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A B S T R A C T   

Horizontal convection has been used as an idealised model of the ocean overturning circulation, where some 
non-uniform buoyancy forcing profile is imposed along a horizontal boundary. Several different driving tem-
perature profiles have been chosen for past numerical and laboratory studies, likely for convenience, yet the 
effect of the shape of the chosen profile on the resulting horizontal convection flow remains unexplored. Here 
high order numerical simulation is used to investigate this problem. Time independent, periodic and chaotic 
regimes are identified as functions of Rayleigh number (Ra) and profile shape, with a step temperature profile 
being found to be more unstable than a linear temperature profile. Using a nonlinear Stuart–Landau analysis, the 
primary instability is consistently found to occur through a supercritical (non-hysteretic) bifurcation. This 
research highlights the importance of the horizontal buoyancy forcing profile in determining the thermal forcing 
required to produce instability in horizontal convection. In addition, Nusselt number scales to Ra1=5 in the fully 
convective regime, with scaling exponents elevating beyond Ra � 1010. This elevated scaling was more pro-
nounced for the linear thermal boundary profile than for the step profile over the computed Rayleigh numbers 
range.   

1. Introduction 

Heat is transported through fluid media in a number of different 
ways which produces various physical phenomena as seen in natural 
systems as well as in engineering applications. One such process is 
through convection where heat and mass are transported both by mo-
lecular diffusion as well as advection of large-scale motion within the 
fluid. Thermally driven buoyancy flow is important in the fields of 
geophysical flows [1,2] as well as industrial applications [3]. The ca-
nonical Rayleigh–B�enard convection has been extensively studied (for 
reviews see Refs. [4–6]) since it was first examined by B�enard [7] 
experimentally and subsequently explained theoretically by Rayleigh 
[8]. In Rayleigh–B�enard convection, fluid motion is induced in a plane 
horizontal layer of fluid heated from below by destabilisation of the 
vertical thermal gradient. In contrast, this paper examines thermal 
convection where a horizontal thermal gradient along a single hori-
zontal boundary invokes a natural convection flow; this class of con-
vection is called horizontal convection [9]. 

Horizontal convection has been used as an idealised model to gain 

insight into the ocean overturning circulation [9–11], where the 
enclosure can be thought of as an idealisation of a meridional slice of an 
ocean basin, and the non-uniform heating (or temperature) imposed 
along one of the horizontal boundaries idealises the lateral variation in 
solar heating and surface temperature. Just as a thermohaline circula-
tion sees warm surface waters advected from subtropical towards polar 
latitudes, where they cool and sink (forming “deep” and “bottom” wa-
ters Warren [12]), in horizontal convection fluid advects from a region 
of stable stratification to an unstable region where vertical transport 
away from the boundary takes place. Horizontal convection is often 
established in the laboratory via heating and cooling at the bottom 
boundary of an enclosure [10]; thus heating/cooling, upwelling/-
downwelling are interchanged with respect to the oceans. One of the 
striking features of large scale oceanic circulation is the formation of 
deep and bottom water from relatively small regions of ocean surface 
Stommel Bilgen and Yedder [13]. This bears some similarity to the 
narrow vertical plume region in horizontal convection, where the ver-
tical transport of fluid away from the heated/cooled boundary takes 
place over a very small proportion of that boundary, while the return 
flow is diffusive, slow, and spread across a much larger proportion of the 
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boundary. 
Numerous horizontal convection studies have employed different 

buoyancy forcing profiles, including linear temperature profiles [14,15] 
and combinations of fixed-temperature [16,17] and fixed heat flux [10] 
conditions along a horizontal boundary within a rectangular enclosure. 
In addition [18], studied convection heat transfer in an enclosure heated 
sinusoidally but it was heated on a vertical side wall with all other walls 
insulated. Khansila and Witayangkurn [19] performed a similar inves-
tigation in an enclosure filled with porous medium. More recently, 
Griffiths and Gayen [20] investigated a system forced by thermal vari-
ation in both horizontal directions, and found horizontal convection to 
share significant similarities to Rayleigh–B�enard convection. However, 
to date there has been no comprehensive study into the behaviour of 
horizontal convection with systematic variation of the imposed buoy-
ancy forcing profile [21]. 

Despite the different driving temperature variations imposed 
throughout the literature, horizontal convection nevertheless tends to 
exhibit consistent behaviour with increased Rayleigh numbers: for any 
finite Rayleigh numbers, a natural convection circulation is invoked; at 
low Rayleigh numbers conduction dominates, no distinct boundary 
layers are observed, and the Nusselt number is Rayleigh-number- 
invariant; beyond a sufficient Rayleigh number convection dominates 
with distinct thermal and kinetic boundary layers developing adjacent 
to the thermal forcing boundary. In this convective regime, it is well- 
established that Rossby’s NueRa1=5 scaling is produced. Evidence sup-
porting Rossby’s scalings at Rayleigh numbers sufficient to invoke the 
convective regime is plentiful. Numerical and laboratory experiments by 
Mullarney et al. [10] demonstrated a Nusselt number scaling against a 
thermal flux-based Rayleigh number NueRa1=6

F equivalent to a Ra1=5 

scaling, while other numerical studies have directly demonstrated the 
NueRa1=5 scaling up to Rayleigh numbers Ra ¼ O ð109Þ [23,24] and 
Ra ¼ O ð107Þ [15]. Numerical simulations by Sheard and King [24] and 
Ilıcak and Vallis [25] each demonstrated a Ra� 1=5 scaling for forcing 
boundary layer thickness. 

Numerically, horizontal convection has been shown to become un-
steady beyond some critical Rayleigh number, capable of maintaining 
overturning circulation within an enclosure [17,23,26]. Sheard and 
King [24], who employed a linear thermal profile, detected an elevation 

of the Nusselt number scaling exponent beyond Ra1=5 for Rayleigh 
numbers Ra > O ð1010Þ. Higher scaling exponents are accommodated 
under the variational analysis of Siggers et al. [23] that identifies the 
upper bound as NueRa1=3 for horizontal convection. Gayen et al. [17] 
(who used a step change in temperature along the heated boundary) 
detected a brief elevation in scaling beyond Ra1=5 before reversion to the 
original scaling at higher Rayleigh number. More recently, Shishkina 
et al. [27] adapted the scaling theory developed by Grossmann and 
Lohse [28] for Rayleigh–B�enard convection to a horizontal convection 
configuration where global averaged kinetic and thermal dissipation 
rates are decomposed into boundary layer and bulk contributions. Their 
theory captures Rossby’s NueRa1=5 scaling [22] in regime Il, charac-
terised by the thermal boundary layer being thicker than the kinetic 
layer, and both thermal and kinetic dissipation being dominant in the 
boundary layers, and several regimes that predict a Nusselt number 
scaling going with Ra1=4. 

On the other hand, Griffiths and Gayen [20] investigated thermal 
forcing which varied in both horizontal directions coupled with a length 
scale smaller than the domain. Their results demonstrated available 
potential energy can be produced without necessary changing the total 
supply of potential energy, this production is a driver for convection in 
their setup. This was further investigated experimentally and numeri-
cally by Rosevear et al. [29]. They found that the normalised heat 
transfer scales as NueRa1=5 for shallow enclosures and scales as Nue
Ra1=4 for deep enclosures. The 1=4 scaling regime was explained as a 
large scale motion within the interior and thermal diffusion through 
stabilised parts of the boundary layer. Hence recent years have seen an 
accumulation of evidence that the choice of thermal boundary condi-
tions in horizontal convection may influence the scalings in the flow. 

