Similarly, the prediction of the Strouhal numbers for the 
time-dependent cases of Re = 100 – 200 was computed to 
be within 2.2% of the body fitted case. 

NOMENCLATURE 
D diameter of cylinder 
p pressure 
f shedding frequency 
fIB pseudo forcing term 
H convective and viscous terms of the Navier-Stokes 

equations 
h characteristic length 
N(u)non-linear operator 
N nodes per element 
n current timestep index 
Re Reynolds number 
St Strouhal number 
T shedding period 
t time 
U freestream velocity 
u  velocity vector 
uvirt velocity interpolated at a virtual point 

u* velocity imposed on forcing point 
û  intermediate velocity vector 

û̂  intermediate velocity vector 
VΨ velocity on immersed boundary 
x spatial vector 
α integration coefficient 
β  integration coefficient 
γ  integration coefficient 
ρ density 
ν kinematic viscosity 

INTRODUCTION 
Moving and deforming boundaries, a phenomenon where 
the bounding walls of the flow or an object in the flow 
deform or move, are a common occurrence in many 
engineering applications. The effects such interactions 
have on the flow can be significant and can dominate the 
subsequent flow, such as in the case of a marine riser pipe.  

The numerical complexities of implementing a fluid-
structure solver first arise when one considers the difficult 
process of moving a body on a computational domain. 
Most numerical methods use boundary conforming 
techniques, techniques in which the computational mesh is 
aligned with the boundaries defining the geometry the 
fluid flows through. There have been several adaptations 
of these methodologies to accommodate moving 
boundaries. An example of these adaptations is the 
coordinate transformations conducted by Newman and 
Karniadakis (1997). These methods, in general, only allow 
for particular geometries and only a single moving body. 
For complex geometries, including multiple bodies, it is 
necessary to deform or regenerate the computational mesh 
at every timestep to accommodate the boundaries moving 
relative to each other, decreasing the accuracy and 
efficiency of the fluid solvers (Yang et al. 2008). 

Non-boundary conforming techniques, in which the 
boundaries and grid points do not necessarily coincide, are 
able to solve complex geometries and moving boundary 
scenarios on arbitrary meshes. This allows the solutions to 
be computed without the need for complicated, inaccurate 
and computationally expensive mesh regeneration. 
Unfortunately this convenience comes at a cost. By not 
having the boundaries coincide with the grid points, the 
boundary conditions are not easily enforced. An additional 
system is required to rectify this deficiency, which 
introduces some additional complexity and computational 
overhead to the underlying numerical scheme. 
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In the case of immersed boundary algorithms, this 
complexity is addressed through an additional forcing 
term in the governing equations. This term imposes the 
presence of the boundary upon selected points in the 
computational mesh which are in close proximity to the 
immersed boundary. This has been shown to provide a 
good representation of the boundary while being easily 
adapted into current finite difference and finite volume 
numerical solvers with little additional overhead (Balaras, 
2004). 

The current paper focuses on adapting a non-boundary 
conforming, immersed boundary algorithm to an in-house 
spectral-element solver (Sheard et al., 2007). The 
immersed boundary scheme considered here is derived 
from the scheme developed in Balaras (2004) which has 
been extended to accommodate moving boundaries and 
fluid-structure interactions as detailed in Yang et al. 
(2008). In particular, this paper focuses on discerning the 
viability of implementing the non-boundary conforming 
method, and the subsequent moving boundary method, 
into a spectral-element fluid solver. This was assessed 
through validating the case of a two-dimensional flow 
over a circular cylinder. 

METHODOLOGY 
The process of imposing the presence of an immersed 
boundary within a numerical flow solver can be split into 
two stages: the identification of forcing nodes and the 
application of a forcing term at these points. 

