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The flow normal to a cylinder with hemispherical ends is computed using a spectral-element/Fourier
method. With variation in the ratio of cylinder length to diameter, this body varies smoothly from
a sphere to a straight circular cylinder, providing insight into the relationship between body topology
and wake dynamics. This letter displays the wake structure for a range of cylinder lengths up to a
Reynolds number of 300 and considers the wake alignment and symmetry at length ratios
approaching a spherical body. A time-invariant wake consistent with that behind a sphere is found
to preferentially align with a symmetry plane bisecting the major axis of short cylinders, whereas the
periodic “hairpin” wake aligns with the minor axis; thus the hairpin vortices shed from alternate
sides of the cylinder, just as with Kármán vortex shedding from a circular cylinder. The plane of
symmetry is found to break via a supercritical transition at a Reynolds number of 350�2. © 2008
American Institute of Physics. �DOI: 10.1063/1.2899782�

The transitions which occur in the wakes of bluff bodies
such as the sphere and the straight circular cylinder have
been the subject of a vast number of studies in recent
decades.1–3 These bodies undergo a well-known and distinct
set of transitions with increasing Reynolds number, with bi-
furcations due to both time-dependent and three-dimensional
instability modes occurring, respectively, at Reynolds num-
bers Re=46 and Re�190 for cylinders,1,4,5 and at Re=211
and Re�270 for spheres.3,6,7

Mittal8 numerically studied the unsteady nonaxisymmet-
ric wakes behind both spheres and spheroids and found that
at over the range of 350�Re�375�10, the wake of a
sphere loses the planar symmetry it preserved through both
the regular nonaxisymmetric and Hopf bifurcations. No sub-
sequent efforts have yet further refined this transition Rey-
nolds number, and the irregularity of the wake beyond this
transition has left open the question as to whether the tran-
sition might be hysteretic �subcritical� or continuous
�supercritical�.9,10

Studies have attempted to relate the nature and order of
these transitions to geometric parameters defining the body.
Thick rings �tori� were used to study bodies of revolution
other than a sphere,11 and slender rings were used to inves-
tigate circular cylinders without end effects.12 The full range
of ring aspect ratios was later completely characterized
numerically.13,14 Straight circular cylinders of finite length
have been widely studied due to their importance both in
aero- and hydrodynamic engineering applications, as well as
in understanding the influence of end effects on the other-
wise parallel shedding behind the cylinder span.15–17 These
studies observe marked differences in the transition Rey-
nolds numbers and wake characteristics as the cylinder as-
pect ratios �ratios of length to diameter� approach O�1�.

Recent experimental studies have considered finite-
length cylinders with hemispherical ends,18,19 chosen delib-
erately to recover a sphere for a unit aspect ratio, as an al-

ternative geometry for systematically investigating the
relationship between geometry and wake bifurcation sce-
nario. These studies measured Strouhal–Reynolds number
profiles and estimated the critical Reynolds numbers for the
onset of unsteady flow and their relationship with aspect ra-
tio. No visualization of the wakes behind cylinders with
hemispherical ends has yet been published.

This letter investigates the flow past cylinders with
hemispherical ends with aspect ratios up to 5. Firstly, the
numerical treatment of the geometry is described. Subse-
quently, visualization of the vortical structure of the wakes at
a range of aspect ratios is presented. Finally, a short cylinder
is used to further investigate the transitions which develop
behind a sphere, with consideration paid to the preferred ori-
entations of the regular and periodic planar-symmetric
wakes, as well as a detailed characterization of the transition
leading to the loss of planar symmetry.

A schematic representation of the system under investi-
gation and the coordinate system being employed is given in
Fig. 1. A Reynolds number is defined Re=Ud /�, where U is
the free-stream velocity, d is the cylinder diameter, and � the
fluid kinematic viscosity. This study considers Re�300, a
range which encompasses the transitions to unsteady and
three-dimensional wake flow for both a sphere and a straight
circular cylinder. Taking the cylinder length as L allows a
length ratio definition LR=L /d.