The aim of this study is to investigate the effect that different tem-
perature profiles imposed on the thermal forcing boundary have on 
horizontal convection scaling and stability. This will shed more light on 
the robustness of Nusselt number scaling at high Rayleigh numbers as 
well as under different imposed temperature condition. In addition, 
Fourier analysis will be used to explain the nature of the unsteady flow 
at high Rayleigh numbers. 

This paper is structured as follows: x 2 gives a detailed description of 
the numerical setup and mesh resolution study. This is followed in x 3 by 

Nomenclature 

A complex amplitude 
cp specific heat capacity of the fluid 
bey unit vector in the y-direction 
Ek kinetic energy of a Fourier wavenumber k 
f0 fundamental frequency 
k out-of-plane Fourier wavenumber 
g gravitational acceleration 
h height of fluid layer responsible for large-scale flow 
H enclosure height 
L enclosure width; characteristic length of thermal forcing 

for horizontal convection 
l Stuart–Landau model coefficient 
n temperature profile shape parameter 
p pressure 
Pr Prandtl number, Pr ¼ ν=κ , here Pr ¼ 6:14 throughout 
Ra Rayleigh number based on imposed temperature difference 

across heated horizontal boundary 
RaF Rayleigh number based on imposed thermal flux across 

heated horizontal boundary 
Racr critical Rayleigh number 
Re Reynold number 

t time 
u velocity vector 
x Cartesian horizontal coordinate 
y Cartesian vertical coordinate 
z Cartesian transverse (out-of-plane) coordinate 
α fluid volumetric expansion coefficient 
γ real and non-negative amplitude of A 
ε, εu kinetic energy dissipation rate 
εθ thermal dissipation rate 
η Kolmogorov scale 
ηb Batchelor microscale 
θ fluid temperature 
θ0 fluid reference temperature 
δθ temperature difference imposed across horizontal 

boundary 
κ fluid thermal diffusivity 
λu kinetic boundary layer thickness 
λθ thermal boundary layer thickness 
ν fluid kinematic viscosity 
ρ0 fluid reference density 
σ linear growth rate 
φ phase angle 
ω angular oscillation frequency  
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results and discussion, while conclusions are drawn in x 4. 

2. Numerical setup 

The system comprises a rectangular enclosure of width L and height 
H filled with fluid having reference density ρ0, kinematic viscosity ν, 
thermal diffusivity κ and volumetric expansion coefficient α, as depicted 
in Fig. 1. The flow is driven by a non-uniform temperature profile 
applied along the bottom of the enclosure, with a temperature difference 
of δθ from the cold (left) to hot (right) end. Fluid temperature θ and 
pressure p are respectively expressed relative to a fixed reference tem-
perature θ0 taken at the mid-point of the bottom boundary, and an 
arbitrary reference pressure p0. Throughout this study lengths, time t, 
velocity u, pressure and temperature are respectively scaled by L, L2= κ, 
κ=L, ρ0κ2=L2 and δθ. All quantities are expressed in their dimensionless 
form hereafter. 

A family of temperature profiles for the bottom boundary is con-
structed based on a power function that smoothly varies between a step 
profile and a linear profile as an exponent n is varied over 0 � n � 1. The 
expression for the temperature profile is 

θcold ¼ �
1
2

�
�
�
�2x � 1jn; 0 � x � 0:5

θhot ¼ þ
1
2

�
�
�
�2x � 1jn; 0:5 < x � 1

(1) 

The temperature therefore varies over � 0:5 � θjy¼0 � 0:5 over the 
base as shown in Fig. 2, and when the system reaches thermal equilib-
rium there is no net heat transport across the forcing boundary. Simu-
lations are initialised with an interior temperature θjt¼0 ¼ 0. 

The side and top walls are thermally insulated (zero temperature 
gradient normal to the walls), and a no-slip condition is imposed on the 
velocity field on all walls. A Boussinesq approximation for fluid buoy-
ancy is employed, whereby density differences in the fluid are neglected 
except through the gravity term in the momentum equation. Under this 
approximation the energy equation reduces to a scalar advection- 
diffusion equation for temperature which is evolved in conjunction 
with the velocity field. The fluid temperature is related linearly to the 
density via thermal expansion coefficient α. The Navier–Stokes equa-
tions governing a Boussinesq fluid may be written as 

∂u
∂t
¼ � ðu ⋅rÞu � rpþPr r2uþ Pr Ra θbey; (2)  

r ⋅ u ¼ 0; (3)  

∂θ
∂t
¼ � ðu ⋅rÞθ þr2θ; (4)  

where bey is the unit vector in the y-direction. The horizontal Rayleigh 
number characterising the ratio of buoyancy to thermal and molecular 
dissipation is 

Ra¼
gαδθL3

νκ
; (5)  

where g is the gravitational acceleration. The Prandtl number charac-
terising the ratio of molecular to thermal diffusion in the fluid is 

Pr¼ ν=κ; (6)  

and throughout this study Pr ¼ 6:14, which approximates water at 
laboratory conditions (at 25oC). The Nusselt number characterising the 
ratio of convective to conductive heat transfer is 

Nu¼
FθL

ρ0cpκδθ
; (7)  

where heat flux 

Fθ ¼ κρ0cp
∂θ
∂y
; (8)  

cp is the specific heat capacity of the fluid, and ∂θ=∂y is the averaged 
absolute vertical temperature gradient along the forcing boundary. 

Rotation is known to have a significant effect on horizontal con-
vection for rotation rates sufficient to reduce the Ekman layer to a 
thickness less than that of the horizontal convection boundary layers in a 
corresponding non-rotating system [9,21,30–32]. However, here rota-
tion effects are deliberately neglected to isolate the fundamental effect 
of different temperature profiles on horizontal convection. 

The system under consideration has a horizontal length L and a 
height H chosen to give an aspect ratio H=L ¼ 0:16, as depicted in Fig. 1. 
This aspect ratio had been used in numerous studies including Mullarney 
et al. [10] and subsequent numerical simulations [17]. It has been 
shown [24] that the flow dynamics of horizontal convection are inde-
pendent of aspect ratio at high Rayleigh numbers. At high Rayleigh 
numbers the thermal and kinetic boundary layers thicknesses are very 
much smaller than the enclosure height, δθ; δu≪H, thus the flow dy-
namics are independent of H. By comparison, this is far larger than the 
aspect ratio in the ocean where the horizontal length scale can be 
thousands of kilometres across with a vertical spatial scale of 1–5 km. 

2.1. Mesh resolution study 

The governing equations (2)–(4) are solved with an in-house solver 
featuring a high order nodal spectral element method for spatial dis-
cretisation and a third-order time integration scheme based on 
backward-differencing. This code had been validated in several studies 

Fig. 1. A schematic representation of the computational domain under inves-
tigation with the prescribed boundary conditions along each of the boundary. 
The domain has an aspect ratio of H=L ¼ 0:16, the same aspect ratio is used 
throughout this study. The equations used for the forcing temperature along the 
bottom boundary are expressed here in dimensional form. 