Identification of Forcing Points 
For a node to be identified as a forcing point, it must lie in 
the solid phase and have at least one neighbouring point in 
the fluid phase, as performed in Kim et al. (2001). 
Clearly, to achieve this, it is necessary to have detailed 
information about the boundary, be able to locate points 
which lie near the interface and be able to determine in 
which phase the node resides in. Accordingly, the 
boundary is described as a parametric cubic spline which 
provides an accurate, smooth representation with the 
derivatives, and hence normal, readily available. The 
direction of the parameter of representation is such that 
the fluid phase falls on the left and the solid phase on the 
right of the boundary as the parameter of representation 
increases. This allows the phase to be determined based on 
the direction of the normal from the boundary. This 
information is then used to identify points conforming to 
the criterion of a forcing point: being in the solid phase 
and having a neighbour in the fluid phase. 

Application of Boundary Conditions 
The calculation and application of the boundary 
conditions is dependent on the numerical method used to 
solve the governing equations of the fluid. The governing 
equations pertaining to this paper are, 

,ˆ1
,2

2

iIB
j

i

ij

i
j

i f
x

u
x
p

x
u

u
t

u
+

∂

∂
+

∂
∂

−=
∂
∂

+
∂
∂

ν
ρ

 (1a)

,0=
∂
∂

i

i
x
u

 (1b)

where u is the velocity field in the i orthogonal direction, 
p represents the pressure, t the time, x a spatial direction, ρ 
the density, ν the kinematic viscosity and fIB the forcing 
term relating to the imposition of the immersed boundary.  

Here we consider the logic behind the immersed boundary 
method independently of the numerical scheme employed. 
Ultimately, the forcing function should equate to, 
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where n is the time step (the time instance for u on the 
RHS has been intentionally omitted as it is dependent on 
the selected numerical fluid solver scheme while the 
purpose of this equation is to elucidate the concepts of this 
immersed boundary technique), VΨ is the velocity on the 
immersed boundary which we are attempting to impose on 
the fluid and H contains the convective and viscous terms 
of the Navier-Stokes equations. When substituted back 
into equation (1), hypothetically discretized by the same 
methodology as equation (2), the algorithm should give, 
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This relation, for the rare case where the boundary lies on 
a computational node, states that the velocity of this node 
should be equal to the boundary condition imposed by the 
immersed boundary. In other words, if the boundary and 
forcing point coincide, the forcing term should act to 
negate the effects of surrounding fluid and directly 
enforce the velocity boundary condition. For the case 
where the points do not coincide, it is necessary to replace 
VΨ with an interpolated value using the velocity on the 
immersed boundary and the properties of the free stream 
in the vicinity of the forcing point. The methodology for 
this interpolation will be discussed in the next subsection. 

The time integration scheme used by the present solver 
was described in Karniadakis et al. (1991), and uses a 
splitting scheme which divides the computation of the 
Navier-Stokes equations into three individual operations: 
the explicit treatment of the non-linear terms and implicit 
treatment of the pressure and linear operators, 
respectively. These steps are 
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where û  and û̂  are intermediate velocity fields, α, β and 
γ are coefficients used for the third-order (J = 3) 
backwards multistep method and the non-linear operator, 
N, is, 
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The presence of the immersed boundary condition is 
enforced in two locations. The first is in the un velocity 
field in the RHS of equation (4a). This is done in order to 
promote the presence of the immersed boundary velocity 
conditions in the velocity gradients of the advection step, 
as this is calculated explicitly, independently, and before 
the LHS. The second enforcement is applied through the 
application of equation (2) to acquire a forcing term which 
can be computed as, 
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which results in the velocity field conforming to the 
expected immersed boundary condition at the end of this 
stage. Unfortunately, due to the implicit nature of the 
following two sub stages, incorporating the immersed 
boundary conditions into these steps is a non-trivial task 
and has not been implemented as of this paper. It is 
believed that this affects the effectiveness of the immersed 
boundary technique as the corrected values after the first 
stage are altered by the subsequent operations and not 
corrected for the immersed boundary condition. This 
effect contributes to the permeable boundary phenomenon 
reported in the following test cases. 

