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 Abstract – A detailed linear stability analysis is conducted on 
the flow past a square cylinder inclined at an angle to an 
oncoming flow.  At shallow incidence angles two distinct three-
dimensional instabilities present as the first-occurring modes in 
the wakes with increasing Reynolds number.  At incidence angles 
below 10.5 degrees, the flow becomes three-dimensional via the 
classical Mode A instability seen behind circular cylinders.  
However, at higher incidence angles the wake experiences a 
period-doubling bifurcation as a subharmonic instability 
develops in place of the Mode A wake. 
 

 Index Terms – Square cylinder, three-dimensional, wake 
instabilities. 
 

I.  INTRODUCTION 

The flow past a square cylinder serves as a model for 
myriad applications in engineering, including offshore 
structures, buildings, bridges and pylons.  These flows are 
characterized by the Reynolds number, which relates inertial 
to viscous effects in a flow.  At low Reynolds numbers the 
flow is steady and laminar, and at higher Reynolds numbers 
the flow transitions first to time-dependent flow and then to 
three-dimensional flow, before eventually becoming turbulent. 
Three-dimensional transition in the flow past cylinders leads 
to abrupt changes in vortex shedding frequency and both lift 
and drag characteristics.  It is therefore of interest as these 
transitions can have serious implications for the predictions of 
loading and fatigue of structures.  

A useful method for analysis of three-dimensional 
transition in wake flows is linear stability analysis, which 
yields growth rates (σ) for linear three-dimensional instability 
modes with given spanwise wavelength λ growing on a two-
dimensional base flow.  A Floquet linear stability analysis was 
conducted by [1] on the wake of a circular cylinder.  Their 
analysis accurately predicted the critical Reynolds number, 
spanwise wavelength, and spatio-temporal symmetry of the 
first-occurring three-dimensional instability, and their 
predictions matched very well to laboratory observations [2, 
3].  Mode A emerges at a Reynolds number (based on 
freestream velocity and cylinder diameter) of Re ≈ 180-190, 
and it is characterized by a spanwise wavelength 
approximately 4 times the cylinder diameter.  The wake 
subsequently transitions to a second three-dimensional mode 
(Mode B), over Re ≈ 230-260, which is characterized by a 
shorter spanwise wavelength of approximately 1 cylinder 
diameter.  This second mode was also predicted by [1]. 

These modes have subsequently been found to be common 
to other extruded geometries, such as slender rings facing an 
oncoming flow [4, 5], staggered tandem circular cylinders [6], 

and cylinders with square cross-section [7, 8]. For these 
geometries, Mode A is usually observed at a lower Reynolds 
number than Mode B.  In addition, a number of studies have 
also detected a third instability mode in these systems.  For 
circular cylinders [9] and square cylinders at zero incidence 
[8], a quasi-periodic mode is predicted, whereas behind rings 
[10, 11] and inclined square cylinders [12, 13], a subharmonic 
mode is predicted.  These modes are distinguished by their 
temporal properties arising from the respective eigenvalues of 
the evolution operator of the linearized Navier—Stokes 
equations used to determine the stability of the flow.  A 
subharmonic eigenvalue lies on the negative real axis, whereas 
a quasi-periodic mode occurs as a complex-conjugate pair.  A 
subharmonic mode invokes a period-doubling of the flow once 
the instability develops, whereas a quasi-periodic mode has 
the physical effect of introducing a new frequency into the 
flow.  Analysis by [14] has shown that quasi-periodic modes 
are permitted in flows exhibiting a half-period reflective 
symmetry about the wake centreline (e.g. a square cylinder at 
zero incidence), whereas those systems do not allow a 
subharmonic mode.  In contrast, subharmonic modes are 
permitted in systems which break this symmetry (e.g. an 
inclined square cylinder). 

The system under investigation is shown in Fig. 1.  It 
comprises a cylinder with a square cross-section inclined at an 
angle α to the oncoming flow, placed perpendicular to a 
uniform flow with speed U.  The square cross-section has side 
length d, and the characteristic length is taken to be the 
projected height of the cylinder facing the oncoming flow, h.  
This gives a Reynolds number 

𝑅𝑒 =
𝑈ℎ
𝜐

, 

where 𝜐 is the kinematic viscosity of the fluid.  The control 
parameters for the system are Re and α. 