Fig. 2. Illustrating the shapes of the imposed temperature profile along the 
bottom forcing boundary of the computational domain. The temperature profile 
consists of a variation from a linear ðn¼ 1Þ profile to a step profile ðn ¼ 0Þ. The 
temperature and lengths are expressed in dimensionless form as described in 
x 2. 
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on planar and rotating horizontal convection flows [24,31]. 
For three-dimensional simulations, a Fourier expansion is used in the 

out-of-plane direction with a periodic boundary condition for simplicity 
and because sidewall effects are not being investigated in the current 
setup. An out-of-plane width of 0:04L is used, which is sufficient to 
capture several longitudinal rolls based on the prediction of linear sta-
bility analysis [33] and behaviour observed in recent simulations [17]. 

The computational mesh used to discretise the spectral element (x-y) 
plane in the current study consists of 12500 macro elements with clus-
tering adjacent to all four walls, part of the macro mesh is shown in 
Fig. 3. In order to fully resolve small scale structures in thermal con-
vection [34,35], showed that more grid points are needed within the 
thermal boundary layer as Rayleigh number increases. In this paper, a 
clustering factor is chosen to ensure sufficient grid points are used to 
resolve the thin thermal boundary layer along the bottom boundary as 
well as end wall plumes at high Rayleigh numbers. Based on Rossby’s 
[22] laminar boundary layer scaling, the thermal boundary layer 
thickness scaled with Ra� 1=5. This would give an estimated thermal 
boundary layer thickness of � 2:5� 10� 3 for a given Rayleigh number 
of 1013. The mesh has 6 spectral elements within this thin thermal 
boundary layer. Considering the polynomial order of 5 used for low 
Rayleigh numbers simulations and up to 7 for high Rayleigh numbers, 
this provides more than 30 quadrature points across the thermal layer. 
In addition to the thermal layer along the forcing boundary, thermal 
plumes are expected to travel along the right end wall into the interior; 
the mesh is carefully constructed in order to resolve plumes as they rise 
above the thermal layer as well as any thermal layer along the vertical 
end wall. 

To determine an optimal element polynomial order to be used in the 
simulations, a resolution study is conducted for the mesh at Ra ¼ 5�
108. The successive percentage error in the Nusselt number, L 2 norm, 
and mean enclosure temperature are used to examine the solution 
convergence. The results are shown in Fig. 4. In terms of the Nusselt 
number, the error dropped below 10� 6% for polynomial orders � 5. This 
error is close to 10� 9% with a polynomial degree of 8, which reflects the 
spectral convergence property of the spectral element method, and the 
quality of the mesh. Further evidence can be seen in the convergence of 
L

2 norm and mean enclosure temperature, which are below 10� 5% for 
polynomial orders � 5. The degrees of freedom trend plotted in the 
figure illustrates the increased computational cost needed to compute at 
higher polynomial orders. With this in mind, a polynomial order of 5 is 
chosen to compute at Ra � 1011, which is progressively increased to 7 
for higher Rayleigh number cases in order to capture the thinner thermal 
layer at these higher Rayleigh numbers. 

In addition to the thermal boundary layer, at Ra � 1010 the flow is 
increasingly unsteady, the overall kinetic energy production rate (the 
dissipation rate) and the viscosity will determine the smallest scales in 
the flow. The Kolmogorov length scale obtained from a dimensional 

analysis of the dissipation rate and viscosity is given by 

η¼
�

ν3

ε

�1=4

: (9) 

The Kolmogorov scale must be resolved in order to fully capture 
small-scale features in the flow. In thermal convection at Pr > 1, the 
slower diffusion of temperature demands the resolution of the smaller 
Batchelor microscale, given by 

ηb¼ ηPr� 1=2: (10) 

As in Ref. [28], local kinetic energy dissipation rate is given as 

ε¼ ν
�
∂iujðx; tÞ

�2 (11)  

where here tensor notation has been employed for compactness. The 
local kinetic energy dissipation rate is used to calculate the Kolmogorov 
and Batchelor scales in order to compare with local grid size. Fig. 5 
shows the distribution of the Batchelor scale for a representative snap-
shot of the flow at Ra ¼ 1013 with polynomial order 7. It is evident that 
small element size is needed along the bottom forcing boundary and the 
right-most 20% of the enclosure. A check of the Batchelor scale against 
local grid resolution determined that the Batchelor scales are fully 
resolved in these simulations. 

2.2. Convergence and thermal equilibrium 

For unsteady flows, meaningful statistics can only be obtained when 
the flows have reached a thermal equilibrium state. This equilibrium is 
determined using a time history of the net heat flux through the hori-
zontal base. In horizontal convection, the net heat flux across any hor-
izontal level sum to zero [14,27]. For steady flow, the instantaneous 
heat flux across the base and any horizontal level will be zero. However, 
for unsteady flow at thermal equilibrium, the net heat flux fluctuates 
about a zero mean. In these cases, the discrepancy between the 
computed time-averaged base heat flux and zero is used to judge for 

Fig. 3. A plot showing the nearest 30% of the enclosure to the right-hand (hot) 
end with clustering toward all wall boundaries to fully resolve small scale 
structures at high Rayleigh numbers. 

Fig. 4. Errors of the Nusselt number (Nu), averaged enclosure temperature 
(θavg) and the L 2 norm plotted against the degree of polynomial order of the 
spectral elements used in the numerical simulation. This computation had n ¼
1, Ra ¼ 5� 108 and Pr ¼ 6:14. The total number of degree of freedom for the 
whole computational domain is included to highlight the increase in compu-
tation cost as the polynomial degree is increased. 

Fig. 5. Contours of the local Batchelor scale ðηbÞ of the full enclosure with 
contour level ranges from 2:5� 10� 4 (white) to 0.01 (dark red) for the case of 
Ra ¼ 1013 with a polynomial order of 7. The Batchelor scales are fully resolved. 

T. Tsai et al.                                                                                                                                                                                                                                     



International Journal of Thermal Sciences 148 (2020) 106166

5

thermal equilibrium. For the current simulations, this net flux amplitude 
is well below 2% for Ra < 1012 and rises to < 5% for high Rayleigh 
number simulations. These deviations are consistent with the experi-
ments of Mullarney et al. [10] and the numerical simulations of Gayen 
et al. [17]. 

Three-dimensional direct numerical simulation (DNS) solutions are 
obtained by way of Fourier expansion in the spanwise direction with a 
spanwise width of 0:04L to be consistent with [17]. To assess the reso-
lution needed in the spanwise direction, simulations incorporating 
several different spanwise Fourier resolutions were conducted at 
different Rayleigh numbers. The time averaged kinetic energy in each 
Fourier mode was computed, with the results plotted in Fig. 6. The 
modal energy is highest at small wavenumbers, and with increasing 
wavenumber the modal energy decreases. The trends become approxi-
mately linear as the wavenumber increases, which given the log-linear 
axes reflects an exponential decay in modal energy with increasing 
spanwise wavenumber. The decay is stronger at smaller Rayleigh 
numbers, demonstrating the relatively greater influence of thermal and 
molecular diffusion on flow structures of a given scale compared to 
higher Rayleigh numbers. Adequate spanwise resolution is determined 
by a smooth decay of modal energies towards the highest resolved 
wavenumbers, and a small value of the ratio of energy in the largest 
resolved wavenumber to the energy in the most energetic wavenumber. 
For Ra � 1011, 64 Fourier modes are sufficient to reduce the mean ki-
netic energy to well below a minuscule O ð10� 10Þ (corresponding to a 
ratio of velocities between in smallest scales and the dominant flow 
features of order O ð10� 5Þ). 96 Fourier modes are needed to resolve a 
similar range of energies for Ra ¼ 1012, and 128 modes are needed for 
Ra > 1012. 