Interpolation Technique 
The interpolation method used to calculate the enforced 
velocity at the forcing point has been adapted from the 
method described in Balaras (2004). This method requires 
a point on the immersed boundary which possesses a 
normal that passes through the forcing point to be 
identified for every forcing point. It is along this normal 
that the interpolation between the immersed boundary 
velocity and the freestream field is conducted. The current 
stencil used to specify the velocity condition to be 
imposed on the forcing point is, 
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where u* is the velocity to be enforced at the forcing point, 
uvirt is the velocity interpolated at a point in the freestream 
specified by the lengths, h1 and h2, as shown in Figure 1.  

 
Figure 1: Schematic of the interpolation stencil being 
employed; h1 and h2 are lengths; black square - forcing 
points; black circle – boundary condition to be met; and 
white circle – virtual point. 

Technique Validation 

Flow Characteristics 
The modelling of a stationary cylinder in uniform cross 
flow was conducted to determine the validity of the 
immersed boundary method. The nature of the wake 
depends heavily on the Reynolds number of the flow, 
providing the opportunity to assess steady state and time 
dependent flows by adjusting the Reynolds number. The 
Reynolds number was defined as, 

,
ν

UDRe =  (8)

where U is the freestream velocity, D is the diameter of 
the cylinder and ν is the kinematic viscosity. For these 
simulations velocity and length quantities were 
normalized allowing 1/ν to equate Re. 
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Figure 2: Schematic of validation scenario. The spectral 
element layout for a) the entire computational domain; 
b) detail in the finely resolved working area. The 
bounding box indicates the finely resolved working area 
containing the circular immersed boundary. The additional 
points indicate where the velocity was monitored for the 
validation test cases. 

A schematic of the numerical setup is shown in Figure 2. 
Tests were conducted for Re = 25 and 30 for the steady 
state cases and Re = 100, 125, 150, 175 and 200 for the 
unsteady cases. For all cases, flows were obtained using 
an arbitrary Cartesian mesh combined with the immersed 
boundary technique as well as a boundary-conforming, 
body fitted mesh for comparison. The two computational 
domains were designed to possess a similar element count 
surrounding the cylinder, with approximately 480 
elements located in the finely resolved working area 
where the cylinder resided for both cases. Figure 2 depicts 
the computational mesh used for the immersed boundary 
case. 

The validity of the solutions were assessed through the 
comparison of the flow fields of the two solution sets at 
various locations, as indicated on the schematic in Figure 
2b. The u-velocity was measured along the centreline 
approaching the leading edge and the percent difference 
collated. Comparisons of important characteristics of the 
steady and unsteady flows were also conducted.  

At low Reynolds numbers, 4.5 ≤ Re ≤ 35, experiments 
demonstrated an attached, steady, symmetric, recirculation 
bubble downstream of the cylinder (Coutanceau and 
Defaye, 1991). This characteristic was assessed as the 
distance from the trailing edge where the velocity in the 
horizontal direction, behind the cylinder and along the 
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centre line changed direction due to recirculation 
(indicating a saddle point).   
Increasing the Reynolds number beyond approximately 47 
results in a time dependent wake containing a Kármán 
vortex street (Norberg, 1994). This characteristic can be 
quantified by the Strouhal number, 

,1
T

f
D
fUSt ===  (9)

where f is the frequency of the vortex shedding, U is the 
freestream velocity and D is a functional length, in this 
case the diameter of the cylinder. As the velocity and 
length quantities were normalized, this relationship can be 
simplified as shown where T is the period of the shedding. 
The Strouhal number was computed by monitoring the 
direction of the vertical velocity at a point 4D behind the 
trailing edge of the cylinder and measuring the shedding 
period as the time between successive cycles in direction. 