Laboratory investigations have previously investigated 
square cylinders at both a zero incidence [15] and at 
inclination [16].  These studies employed dye visualization 
and hot-wire measurements to elucidate transitions in the flow, 
and proposed the first map of two- and three-dimensional 
regimes in the Reynolds number-incidence angle parameter 
space for inclined square cylinders.  A linear stability analysis 
[12], supported by direct numerical simulation, determined 
that the first-occurring three-dimensional transition behind 
inclined square cylinders was Mode A at incidence angles near 
0° and 45°, and a subharmonic mode (Mode C) at intermediate 
angles.  The subharmonic mode was most unstable at 
approximately α ≈ 25°, and the transition Reynolds number 
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Fig. 1 A schematic representation of the inclined square-cylinder system, 
showing inclination angle α, characteristic length scale h, and free-stream 

velocity U. 

increased substantially towards both 0° and 45°.  At a zero 
incidence angle, [8, 12] identified a quasi-periodic mode, 
which was predicted to become unstable well above the 
critical Reynolds numbers for Modes A and B, but no 
evidence was found for the quasi-periodic mode at non-zero 
incidence angles.  However, that analysis was only conducted 
at 7.5° increments in incidence angle, which raised a question 
as to whether the subharmonic mode immediately replaces the 
quasi-periodic mode the instant that the wake symmetry is 
broken at non-zero incidence angles, or whether the quasi-
periodic mode persists at small non-zero angles. 

Ref. [17] sought to address this question by investigating 
the effect of breaking reflective wake centreline symmetry at 
small increments.  It was found that the quasi-periodic mode 
persisted while the symmetry-breaking was small but finite, 
and as it was further increased the complex-conjugate pair of 
eigenvalues smoothly migrated towards the negative real axis 
where it split into a pair of subharmonic eigenvalues.  This 
study demonstrated that with increasing incidence angle, the 
quasi-periodic mode changes into the subharmonic mode, 
rather than being replaced by it through the emergence of a 
distinct eigenvalue. 

A more recent numerical study [13] calculated the stability 
of an inclined square cylinder flow at a number of additional 
incidence angles, refining the Reynolds number-incidence 
angle regime map.  Two notable features arose from their 
results: firstly, in keeping with the results of [17], the quasi-
periodic mode branch was found to extend to non-zero 
incidence angles (they detected the quasi-periodic mode up to 
approximately 2°, but included no data on the quasi-
periodic/subharmonic branch up to α = 10.2°), and secondly, 
while interpolation suggested in [12] that the crossover from 
Mode A to the subharmonic mode occurred at approximately 
12°, [13] detected the subharmonic mode and not Mode A at a 
lower angle of 10.2°.  Thus [12] over-estimated the threshold 
incidence angle for the crossover from Mode A to the 
subharmonic mode, and considering the data in [13], the 
crossover could potentially occur anywhere down to 7.5°.  
Furthermore, why is Mode A not detected at all at α=10.2°?  
The present study addresses these questions through a more 
detailed stability analysis of the inclined square cylinder wake. 

II.  NUMERICAL TREATMENT 

A two-dimensional code [18, 19] employing a nodal 
spectral element method for spatial discretization and a third-

order time integration scheme based on backwards 
differentiation is used to solve the time-dependent 
incompressible Navier—Stokes equations.  Linear stability 
analysis is performed by evolving a three-dimensional 
perturbation on the two-dimensional base flow using the 
linearized Navier—Stokes equations [1].  Stability eigenvalues 
are determined using the ARPACK package [20], where the 
complex eigenvalues are Floquet multipliers (μ), and 
eigenvectors give the instability mode shape (for details see 
[12, 17]).  Floquet multipliers represent amplification factors, 
and relate to the exponential growth rates (σ) of modes 
through 𝜎 = log|𝜇| /𝑇, where T is the temporal period of the 
base flow.  A Floquet multiplier with |𝜇| > 1 corresponds to a 
positive growth rate (𝜎 > 0) and an unstable mode. 