Table 1 gives the ratio of mean kinetic energy computed for different 
Rayleigh numbers with different number of Fourier modes in the span-
wise direction. It shows that Ra ¼ 1013 requires 128 Fourier modes to 
properly resolve the flow. In this paper, 64 Fourier modes are used for 
Ra � 1012, 96 and 128 Fourier modes are used for Ra ¼ 3:2� 1012 and 
1013, respectively. 

3. Result and discussion 

Numerical experiments were conducted on a rectangular enclosure 
with an aspect ratio H=L ¼ 0:16 and Pr ¼ 6:14, with Ra and thermal 
profile shape parameter n being varied. The temperature differential 
imposed along the forcing boundary compels the fluid to rise at the more 
buoyant (hotter) end of the enclosure and descend at the less buoyant 
(colder) end. The Rayleigh numbers computed in these simulations 
range from Ra ¼ 103 to O ð1013Þ. In order to reduce computational time, 
Ra > 1011 cases were started from a solution at thermal equilibrium 

Fig. 6. A comparison of time-averaged kinetic energy in each spanwise Fourier 
mode for simulations at Rayleigh numbers with spanwise Fourier resolutions as 
indicated. These simulations had H=L ¼ 0:16, Pr ¼ 6:14 and n ¼ 1. 

Table 1 
The mean kinetic energy ratio between the highest-wavenumber Fourier mode 
and the fundamental (most energetic) Fourier mode resolved in each three- 
dimensional simulation test case, at the stated Rayleigh numbers and resolu-
tions specified.  

Ra Number of Fourier modes Ekðm� 1Þ=Ekð1Þ

1010  64 8:20� 10� 40  

1011  64 3:31� 10� 21  

1012  64 2:40� 10� 13  

1012  96 4:72� 10� 18  

1013  96 8:70� 10� 10  

1013  128 1:93� 10� 11   

Fig. 7. (a) A plot of temperature contour and streamlines of the full enclosure 
for Ra ¼ 108 with contour level ranges from � 0.475 (dark shading) to 0.475 
(light shading). (b)–(e) Close-up (0:7L toward the hot end of the enclosure) plot 
of temperature contour at different Rayleigh numbers, Ra for a linear temper-
ature profile, n ¼ 1, imposed along the bottom boundary, contour level ranges 
from 0.175 (dark shading) to 0.475 (light shading) denote cooler and hotter 
fluid, respectively. 

Fig. 8. Close-up (0:7L toward the hot end of the enclosure) plot of temperature 
contour overlay with streamline for different forcing temperature profile 
parameter, n with Ra ¼ 1010, dark and light shading denote cooler and hotter 
fluid with the same contour levels as in Fig. 7(b–e). 
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computed at a lower Rayleigh numbers. The time step required to 
maintain numerical stability ranges from 10� 3 for the lower Rayleigh 
numbers to 10� 10 towards the higher end of the Rayleigh number range. 

3.1. Two-dimensional flow dynamics 

A horizontal temperature gradient imposed along the bottom 
boundary of the enclosure transfers heat into the enclosure via molec-
ular conduction from the wall to the adjacent fluid. Depending on the 
strength of thermal forcing, a horizontal thermal boundary layer de-
velops, carrying heat along the bottom boundary leading to a 
convection-dominated flow within the enclosure. Under a linear (n ¼ 1) 
temperature profile along the bottom boundary in the conduction 
regime at low Rayleigh numbers, heat transfers through molecular 
diffusion into the domain creating a symmetric streamline pattern over 
the whole enclosure. However, this symmetry is broken with a pro-
gressive increase in the Rayleigh numbers, as depicted in Fig. 7. At Ra ¼
108, a thermal boundary layer is visible along the forcing boundary, 
transporting colder fluid toward the hotter end. The streamlines began 
to cluster toward the hot end of the enclosure to form a vertical thermal 
pathway transporting heat toward the top boundary. As heat travels 
upward and horizontally along the top boundary toward the colder end 
of the enclosure thermal energy is lost. This cooling effect eventually 
brings the fluid down over the cold stable boundary layer along the 
lower boundary. The end wall jet transports hear convectively into the 
enclosure to create a mixed conductive-convective regime with very 
little localised entrainment. In this mixed conduction/convection 
regime, streamlines are mostly symmetric about the horizontal mid- 
plane but skewed toward the vertical end wall as shown in Fig. 7(a). 
This asymmetric convection cell was first suggested by Stommel [13] 
and later observed experimentally by Rossby [22]. 

A close-up plot of the temperature contour with a linear temperature 
profile at different Rayleigh numbers are shown in Fig. 7. The flow 
changes from a mixed conduction/convection regime (Fig. 7(a)–(c)) to a 
convection dominated regime (Fig. 7(d) and (e)) at higher Rayleigh 
numbers. The mixed regime is characterised by the formation of a 
thermal boundary layer convecting heat along the bottom boundary and 
a single end wall plume which rises up to the top of the enclosure. The 
flow dynamics are different when the Rayleigh number is increased 
beyond 1010 into the convection dominated regime, where the thermal 
boundary layer is becoming thinner. The thermal energy is creating a 
strong convective forcing which is sufficient for the thermal boundary 

layer to erupt from the surface creating multiple thin thermal plume like 
structures near the end wall. As the single plume is broken up into 
multiple plumes, with a linear temperature forcing, these thinner 
plumes do not have sufficient energy to reach the top boundary. Instead, 
part of the end wall plume convects horizontally near mid-height into 
the interior, entraining colder fluid along the way over the thermal 
boundary layer to form a localised circulation confined within the 
rightmost 10% of the enclosure. Thus, the structure of the flow can be 
classified into three regimes: a conduction dominated regime, a transi-
tional regime and a convection dominated regime. Within the convec-
tion dominated regime, the flow can be further subdivided into a time- 
independent stable state, a time-periodic state and a time-dependent 
chaotic state [33], which will be discussed in the following section. 

As the temperature profile parameter is changed from a linear ðn¼ 1Þ
towards a step ðn¼ 0Þ profile, the horizontal thermal gradient ∂θ=∂x 
increases in the vicinity of the mid-point of the forcing boundary. The 
higher rate of change of the wall temperature at smaller n in this region 
leads to higher local vertical temperature differentials in the thermal 
boundary layer between the cooler fluid convecting in the boundary 
layer and the increasingly hotter wall. This shifts the locally unstable 
region [33] further upstream, and promotes the formation of thermal 
plumes further upstream from the end wall. This can be seen in Fig. 8, 
where the inception of plume eruptions moves upstream and their fre-
quency increases as the temperature profile parameter is reduced 

Fig. 9. Temporal evolution of Nusselt number for Ra ¼ 5:5� 108 with a linear 
thermal forcing along the bottom boundary, showing a temporal adjustment of 
the Nusselt number from a conduction phase to a convection dominating phase 
which gives rise to a time periodic regime. Inset: a detail view of the saturated 
behaviour demonstrating the perfectly time periodic nature of the flow. 