RESULTS 

Grid Independence Study 
The time dependent case of Re = 200 was considered for 
both the immersed boundary and body fitted grid 
independence studies. This value was chosen as it was the 
highest Reynolds number studied in this paper and the 
results of any lower studies are believed to be inherently 
represented by these results. The nodes per element, N, 
were varied between 7 and 10 and the respective Strouhal 
numbers were computed. The percentage error between 
the Strouhal numbers computed for the cases where 
N = 7-9 and the finest case considered here, N = 10. The 
results indicate convergence as there is consistent 
agreement below the order of 10-2. Ultimately, 8 nodes per 
element were used in the subsequent analysis, as this was 
considered a good intermediate value.  

Flow Characteristics 

Steady Flow 
Figure 3 depicts a representative comparison of the 
pressure contour plots for the steady state cases. In 
particular, these plots show that the technique produces 
mostly smoothly varying pressure fields which display 
good agreement to the fields generated by the body fitted 
method. 

A more rigorous analysis of the algorithm was conducted 
by considering the recirculation lengths, shown in Table 1. 
These values show good agreement with only a 4.30% and 
3.72% difference for the Re = 25 and Re = 30 cases 
respectively. In comparison to values from literature, both 
simulations have an error of approximately 8.8%. This 
error is associated with the geometry of the computational 
domain as the distance between the upper and lower 
boundaries and the cylinder is small enough to 
significantly influence the wake (Ryan, 2004). This idea is 
discussed later in the unsteady results and should not be 
considered a detracting finding as the immersed boundary 
has shown very good agreement with the body fitted 
technique under the same computational conditions.  

In order to assess the enforcement of the immersed 
boundary when subjected to oncoming flow, the 
percentage difference of the velocity approaching the 
leading edge between the immersed scheme and the fitted 
case were computed. The results are tabulated in Table 2 
which shows good agreement when beyond 0.4D from the 

leading edge. At 0.2D the percentage difference increases 
from below 2% (at the points 0.4D and beyond) to 
between 10 -12.5%. The percentage difference then 
decreases at 0.1D from the leading edge. The difference at 
both of these locations displays a clear dependence on 
Reynolds number, with the point closer to the boundary 
showing a significantly stronger relationship to Reynolds 
number, decreasing from 11.31% for Re = 25 to 2.90% for 
Re = 200, as opposed to the slight reduction, from 12.45% 
to 9.88%, at the point 0.2D from the leading edge. These 
results show that there is slight deficiency in the 
enforcement of the immersed boundary. 

While the method does a good job of representing the 
boundary overall, close to the leading, trailing, upper and 
lower extremes of the cylinder, it is apparent that pressure 
does not behave in a physical manner, as illustrated in 
Figure 4, where the jagged pressure contours indicate a 
resolution problem. As these anomalies occur in the 
regions of large gradient change around the boundary, it is 
likely that these are artefacts generated by polynomial 
wiggle caused by the local adjustment of the velocity by 
the immersed boundary forcing term. This hypothesis is 
supported by the fact the anomalies are contained within 
the elements which the boundary passes through. 

 
Figure 3: Typical pressure contour plot for steady state 
solutions where the solid contour depicts the immersed 
boundary case and the dashed contour the boundary 
conforming method. The streamlines (arrowed solid line) 
depict the lower half of the symmetrical recirculation 
region produced by the immersed boundary technique. 
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Figure 4: Closer look at the behaviour of the pressure at 
the boundaries for the same case as Figure 3, with the 
distribution of the spectral elements overlayed.  

 Re = 25 Re = 30 
Immersed Boundary 1.11 1.40 

Body Fitted 1.16 1.45 
% Difference -4.30 -3.72 

Coutanceau and Bouard 
(1977)a 1.22 1.53 

% Difference -8.85 -8.66 
a - experimental 

Table 1: Length of the recirculation bubble, measured 
from the trailing edge, including computed percentage 
differences between the various cases and the immersed 
boundary results.  