The meshes employed here were adapted from those 
employed for the square-cylinder calculations in [17].  The 
domain size and element distribution were maintained for all 
incidence angles.  The meshes have 644 elements with a 
polynomial degree 9.  The distances from the cylinder to the 
upstream, transverse, and downstream boundaries were 20h, 
20h, and 35h, respectively.  On all boundaries except the 
downstream boundary a high-order Neumann pressure 
gradient boundary condition was imposed to preserve the 
third-order time accuracy of the computations [21], and on the 
downstream boundary a constant reference pressure was 
imposed.  A uniform horizontal velocity was imposed at the 
upstream boundary, and stress-free conditions were imposed 
on the transverse boundaries.  A no-slip condition was 
imposed on velocity at the surface of the cylinder, and a zero 
normal gradient of velocity was weakly imposed naturally on 
the downstream boundary by the Galerkin treatment of the 
diffusion sub-step of the time integration scheme. 

The aim of this study is to develop a detailed map of 
transition regimes at small incidence angles.  Hence incidence 
angles over 0° ≤ 𝛼 ≤ 12° are computed at approximately 1° 
increments.  Analysis was targeted at narrow ranges of 
Reynolds numbers and spanwise wavelengths surrounding the 
dominant modes, minimising the intervals between data points 
and enhancing the precision of the predictions.  Polynomial 
curve fitting was used to determine the wavenumber m (which 
relates to the spanwise wavelength through λ/h = 2π/m) 
corresponding to the peak growth rate for an instability mode 
at a given Reynolds number, and interpolation was performed 
to find the critical Reynolds number and wavenumber at 
which the mode first becomes neutrally stable (i.e., zero 
growth rate).  Typically, 15 to 20 Floquet multipliers were 
computed to obtain each critical Reynolds number in the 
results to follow. 

III.  RESULTS 

A. The Mode A Branch 
Fig. 2 shows the key Reynolds number curves for the 

Mode A instability branch at small angles.  At α = 0°, the 
present stability calculations for the onset of the Mode A 
instability are in agreement with [12], predicting Recrit = 164 at 
a wavenumber m = 1.24.  With an increase in α, the critical 
Reynolds number for the onset of the Mode A instability also 
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Fig. 2 Critical Reynolds numbers for the Mode A instability plotted against 

incidence angle.  The unstable region of the parameter space is shaded, and a 
dashed line marks the point at which the maximum growth rate was found in 

the Mode A waveband for each incidence angle. 

increases.  Unusually, for a given α, the growth rate reached a 
maximum value, before subsequently decreasing again at 
higher Reynolds numbers.  The Reynolds number for peak for 
Mode A growth rate is predicted to be Re = 224 at α = 0°; it 
increases to Re = 244 at α ≈ 5°, and at higher incidence angles 
the peak occurs at lower Reynolds numbers.  With increasing 
incidence angle, the Mode A instability was unstable over a 
decreasing range of Reynolds numbers.  These computations 
predict that by α = 10.5°, the Mode A waveband is not 
unstable for any Reynolds numbers considered in this study.  
At α = 10.5°, the critical Reynolds number at which Mode A 
grazes the neutral stability threshold is Re = 200.  This shows 
that the flow becomes less sensitive to the Mode A instability 
as the incidence angle is increased from 0°. 

The achievement of positive growth rates for the Mode A 
instability in these computations at α = 10.2° (and indeed up to 
α = 10.5°) is in contrast to the calculations in [13], where 
Mode A was not detected at α = 10.2°.  Given the close (but 
not exact) agreement between their critical Reynolds number 
curves and those of [12], the differences between the two sets 
of computations may be attributed to the different domain 
sizes and numerical techniques employed in the two studies.  
It is highly likely that the suppression of Mode A observed in 
the present calculations most likely occurred at an incidence 
angle just below α = 10.2° in their model, which explains their 
detection of only the subharmonic (Mode C) instability at that 
incidence angle. 