Fig. 10. Time history fluctuation of the Nusselt number for a linear tempera-
ture profiles with different Rayleigh numbers. The Rayleigh number ranges 
from a perfectly time-periodic flow to an aperiodic regime and subsequently 
transition to a fully unsteady regime. The time t ¼ 0 represents an arbitrary 
time when the simulations had reached a thermal equilibrium and flow sta-
tistics were being collected. 
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toward a step profile ðn¼ 0Þ at a fixed Ra ¼ 1010. In addition, the end 
wall plume penetrates further into the interior altering the stable 
stratification within the top half of the enclosure. The shape of the 
temperature profile significantly changes the size of the local circulation 
zone. This localised region expands upstream to cover roughly 25% of 
the enclosure (Fig. 8(d)). The circulation also changes from a small, 
localised behaviour (Fig. 7(c)) to a more global and larger structure as 
shown in Fig. 8(d). The step profile resembles Rayleigh–B�enard Pois-
euille (RBP) flows [36], where the uniformly heated region acts as a 
Rayleigh–B�enard convection with a horizontal streamwise flow induced 
by the global overturning circulation. Kelly [36] showed longitudinal 
rolls (correspond to convection rolls in the streamwise direction) are 
preferred instability mode over transverse rolls in RBP flows. However, 
at high Rayleigh number, three-dimensional effects become significant 
resulted in an interaction between the longitudinal and transverse rolls 
to form a complex three-dimensional dynamics which are discussed in x
3.6. 

3.2. Unsteadiness in horizontal convection 

The simulations were carried out over long times to ensure that the 
flow had reached a thermal equilibrium state before statistics are 
collected. With the linear temperature forcing along the bottom 
boundary, a steady state solution without any temporal changes in the 
Nusselt number is obtained for Ra < 5:456� 108, the maximum changes 
in the velocity and temperature within the enclosure are of the order 
10� 13 and 10� 15, respectively. This shows a high level of convergence 
for the solution at these Rayleigh numbers. When the Rayleigh number 
is increased to 5:5� 108 and beyond the time independent solution is no 
longer stable; the flow experiences a transition to a perfectly time pe-
riodic state as shown in Fig. 9. The figure illustrates a thermal adjust-
ment phase where thermal energy is conductively transferred from the 
forcing boundary into the interior. This is followed by a region of nearly 
constant Nusselt number corresponding to steady horizontal convection 
along the bottom thermal boundary layer, which produces a single end 
wall plume. Local linear stability analysis [33] and sensitivity analysis 
[37] reveal a convective two-dimensional instability in the boundary 
layer, and that beyond Ra � 5:5� 108 leads to a time-periodic sustained 
convection of two-dimensional (transverse-roll structures) within the 
boundary layer, which are seen in the three-dimensional DNS of Gayen 
et al. [17] for horizontal convection with a near step-shaped thermal 
profile. The close-up inset in Fig. 9 depicts the time-periodic nature of 
the flow at this Rayleigh number. 

The perfect periodicity of the flow is maintained up to a Rayleigh 
number of 109 as shown in Fig. 10(a). When the Rayleigh number is 
increased to 1010, the Nusselt number time history in Fig. 10(b) shows a 
slight aperiodicity suggestive of a longer-timescale behaviour disrupting 
the periodic convecting rolls detected at lower Rayleigh numbers. This 
aperiodic behaviour is attributed to a strong localised re-circulation near 
the end wall. This can be seen in the thermal field visualisation in Fig. 7 
(c), which shows the end wall plume deviating inward at mid-height, 
creating a stronger local circulation rather than driving the main over-
turning circulation. The aperiodic separation from the hot end-wall and 
leftward intrusion of eddies in opposition to the horizontal convection 
boundary is the source of the aperiodic behaviour detected in Fig. 10(b). 

Intermittent noise set in at Ra ¼ 1011, which correlates with the 
eruption of plumes from the bottom boundary in advance of the end wall 
plumes which enhance local mixing and introduce high frequency noise. 
These short-wavelength and high-frequency oscillations are super-
imposed on a longer-wavelength and lower-frequency overturning cir-
culation. With increased Rayleigh number, the thermal boundary layer 
becomes thinner, and correspondingly the plume structures are smaller 
and thus more closely spaced (Fig. 7(c and d)). Ra ¼ 3:2� 1012 shows a 
continuation of the behaviour observed at Ra ¼ 1011, yielding the 
highly aperiodic Nusselt number time history shown in Fig. 10(d). 

Fig. 11 shows the effect of different forcing temperature profiles on 
the time history of the Nusselt number at Ra ¼ 1010. As the temperature 
profile changes from a n ¼ 1 (linear) to n ¼ 0:75, the Nusselt number 
fluctuation changes from a slightly aperiodic short wavelength oscilla-
tion (Fig. 10(b)) to an oscillatory signal with a stronger aperiodicity 
(Fig. 11(a)). Comparing the thermal fields at Ra ¼ 1010 for n ¼ 1 (Fig. 7 
(b)) and n ¼ 0:75 (Fig. 8(a)) demonstrates that in the latter case, the 
point at which thermal plumes erupt from the boundary layer has 
advanced upstream, while the end-wall plume continues to intrude 
above the boundary layer. It is believed that the increased scope for 
interaction between erupting plumes and the intruding end-wall plume 
generates the greater aperiodicity detected with n ¼ 0:75 over the n ¼ 1 
profile. 

When the temperature profile is adjusted further to n ¼ 0:5 (Fig. 11 
(b)), the flow returned to a perfectly periodic oscillation in the Nusselt 
number. Comparing the temperature field between n ¼ 0:75 (Fig. 8(a)) 
to n ¼ 0:5 (Fig. 8(b)), while the inception of boundary plume eruptions 
has advanced further upstream, at n ¼ 0:5 the end-wall plume now as-
cends to the top of the enclosure, which removes the previous interfer-
ence with the erupting plumes and this explains the recovery of 
periodicity in this case. At n ¼ 0:25, the flow becomes aperiodic with 
great similarity to the n ¼ 1 (linear) case except with a smaller ampli-
tude. The reduction in the amplitude appears to link to an increase in 

Fig. 11. A plot showing effect of the forcing temperature profile on the Nusselt 
number fluctuation at Ra ¼ 1010. Different ranges are used for the vertical axis 
to better illustrate individual characteristics of the Nusselt number fluctuation 
for each of the temperature profile. The Rayleigh number is chosen to match 
those used in Fig. 8. The time t ¼ 0 represents an arbitrary time when the 
simulations had reached a thermal equilibrium and flow statistics were 
being collected. 
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thermal layer thickness, whereas the aperiodicity most likely comes 
from the formation of multiple plumes ahead of the end wall. With a step 
temperature profile, the flow becomes increasingly unsteady as shown 
in Fig. 11(d). 

As the temperature profile changes from a linear profile to a step 
profile, the thermal boundary layer thickness increases to facilitate a 
better transport of heat along the end side wall into the domain, creating 
a stronger overturning circulation. In addition, the number of thermal 
plumes increases with increasing thermal gradient, which introduce 
short wavelength and high frequency oscillation locally near the hot end 
of the enclosure. The relative strength of the overturning circulation and 
localised unsteady plumes give rise to the variation in Nusselt number 
fluctuation observed in Fig. 11. Analysis of the Fourier spectra from 
these cases is contained in the section to follow. 