 Re 
Position 25 30 100 125 150 175 200 

0.1D 11.31 10.10 5.07 4.35 3.81 3.31 2.90
0.2D 12.45 11.84 9.56 9.52 9.62 9.74 9.88
0.4D -0.11 -0.15 -0.12 -0.09 -0.05 -0.04 -0.01
0.6D 1.81 1.71 1.40 1.38 1.37 1.35 1.35
0.8D 0.91 0.86 0.73 0.73 0.75 0.77 0.81
1.0D 0.76 0.72 0.60 0.59 0.59 0.58 0.59

Table 2: Percentage difference of u-velocity along the 
centreline at various distances before the leading edge, 
over a range of Reynolds numbers. 

Unsteady Flow 
A representative flow for the time dependent cases is 
shown in Figure 5, depicting the vorticity for the case of 
Re = 200. The time-dependent cases of Re = 100, 125, 
150, 175 and 200 showed good agreement when compared 
to the body fitted simulations.  

The Strouhal number results are shown in Table 3. From 
this data, it can be seen that there is a good correlation 
between the two simulation techniques with the difference 
of the two ranging between 1.049% and 2.117%. 

For comparison, the Strouhal numbers at the 
corresponding Reynolds numbers were predicted using 
Equation 10, an empirical relationship relating Re and St, 
(Williamson, 1988) which shows a good correlation to 
experimental data for parallel vortex shedding. This 
relationship can be expressed as, 

.106.11816.0
Re
326.3 4 ReSt −×++

−
=  (10)

The values obtained using this relationship are tabulated 
in Table 3. The percentage error between these values and 
the reference case of the boundary conforming scheme 
ranged between 12.13% and 7.45%. These differences 
were significantly higher than the error between the two 
simulation methods. This disparity is due to the 
computational domain introducing a blockage effect 
caused by the proximity of the upper and lower 
boundaries of the domain to the cylinder. This effect was 
reported by Ryan (2004) where it was observed that the 
domain influenced the wake of a flow at Re = 200 by 
9.7% for a domain with the upper and lower boundaries 
located 4D from the centre of the cylinder, which is also 
the case in this paper. The current domain was selected for 
efficiency and it should be noted that the most definitive 
results for this technique arise from the comparisons the 
body fitted technique, which has been proven to be very 
accurate (Sheard et al., 2007).  

The jagged pressure contours observed in the stationary 
cases were also present in these cases (not shown here as 
they are of the same nature as Figure 4) although, as 
before, they were contained within the elements through 
which the boundary passed. In addition to the jagged 
pressure contours, the contour plots of vorticity for the 
unsteady cases, Figure 6, displayed significant amounts of 
noise at the leading edge and at an angle of approximately 
±45o from the trailing edge. These anomalies were not 
present in the body fitted cases. The oscillatory behaviour 
of the error at the leading edge suggests that, as with the 
pressure error, this is probably the result of polynomial 
wiggle within the element due to the adjustment of the 
velocity. The error towards the trailing edge is typified by 
the vorticity emanating from discrete points on the mesh 
(element nodes). A potential remedy to this currently 
being investigated is to increase the density of forcing 
points around the boundary by enforcing the boundary on 
both sides of the interface. This would lead to the majority 
of the nodes surrounding the boundary being influenced 
directly by a forcing node. 

 
Figure 5: Contour plot of vorticity at Re = 200. Solid lines 
and red flooding - positive (anticlockwise) vorticity; 
dashed lines and blue flooding – negative (clockwise) 
vorticity.  
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Figure 6: Erroneous regions of vorticity at the leading 
edge and at an angle of ±45o from the trailing edge. 

 Re 
 100 125 150 175 200 

Immersed 0.1858 0.1962 0.2042 0.2107 0.2162 
Body Fitted 0.1839 0.1937 0.2010 0.2068 0.2117 
% Diff 1.049 1.288 1.580 1.851 2.117 
Williamson 
(1988) 0.164 0.174 0.183 0.191 0.197 

% Error to 
Body Fitted 12.13 11.32 9.85 8.29 7.45 

Ryan (2004) - - - - 0.2154 
% Error to 
Body Fitted - - - - -1.733 

Table 3: Comparison of the recorded Strouhal number 
over a range of Reynolds numbers. 