The cylinder with hemispherical ends differs from the
aforementioned axisymmetric bodies in that the symmetry
axis of the body is aligned normal to the direction of flow,
instead of parallel to the direction of flow. This has implica-
tions on the numerical modeling of this problem, as dis-
cussed in the next section.

This study employs the same spectral-element/Fourier
code that has previously been employed to study the wakes
behind spheres and rings.9,14 The numerical formulation fol-
lows closely to the algorithm employed by Tomboulides and
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Orszag,7 and described neatly by Blackburn and Sherwin.20

A nodal spectral-element method is used to discretize the
velocity and pressure fields on the z-r plane, and a Fourier
expansion resolves azimuthal variations in the flow vari-
ables. Elements are concentrated in the vicinity of the cylin-
der surface to resolve regions of high spatial gradients such
as boundary-layer flows. A mesh employed is shown in
Fig. 2.

For time integration a third-order Adams–Bashforth
scheme explicitly advances the nonlinear advection terms of
the incompressible Navier–Stokes equations, continuity is
enforced by projecting the velocity field onto a divergence-
free space during solution of the pressure term, and the vis-
cous term is computed implicitly using a theta-modified
Crank–Nicolson scheme.

The development of the wake normal to axis of symme-
try requires a large number of Fourier planes to properly
resolve the wake. A test case was established for a sphere
�LR=1� at Re=300, with simulations conducted at a range of
element polynomial degrees �N� and numbers of Fourier
planes �P=64 and 128�. Eventually 128 Fourier planes and
elements of degree of 11 were chosen, producing an accu-
racy of better than 1% for both time-averaged drag and
Strouhal frequency calculations. This accuracy was main-
tained in further tests for Reynolds numbers Re�300.

A Reynolds number Re=300 exceeds the critical Rey-
nolds numbers for unsteady and three-dimensional flow be-
hind both spheres and straight circular cylinders, and there-
fore provides a useful baseline at which to investigate the
effect of aspect ratio variation on the wakes. Included in Fig.
3 are isosurface plots showing the wakes behind cylinders

with length ratios up to LR=5 at Re=300. It can be seen that
at smaller length ratios the wakes are not symmetrical about
the cylinder midspan. This asymmetry is associated with the
Strouhal frequency of the spanwise component of force act-
ing on the cylinder and is less prominent with increasing LR.

Coinciding with the development of spanwise symmetry
is the development of vortices resembling Kármán vortices
in the vicinity of the cylinder midspan and within approxi-
mately 1d-3d downstream. Evidence of this is shown
by solid vertical bands in the isosurface plots in Figs. 3�d�
and 3�e�.

A very short cylinder �length ratio LR=1.04� was con-
sidered to develop an understanding of the relationship be-
tween azimuthal asymmetry of a nearly spherical body and
the resulting wake symmetries.

The familiar steady nonaxisymmetric wake comprising a
counter-rotating pair of vortices extending far downstream
was computed at Re=250. Orthogonal views of an isosurface
plot of this solution are shown in Fig. 4. These views verify

FIG. 1. �Color online� The coordinate system relative to a cylinder with
hemispherical ends. Flow is normal to the z-axis.

FIG. 2. �Color online� Cutaway views of the computational domain, reveal-
ing the mesh and the surface of the cylinder. Left: The left vertical and
horizontal cutaway surfaces show the spectral-element mesh occupying the
z-r plane, and the right vertical cutaway surface exposes the Fourier planes
employed to discretize the flow in the azimuthal direction. Right: Detail of
the mesh in the vicinity of the cylinder. The cylinder has LR=5, and the
domain extends 30d from the cylinder.