3.3. Flow periodicity 

Fourier analysis using Fast Fourier Transforms (FFTs) of discrete 
sampled Nusselt number time history data is used to characterize the 

periodicity of the flow. The FFT spectrum of the time-periodic Nusselt 
number fluctuation at Ra ¼ 109 is shown in Fig. 12(a), indicating a clear 
dominant fundamental frequency of f0 ¼ 1:74� 104 along with multiple 
harmonics which are linear combinations of the fundamental frequency. 
This is consistent with the time periodic nature of the flow at this Ray-
leigh number. The flow is weakly convective with an end wall plume 
transporting heat into the interior creating an overturning circulation, 
and the fundamental frequency is closely related to the cycle of this 
circulation. The fundamental frequency increases to f0 ¼ 8:16� 104 at 
Ra ¼ 1010, where multiple harmonics are clearly visible in the FFT 
spectrum in Fig. 12(b). The weak aperiodicity in the signal in this case is 
reflected by the noisier spectrum and a broad low-frequency peak at f �
2� 104. At Ra � 1011 (Fig. 12(c and d)) the FFT spectra exhibit more 
pronounced broadband noise and significant energy across the low 
frequencies that occludes the peak associated with the plume eruptions, 
reflecting the aperiodic flows at these Rayleigh numbers. 

The frequency spectral captured at Ra ¼ 1010 and different temper-
ature profile parameters are shown in Fig. 13. The spectrum for n ¼ 0:75 
has a similar structure that of the linear temperature profile, with a clear 
dominant frequency, visible harmonics, and broadband noise. However, 
in this case the low frequency noise has a higher amplitude than the n ¼
1 case. Further reduction to n ¼ 0:5 results in a spectrum consistent with 
the perfectly periodic flow with very little noise. Low amplitude noise 
observed for n ¼ 0:25, with a single dominant frequency. The dominant 
frequency for n value of 0:75;0:5 and 0.25 are f0 ¼ 9:26� 104; 1:02�
105 and 1:08� 105, respectively, which are slightly higher than the n ¼

Fig. 12. FFT spectrum of the Nusselt number for a linear temperature profiles 
with different Rayleigh numbers. The panels show the transition from a peri-
odic to a quasi-periodic and subsequently to an unsteady regime as a function of 
the Rayleigh number. In each panel the abscissa is linear in frequency and 
logarithmic in the amplitude. 

Fig. 13. FFT spectrum of the Nusselt number at Ra ¼ 1010 with different 
temperature parameters. In each panel the abscissa is linear in frequency and 
logarithmic in the amplitude. 
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1 at the same Rayleigh number. As expected, with n ¼ 0, the flow be-
comes unsteady and non-periodic as shown in Fig. 13(d). 

3.4. Onset of time-dependent flow 

The Stuart–Landau model is a useful mathematical tool to under-
stand a complex flow phenomenon. It is used to investigate the nature 
and behaviour of flow in the vicinity of a transition from steady to time- 
periodic state. This analysis had been used extensively to study the 
transition of different wake modes behind bluff bodies [38–41]. A brief 
overview of its application in the current study is provided here. 

Landau and Lifshitz [42] proposed a model to describe the growth 
and saturation of a perturbation near a transition point. The equation of 
this model can be written as 

dA
dt
¼ðσþ iωÞA � lð1þ icÞ

�
�A2
�
�Aþ…; (12)  

where A is a complex variable representing the fluctuation amplitude of 
a parameter, σ is the linear growth rate of a perturbation and ω is the 
angular oscillation frequency during the linear growth phase. A detailed 
description of this equation is provided in Ref. [38]. Higher-order terms 
are truncated from the right hand side of the equation. The complex 
amplitude is considered to take the form 

AðtÞ¼ γðtÞeiφðtÞ; (13)  

where γ ¼ jAj is the real and non-negative amplitude of A, and φ is its 
phase. Substituting Eq. (13) into the Stuart–Landau equation (Eq. (12)) 
and separating into real and imaginary parts gives 

d logðγÞ
dt

¼ σ � lγ2 þ…; (14)  

dðφÞ
dt
¼ω � lcγ2 þ…: (15)  

where l and c are constants determining the amplitude and frequency of 
the mode at saturation. From equation (13), a plot of d logjAj=dt against 
�
�Aj2 will provide the linear growth rate of instability at 

�
�Aj2 ¼ 0 and the 

gradient will determine the non-linear characteristics of the evolving 
instability. A positive gradient ( � l) indicates a subcritical bifurcation, 
whereas a negative gradient (þ l) indicates a supercritical bifurcation. A 
subcritical bifurcation permits bi-stability, or hysteresis, in the vicinity 
of the transition, whereas a supercritical bifurcation is non-hysteretic. 

The amplitude of the time-periodic fluctuation of the Nusselt number 
is used as a measure of the amplitude of the instability leading to time- 
periodic flow in horizontal convection (jAj). To achieve the cleanest 
possible representation of the instability towards the linear (infinites-
imal amplitude) regime, the Landau modelling is performed “in 
reverse”: a time-periodic solution at Ra ¼ 5:5� 108 serves as an initial 
condition, with simulations impulsively stepped down in Rayleigh 
number to record jAðtÞj as the flow decays to a steady state. Fig. 14(a) 
shows such a fluctuation when the solution for Ra ¼ 5:4� 108 evolve 
from Ra ¼ 5:5� 108. Fig. 14(b) shows a plot of ðd logjAj =dtÞ against 
�
�Aj2, the intersection at 

�
�Aj2 ¼ 0 gives decay rate of σ ¼ � 1:12� 102 and 

the negative slope of the curve demonstrates that the instability occurs 
through a supercritical bifurcation. 

This process was repeated for a number of Rayleigh numbers close to 
the transitional Rayleigh number, the corresponding global decay rate 
for each Rayleigh number considered is shown in Fig. 14(c). Linear 
extrapolation of these data to zero growth refines our estimate of the 
critical Rayleigh number to Ra ¼ 5:46� 108. Paparella and Young [14] 
had put the transition Rayleigh number at 3� 106 for an enclosure with 
thermal forcing at its centre, with an aspect ratio of H=L ¼ 0:25, and 
Pr ¼ 1. However, to the authors’ knowledge this is the first time that the 
supercritical nature of unsteady flow transition in horizontal convection 
has been demonstrated. 

The critical Rayleigh number for different temperature profiles were 
found using this same method, with results shown in the second column 
of Table 2. There is a downward trend in the critical Rayleigh number as 
the profile is altered from a linear towards a step profile. This likely 
follows the destabilising behaviour described in Section 3.1, where the 
steeper thermal gradient at smaller n in the middle region of the base 
creates strongly unstable gradients in the thermal boundary layer, 
leading to an advance of instability. 

To verify the results of the Stuart–Landau analysis, a range of Ray-
leigh numbers were computed in a sweep across the transitional regime 
to confirm both the critical Rayleigh number and the absence of hys-
teresis based on the fluctuation of the Nusselt number. For the linear 
temperature profile, the flow changes from a steady state at Rayleigh 
number of 5� 108 to a time-periodic state at a Rayleigh number of 5:5�

Fig. 14. (a) Temporal evolution of Nusselt number for Ra ¼ 5:4� 108 evolved 
from a higher periodic Rayleigh number of 5:5� 108 with a linear temperature 
profile along the bottom boundary. (b) A plot of d logjAj=dt against A2, where A 
represents the amplitude of the envelope of the Nusselt number. (c) Instability 
decay rate is plotted against Ra with linear extrapolation to estimate the critical 
Rayleigh number of the flow. 