Boundary Permeability 
Permeability of the immersed boundary was quantified by 
interpolating the velocity normal to the boundary at the 
point where VΨ should be imposed, as shown in Figure 1. 
Table 4 tabulates the average absolute velocity normal to 
the surface (averaged by the number of forcing nodes used 
to represent the boundary), the number of forcing points 
used to represent the boundary and the maximum flux and 
its location for the cases of Re = 200 and N = 7-10. 
Overall, the average normal velocity was low, between 
1.5% and 1.9% of the freestream velocity. 

Max Co-ords N Ave Normal 
Velocity 

Forcing Pt 
Count 

Max 
Normal 
Velocity x y 

7 0.017 116 0.111 -0.474 -0.159 
8 0.018 144 0.119 -0.475 0.157 
9 0.019 157 0.139 -0.494 0.074 

10 0.015 184 0.133 -0.484 0.127 
Table 4: Comparison of boundary permeability for the 
case of Re = 200, with various nodes per element. 

The inconsistency of the results, typified by the increase 
in average normal velocity between N = 7-9 followed by 
the subsequent decrease at N = 10 and a similar trend for 
the maximum normal velocity, suggest that the velocity 
normal to the boundary is not simply a function of grid 
resolution. The similarity in the location of the maximum 
normal velocity suggests that, in addition to occurring 
near regions of large gradients (all appear at a slight angle 

to the leading edge) it is likely the geometrical layout of 
boundary in relation to the mesh plays a significant role in 
determining the velocity through the boundary. In 
particular, the distance between the forcing node and the 
boundary (h2 in Figure 1) and the proximity of the 
boundary to an element edge appear to be the dominant 
factors in this erroneous phenomenon in the flow. The 
former cause relates to the accuracy of the interpolation 
method, while the later is due to the increasing stiffness of 
the Gaussian discretization as the immersed boundary 
approaches an element boundary. These sources of error 
are in addition to the diffusive action the pressure and 
final advection stages had on the flow solutions, which 
were not separable in this analysis. 

FUTURE WORK 
From this analysis it is apparent that the interpolation 
method and the way the velocities are adjusted within an 
element need to be further refined to reduce the magnitude 
of the artefacts introduced by these processes. These 
refinements will take the form of manipulating additional 
nodes within solid phase to reduce the polynomial wiggle 
and techniques which enforce the immersed boundary 
conditions within the pressure and final advection stages 
of the numerical scheme. 

The overall generality of this technique (no special cases) 
makes its adaptation to moving boundaries relatively 
straight forward. Furthermore, coupled with an 
appropriate force feed-back system, this methodology 
presents the opportunity for the simulation of fluid-
structure interactions. 

CONCLUSIONS 
This study has presented the methodology for integrating 
an immersed boundary algorithm into a spectral element 
fluid solver. The preceding work has shown that the 
implementation of the immersed boundary technique into 
a spectral element fluid solver is capable of producing 
results which shows good agreement to a boundary 
conforming method for both steady and unsteady flows. 
The technique predicted the recirculation length behind a 
fixed circular cylinder in a cross flow to 4.30% and 3.72% 
for the steady cases of Re = 25 and 30 respectively when 
compared to the same scenario simulated using a 
boundary conforming method. Similarly, the prediction of 
the Strouhal numbers for the time-dependent cases was 
computed to be within 2.2% for the range of Re = 100 -
 200. A brief analysis of the permeability of the immersed 
boundary demonstrated that it was quite low, on average 
less than 2% of the freestream velocity. Overall, this paper 
has shown that the immersed boundary method is 
compatible with spectral element fluid solvers. This 
technique will form the basis for future work to implement 
a fluid-structure interaction algorithm into this fluid 
solver. Ultimately, numerical simulation of fluid-structure 
interactions could aid in the investigation of complex 
industrial and medical phenomenon. 
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