FIG. 3. �Color online� Plots of the vortical structure of the wakes behind
cylinders with hemispherical ends at Re=300. Isosurfaces of the eigenvalue
proposed by Jeong and Hussain �Ref. 21� are plotted to reveal vortices in the
flow. Flow is left to right, and translucent isosurfaces reveal the cylinder at
the left of each frame. Parts �a�–�e� show length ratios LR=1, 2, 3, 4, and 5,
respectively.
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the presence of planar symmetry �the plane is aligned with
the major axis of the body� and illustrate the close similarity
to the wake behind a sphere.7

Here the recirculation bubble shifts in the direction of
the longer body dimension from the center of the wake, and
the streamwise vortical tails extend downstream from one of
the hemispherical ends. Incidentally, the calculated drag co-
efficient was 0.70, within 0.5% of the value for a true sphere.

The solution at Re=250 was used as an initial condition
for a computation at Re=300. An unsteady wake quickly
evolved with the same orientation. However, this orientation
was unstable, and a slow rotation through 90° followed. The
wake eventually adopted a preferred orientation aligned with
the minor axis of the body, which was reached after approxi-
mately 1000 time units and 130 oscillation periods.

The axisymmetry of a perfect sphere means that there is
no preference to the orientation of the wakes produced at the
Reynolds numbers employed here. Interestingly, the addition
of an asymmetry to the body shows that there are distinct
preferences of orientation for the steady and unsteady wakes.

The isosurface plots in Fig. 5 show that the wake
maintains the familiar hairpin shedding pattern observed be-
hind a sphere,7,9,22 and that planar symmetry is maintained at
Re=300.

Mittal8 observed that for a sphere, the unsteady wake
loses its planar symmetry somewhere in the range of
350�Re�375. The axisymmetry of the body poses a chal-
lenge for the investigation of the breakdown of planar sym-
metry, as there is no preferential orientation of the symmetric
wake. Here the nearly spherical cylinder with LR=1.04 is
computed at Reynolds numbers up to Re=370, and the axial
force coefficient is monitored. This force component is zero
for planar-symmetric wakes. Figure 6 shows traces of the
transverse forces acting on the body at Re=350 and 360. At
Re=350 the plot demonstrates planar-symmetric properties,
with the variation in transverse force occurring almost solely
on a horizontal plane. At Re=360, the behavior is very dif-
ferent, with no preferential wake orientation being detected.

Loss of planar symmetry resulted in evolution of non-
zero mean and fluctuating components of side force along
the major axis of the cylinder. Figure 7 plots these quantities
at a number of Reynolds numbers through the transition.
Scatter in the data beyond Re=350 is a result of the rela-
tively short sample sets obtained due to the expense of the
computations. However, it is clear that planar symmetry ap-
pears to evolve through a continuous �or supercritical�

FIG. 6. Traces of the transverse force coefficients �CF=F / 1
2�AU2, where F

is the force, � is the fluid density, and A is the projected frontal area of the
body� in a plane normal to the direction of flow for a cylinder with LR
=1.04. Reynolds numbers �a� Re=350 and �b� 360 are shown. Data were
acquired over approximately 300 time units.
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FIG. 7. Reynolds number dependence of the mean �solid symbols� and
standard deviation �open symbols� of the axial force coefficient time history
for a cylinder with LR=1.04. Solid and dashed lines are added for guidance
and trace the planar-symmetric and asymmetric mode branches through a
supercritical transition at Re�350.

FIG. 4. �Color online� The steady wake computed at Re=250 for a cylinder
with LR=1.04. Orthogonal top �a� and side �b� views are shown. Isosurfaces
and flow direction are as per Fig. 3. The dimples in the vortical tails are
plotting artifacts at element interfaces.

FIG. 5. �Color online� Rotation of the unsteady wake computed at
Re=300, from �a� the initial orientation to emerge from the steady-state
solution at Re=250 to �b� the preferred orientation reached after approxi-
mately 1000 time units, and 130 periods. Isosurfaces and flow direction are
as per Fig. 3.
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bifurcation9,10 at Re=350�2, a substantial refinement of the
previously reported Reynolds number range for this transi-
tion.
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