Table 2 
Critical Rayleigh number, Racr , determined from the Stuart–Landau analysis as 
well as with the amplitude fluctuation of the Nusselt number for different 
temperature parameters.  

n Racr  

Landau Nusselt amplitude 

1 5:46� 108  5:45� 108  

0.75 4:46� 108  4:50� 108  

0.5 3:06� 108  3:08� 108  

0.25 1:35� 108  1:38� 108  

0 8:00� 107  7:93� 107   
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108. To pin point the transition Rayleigh number, the steady solution at 
Ra ¼ 5� 108 was used to evolve flows at higher Rayleigh numbers with 
an increment of 0:25� 108. 

The resulting amplitudes are shown in Fig. 15, where the nominal 
flow transitions is at Ra ¼ 5:45� 108. Using this method, the critical 
Rayleigh numbers for the other temperature profiles are shown in 
Table 2. The table shows a strong agreement between critical Rayleigh 
number predicted from the Stuart–Landau analysis and those obtained 
from the Nusselt number fluctuation. 

To test for hysteresis, simulations were run by stepping down the 
Rayleigh number using an initially unsteady solution from an incre-
mentally higher Rayleigh number. The results from these runs are also 
shown in Fig. 15. No hysteresis is observed, confirming the 
Stuart–Landau model prediction of a supercritical bifurcation. The 
transitional Rayleigh number for the different temperature profiles are 
revealed in Fig. 16. The plot also includes amplitudes recorded at higher 
Rayleigh numbers; all temperature profiles developed an aperiodic 
regime beyond the periodic regime, consistent with the linear profile. 
The inset in the figure shows that the transitional Rayleigh number 

decreases as the temperature profile is changed from a linear to a step 
function as expected. 

The aforementioned results permit the construction of a regime di-
agram across the Ra–n parameter space, which is plotted in Fig. 17. The 
plot demonstrates that as the temperature gradient departs from the 
linear profile towards a step profile, the onset of periodic/chaotic flows 
occur at a lower Rayleigh number. However, at intermediate profile 
shapes (n � 0:5), the transition from periodic to irregular flow is 
delayed, leading to a wider range of Rayleigh numbers over which time- 
periodic flow is obtained. 

3.5. Heat transfer and scaling at high Rayleigh number 

In the case of time-periodic and time-dependent simulations, a sta-
tistical mean Nusselt number is obtained from the time series data. 
Fig. 18(a) plots Nusselt number against Rayleigh number for each of the 
considered base temperature profiles. Immediately apparent is that at 
any given Rayleigh number, the linear temperature profile produces the 
smallest Nusselt numbers, with a monotonic increase in Nusselt number 
occurring as the profile shifts to a step profile. Convective flow estab-
lishes by Ra ¼ O ð107Þ to O ð108Þ from the step profile to the linear 
profile. A brief region occupying between one and two orders of Ray-
leigh number exhibit Nusselt numbers that appear to scale with Rayleigh 
number to the 1=5 th power. A 1=5 th scaling exponent was derived and 
demonstrated by Rossby [22], and has subsequently been confirmed 
both experimentally [10] and numerically [17,24]. 

However, across the investigated range of base temperature profile 
shapes, the Nusselt numbers can be seen to exhibit an elevation in their 
scaling at higher Rayleigh numbers. For visual guidance, two dashed 
lines extrapolating NueRa1=5 scaling and two dash-dotted lines extrap-
olating NueRa1=4 scaling projecting from Ra ¼ 1010 for the linear and 
step temperature profiles are included in Fig. 18(a). The scaling is seen 
to exceed the 1=5 scaling beyond Ra ¼ O ð108Þ to O ð1010Þ. For the 
subsequent at least four decades in Rayleigh number, the Nusselt num-
ber scales close to a 1=4 power of Rayleigh numbers for the linear 
temperature profile, whereas a less-pronounced increase in the scaling 
exponent is found as the temperature profile shifts towards a step 
profile. 

Fig. 18(b) plots Nusselt number compensated by Ra1=4 against Ra to 
demonstrate this scaling variation more clearly. The Nusselt numbers 

Fig. 15. A time series fluctuation of the Nusselt number along the thermal 
forcing boundary against log10Ra for the linear temperature profile with 
refinement of Rayleigh number near the transition Rayleigh number of Ra ¼
5:5� 108. The △ symbols represent refinement started from an initial steady 
state at Ra ¼ 5� 108 and the ▽ symbol started from the periodic solution at 
Ra ¼ 5:5� 108. 

Fig. 16. Figure showing amplitude fluctuation of the Nusselt number against 
log10Ra for different forcing temperature profile. A close-up of the transitional 
region is included. 

Fig. 17. Flow regimes in the Ra–n parameter space. An unbroken curve marks 
the threshold between steady-state and time-periodic flow regimes; this 
threshold has been accurately determined using growth rates obtained from a 
Stuart–Landau analysis of the time-dependency of the flow. A dashed curve is 
included for guidance to delineate the time-periodic and irregular plume 
eruption regimes at higher Rayleigh numbers. Symbols show the parameter 
combinations that were computed to map this parameter space. 
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reported by Ref. [17] are included for comparison, and can be seen to 
reside between the n ¼ 0 and 0.25 data, consistent with their adoption of 
a slightly smoothed step profile for temperature and the Prandtl number 
(Pr ¼ 5). A possible explanation for the present results is that the linear 
profile produces horizontal convection flow features that are compatible 
with one of [27] NueRa1=4 regimes (I�l , III∞ or IVu), while towards the 
step profile the data may reflect the absence of a pure power law: instead 
exhibiting a behaviour consistent with a linear combination of Rossby’s 
1=5 th scaling and a Ra1=4 scaling regime (analogous to the demon-
stration by Ref. [28] that a combination of 1=4 and 1= 3 power laws in 
Rayleigh–B�enard convection mimics a 2=7 scaling). 

To investigate further, dissipation contributions from the boundary 
layer and the bulk are extracted for the linear and step temperature 
profile cases, with the results plotted in Fig. 19. Kinetic and thermal 
boundary layers thicknesses are defined using the slope-method [4,44] 
whereby the thickness is taken as the distance between the boundary 
and the point at which a line tangent to the time-averaged thermal or 
velocity profile reaches the value of the respective field at its first 
turning point (the edge of the boundary layer). These thicknesses were 

Fig. 18. (a) A plot of Nusselt number, Nu, against Rayleigh number, Ra, with a 
base 10 logarithmic scale for different temperature forcing profiles. Dashed 
guidance lines representing Ra1=5 scaling extending from Ra ¼ 1010 for the 
temperature profiles of n ¼ 1 and 0 are included as a visual guide for assessing 
the trending gradient along each of the curves. (b) A plot of compensated 
Nusselt number ðNu =Ra1=4Þ against Rayleigh number, Ra, for different tem-
perature profiles, a dashed line representing NueRa1=5 and a dashed horizontal 
line representing NueRa1=4 are included for visual guidance. Symbols ○, ▽, △, 
⋄, □ represent n ¼ 1; 0:75;0:5;0:25 and 0, respectively. The filled symbols 
represent Nusselt number obtained from three-dimensional simulations and the 
red-filled ⋄ are DNS simulations from Shishkina [43]. Symbols � , þ and �
respectively represent Gayen et al. [17]’s DNS and LES simulations, and Mul-
larney et al. [10]’s experimental data for comparison. 

Fig. 19. Plots of global time-averaged (a) thermal and (b) kinetic dissipation 
contributions from the boundary layer (shaded symbols) and the bulk (open 
symbols). Symbols ○ and □ represent the step and the linear temperature 
forcing profiles, respectively. 