B. Subharmonic and Quasi-Periodic Modes 
The critical Reynolds number curve for the quasi-

periodic/subharmonic mode branch is shown in Fig. 3.  
Ref [17] showed that the transition from quasi-periodic to 
subharmonic eigenvalues occurred at an incidence angle of 
α = 5.9° for a cylinder with a square cross-section.  That study 
conducted the stability analysis at a constant Reynolds number 
(based on the cylinder side length) of Red = 225.  At α = 5.9°, 
this corresponds to a Reynolds number here of Re = 247.  At 
that Reynolds number the Floquet multiplier resided inside the 
unit circle (|μ| < 1), which corresponds to a decaying mode 

 
Fig. 3 Critical Reynolds numbers for the quasi-periodic and subharmonic 
modes plotted against incidence angle.  Black and white symbols denote 
modes with quasi-periodic and subharmonic eigenvalues, respectively. 

and a stable flow.  In this study eigenvalues are determined at 
precisely the transition Reynolds number and peak 
wavenumber for all incidence angles.  At the critical Reynolds 
number, the shift from quasi-periodic to subharmonic mode 
characteristics occurs somewhere between α=2° and 3°, in 
good agreement with [13], which detected a quasi-periodic 
mode at α ≈ 2°. 

At α = 0°, the mode has a critical Reynolds number of 
Rec = 214, consistent with [12].  The critical Reynolds number 
increases with incidence angle to a maximum of Rec ≈ 260 at 
α ≈ 6°, before subsequently decreasing with further increases 
in α.  The trend of the critical Reynolds number rising over 
0° ≤ α <  6° and falling beyond α ≈ 6° closely mirrors the 
trend in the maximum growth rate of the Mode A instability. 

Highlighting the consistency across the quasi-periodic and 
subharmonic states, Fig. 4 shows the perturbation fields at 
several incidence angles along the neutral stability curve.  The 
topologies of the perturbation field mode structures are 
qualitatively consistent across these incidence angles, 
supporting the view that the quasi-periodic and subharmonic 
regimes are part of the one mode branch.  No sudden change 
in structure is detected through the switch between these 
regimes. 

IV.  SUMMARY AND CONCLUSIONS 

This study provides a clearer description of the stability of the 
wake behind an inclined square cylinder than is available from 
earlier attempts to map these regimes [12, 13].  The updated 
regime map is plotted in Fig. 5. This study demonstrates that 
with increasing incidence angle from α = 0°, the flow is first 
unstable to the Mode A instability.  This mode is progressively 
suppressed, so that by α = 10.5° the flow is no longer unstable 
to Mode A.  Thereafter, the first-occurring instability is the 
subharmonic Mode C instability.  As the incidence angle 
approaches 45°, which corresponds to a recovery of reflective 
symmetry about the wake centreline, [12] showed that 
Mode C is replaced again by Mode A as the first-occurring 
instability mode. 
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Fig. 4 Contour plots of the horizontal component of velocity in the 

perturbation field of the dominant mode in the quasi-periodic/subharmonic 
waveband at the neutral stability threshold (the curve in Fig. 3) at several 

incidence angles.  Light and dark shading correspond to positive and negative 
velocities, respectively. 

 
Fig. 5 The updated regime map for linear instability modes in the wakes 

behind inclined square cylinders, with critical Reynolds number curves plotted 
against incidence angle.  The various modes are labelled, and dash-dotted 

lines are used to mark important incidence angles in the parameter space.  The 
terms “QP” and “C” refer to the quasi-periodic and subharmonic (Mode C) 

parts of that transition curve. 

This study also shows the critical Reynolds number curve 
for the quasi-periodic mode branch to be unbroken.  While this 
mode is not the first-occurring instability for α < 10.5°, and 
therefore may not be detectable at these incidence angles in a 
physical setting, this finding is important from the perspective 
of understanding the relationship between quasi-periodic and 
subharmonic instability modes in generic time-periodic flows 
exhibiting the same spatio-temporal symmetry properties as 
these flows. 

This study has also shown that at the critical Reynolds 
number, the switch from quasi-periodic to subharmonic 
properties occurs between α ≈ 2° and 3°.  The combination 
between these results and those in [17] could potentially be 
used to seek a universal criterion for the critical amount of 
asymmetry required to invoke the subharmonic switchover. 
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