Fig. 20. Temperature contours on a horizontal plane at a height 25% of the 
thermal boundary layer thickness for each of the Rayleigh number used. These 
cases depict horizontal convection with a linear (n ¼ 1) temperature profile at 
Rayleigh numbers as indicated. The temperature contour levels vary from dark 
(cold) to light (hot) shading over the range 0:15 � θ � 0:475. The panels show 
0:6L toward the hot end of the enclosure. Local bright regions reveal regions 
where heat is convected vertically from nearer to the bottom boundary in 
plume filaments. 
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used to calculate dissipation contributions for the boundary layer and 
the bulk. The thermal dissipation for the linear and step temperature 
profiles are dominant within the boundary layer for all Rayleigh 
numbers, as shown in Fig. 19(a). The kinetic dissipation is seen in Fig. 19 
(b) to exhibit a similar contribution from the boundary layer and the 
bulk, which is outside the scope of the theory of Shishkina et al. [27]. 

It can therefore be concluded that the present data is consistent with 
the flows exhibiting Rossby’s NueRa1=5 regime and then a zone exhib-
iting an elevation to NueRa1=4 as predicted by Shishkina et al.’s [27] 
theoretical model based on the Grossmann and Lohse’s [28] ideas, as 
applied to horizontal convection. The NueRa1=4 zone is more prevalent 
under the linear temperature profile, while the Ra1=5 regime being more 
persistent under the step temperature profile. 

3.6. Three-dimensional effects 

It has previously been shown [17] that horizontal convection pro-
gresses with increased Rayleigh number from a steady-state convective 
state, through a two-dimensional unsteady state, an ordered 
three-dimensional state featuring longitudinal-roll structures in the 
boundary layer, to a disordered state featuring irregular plume filaments 
erupting from the heated portion of the boundary. Here 
three-dimensional simulations are conducted to elucidate the develop-
ment of three-dimensionality across the family of temperature profiles 
considered in this study. For a linear temperature profile, the flow is 
found to transition from a steady transverse rolls to a single longitudinal 
roll at Ra � 1010, as shown in the temperature field plotted in Fig. 20(a). 
The figure shows the temperature field on a horizontal plane at height 
y ¼ 2� 10� 3 which lies within the thermal boundary layer along the 
bottom wall. This initial behaviour of transverse roll instability paving 
the way for subsequent longitudinal roll instability was predicted by the 
linear stability analysis of Tsai et al. [33] for horizontal convection with 
a linear thermal profile, and is consistent with the three-dimensional 
DNS for the step profile reported by Gayen et al. [17]. [33] demon-
strated that the instability is thermally driven and resembles Ray-
leigh–B�enard convection with through-flow. Multiple longitudinal rolls 
are found to develop at a higher Rayleigh number (Fig. 20(b)); this is 
analogous to multiple cellular structures in Rayleigh–B�enard convec-
tion, and is consistent with the spanwise wavelength of the structures 
scaling with the reducing boundary layer thickness with increased 
Rayleigh numbers. At Ra ¼ 1011, the majority of the thermal energy is 
carried by the end wall plume into the interior, thus maintaining the 
longitudinal structures of the flow. However, by Ra ¼ 1012 the thermal 
boundary layer begins to break off into filament plumes channelling 
heat directly into the interior upstream of the end wall. The enhance-
ment of heat transfer into the interior breaks up the longitudinal rolls 
into multi-cellular three-dimensional structures occupying approxi-
mately the rightmost 10% of the enclosure. The interaction of these 
plumes with the longitudinal roll structures results in the formation of 
oblique rolls as observed in the region 0:7L≲x≲0:9L in Fig. 20(c). As 
more plumes are formed further away from the end wall at Ra ¼ 1013, 
the majority of the transverse and longitudinal rolls give way to irreg-
ular thermal plume formation. 

The same transitional processes are observed for different imposed 
temperature profiles, but at a lower Rayleigh number, as the tempera-
ture profile varies from a linear to a step profile. Fig. 21 shows the 
temperature fields on a horizontal plane located within the thermal 
boundary layer at Ra ¼ 1012 over the range of base temperature profiles. 
For Ra ¼ 1012 with a temperature profile n ¼ 0:5, the regular oblique 
roll structures branched out into irregular network of plume lines as 
shown in Fig. 21(b). Fig. 21(c) shows the temperature field for the same 
Rayleigh number with a step temperature profile, the lighter colour of 
the contour indicates a higher interior temperature. Fig. 21 demon-
strates that the progression from a linear to a step thermal profile leads 
to a significant broadening of the region of spatio-temporally chaotic 

plume eruptions from approximately the rightmost 10% of the enclosure 
with n ¼ 1 to beyond the depicted 60% at n ¼ 0:5 and 0. The spatio- 
temporal plumes are high dimensional [45], and maintains a rela-
tively simple vertical structure with irregular patterns in time and in the 
horizontal plane [46]. 

The compensated Nusselt number (Nu=Ra1=4) is computed for three- 
dimensional simulations, these are plotted in Fig. 18(b) to compare with 
the two-dimensional simulations. The 3D Nusselt numbers agree well 
with the two-dimensional simulations, reinforcing the zone of higher 
Ra1=4 scaling behaviour at high Rayleigh number discussed in x 3.5. 

4. Conclusions 

Horizontal convection at a Prandtl number Pr ¼ 6:14 consistent with 
water is investigated under a systematic variation in the forcing tem-
perature profile imposed along a horizontal boundary using high- 
resolution spectral element simulations. The flow dynamics, stability, 
time-dependency and heat transfer behaviours are presented. It is 
confirmed that for all forcing profiles considered, at sufficiently high 
Rayleigh numbers, heat transfer is dominated by convection where 
plume-like structures break out of the thermal boundary layer, estab-
lishing a time periodic instability within the system. The periodic regime 
quickly gives way to a chaotic behaviour with further increases in 
Rayleigh number. A Stuart–Landau analysis reveals that transition from 
steady to time-periodic convection is found to occur through a super-
critical (non-hysteretic) bifurcation across all imposed temperature 
profiles, with the step profile being the most unstable; the critical Ray-
leigh number increases monotonically from Rac � 8:0� 107 to 5:5�
108 between the step and linear profiles, respectively. These critical 
Rayleigh numbers were confirmed using a sweeping method. 

Shortly after the inception of convective flow, an upward trend in the 
scaling exponent was obtained at higher Rayleigh numbers, adopting a 
value moderately in excess of 1=5 for a step temperature profile, with a 
progressively larger range of higher Rayleigh numbers exhibiting an 
uplift to a behaviour consistent with NueRa1=4 for profiles approaching a 
linear temperature variation. This findings corroborates recent theo-
retical scaling predictions of Shishkina et al. [27,43], and extends the 
range of Rayleigh numbers over which the Ra1=4 scaling regime has been 
found to Ra ¼ 3:2� 1013, up from Ra ¼ 2� 1011. 

This research highlights the importance of the horizontal buoyancy 
forcing profile in determining the scaling and stability of horizontal 
convection at a given Rayleigh number, the robustness of the scalings 
across different temperature forcings, and additionally illustrates the 
consistency between scalings captured by two-dimensional simulations 

Fig. 21. Temperature on a horizontal plane at a height y ¼ 2� 10� 3 for Ra ¼
1012 with different temperature profiles. The contour levels are the same 
as Fig. 20. 
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and three-dimensional DNS. 
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