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ABSTRACT 
The vortex dynamics of a translating circular cylinder 
which is rapidly arrested is investigated.  Simulated 
particle tracking is employed to identify the trajectory of 
both the wake vortex pair, and the secondary vortices 
which are induced as the wake convects over the cylinder.  
In a similar fashion to the flow past an arresting sphere, 
each wake vortex induces a counter-rotating vortex, which 
subsequently self-propel over a range of sometimes 
surprising trajectories, as the Reynolds number and 
cylinder translation distance are varied.  The results of 
these simulations have an application in small-scale 
mixing technologies.  At low Reynolds numbers and short 
translation distances, the wake vortices propel past the 
cylinder, continuing in the direction of the original 
cylinder motion.  At higher Reynolds numbers, the 
vortices deviate outwards in circular arcs of increasing 
curvature, to the point where the vortex pairs collide 
behind the cylinder.  At longer translation distances, Hopf 
instability destroys the reflective symmetry about the 
wake centreline. 

NOMENCLATURE 
L/D  distance of cylinder travel / cylinder diameter 
U  cylinder velocity prior to arrest 
Re  Reynolds number 
ν  kinematic viscosity 
t  non-dimensional time 
t0  initial time 
tarrest  time at arrest 

INTRODUCTION 
The acceleration from, and deceleration to, zero velocity 
for a body in a fluid is applicable to widespread 
applications spanning vehicular aerodynamics, mixing, 
propulsion, ballistics and multi-phase fluid mechanics.  
While the case of an impulsively started body has been 
studied extensively (Braza, Chassaing & Ha Minh, 1986; 
Koumoutsakos & Leonard, 1995) in relation to the motion 
of circular cylinders in a fluid, the case of an arresting 
body has received limited attention (exceptions include 
Tatsuno & Taneda, 1971; Wang & Dalton, 1991).  In 
these studies, the flows obtained were consistent: while 
the cylinder was in motion a recirculating wake 
comprising an attached counter-rotating vortex pair was 
observed.  Subsequent to arrest of the cylinder motion, the 

momentum in the surrounding fluid carried the wake back 
over the cylinder, and this process induced secondary 
vortices which paired with each wake vortex in the 
vicinity of the widest point around the cylinder.  The 
trajectories of these vortices over longer times have not 
been established to date.  The studies did detect a variety 
of flow patterns depending on factors such as the speed 
and length of translation of the cylinder.  This study 
intends to investigate systematically the flow regimes that 
develop around arresting cylinders for a wide range of 
Reynolds numbers and translation distances.  The study 
will also track the flows for a significant amount of time 
after the arrest, to expand on trajectory traces presented in 
previous studies. 
 

 
Figure 1: Schematic diagram of the arresting cylinder 
system, showing initial and final cylinder locations. 

DEFINING THE ARRESTING CYLINDER 
PROBLEM 
The arresting cylinder system consists of a two-
dimensional circular cylinder that is initially at rest in a 
quiescent fluid.  At time t0, the cylinder impulsively 
initiates a translation (the translating phase), before 
returning to rest (the arresting phase). During the 
translating phase the cylinder travels a non-dimensional 
distance L/D, where L is the distance travelled, and D is 
the cylinder diameter.  In the arresting phase, the cylinder 
is decelerated linearly from a velocity U to zero over 
0.1D/U time units. Based on the velocity of translation, a 
Reynolds number may be defined 

,
ν

UDRe =          (1) 

where ν is the kinematic viscosity of the surrounding 
fluid.   
Subsequent to the arresting phase is the stationary phase, 
during which residual motion in the fluid dissipates. 
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In figure 1 a schematic diagram demonstrates the relevant 
dimensions and parameters of the system under 
investigation. 

NUMERICAL METHODOLOGY 
This investigation was conducted using a spectral-element 
software package developed within the Department of 
Mechanical Engineering, Monash University, named 
Viper.  Spectral element simulations are notable for their 
ability to compute on sparse meshes thanks to the high 
spatial order within each element through incorporation of 
high-order polynomials representing the flow variables, 
and efficient quadrature techniques.  These features enable 
approximately spectral spatial convergence to be achieved 
(Karniadakis & Sherwin, 2005).  Spectral element 
methods have been spectacular in their suitability for 
solving laminar incompressible bluff-body flow problems 
(see, for example: Thompson, Hourigan & Sheridan, 
1996; Sheard, Thompson & Hourigan, 2003), as the multi-
element feature permits flows in complex geometries to be 
modelled, and the high-order polynomials representing the 
flow variables match closely with the smooth variation in 
the physical flows. 

The Spectral-Element Code 
This code permitted two-dimensional calculations of time-
dependent incompressible fluid flows on a mesh 
comprising curvilinear quadrilateral spectral elements.  In 
a fashion similar to Thompson, Hourigan & Sheridan 
(1996), a nodal spectral-element formulation is employed, 
with velocity and pressure fields being evaluated at points 
corresponding to the Gauss-Legendre-Lobatto quadrature 
points.  This allows for efficient computation of the 
solution as the equations of motion are solved in a weak 
form following application of the method of weighted 
residuals, with the test and trial functions occupying the 
same polynomial space.  For time integration, a third-
order accurate time splitting scheme based on a 
backwards-multistep integration method is employed 
(Karniadakis, Israeli & Orszag, 1991). 

Simulated Particle Tracking 
For visualization purposes, a numerical analogue to laser-
induced fluorescent dye visualization (e.g., see 
Williamson, 1988) was implemented in the form of a 
nearly fourth-order time-accurate simulated particle 
tracking technique.  In this technique, simulated particles 
are injected regularly into the flow in the vicinity of the 
cylinder, thus mimicking the entrainment of a dye from 
the body into the moving fluid.  The new locations of 
these particles are calculated at regular time intervals as 
the simulation of the underlying flow progresses.  Particle 
tracking is performed by updating particle positions within 
elements using a 4th-order Runge-Kutta time integration 
scheme in parametric space, while a linear series of 
substeps is employed to step to and across element 
interfaces (Coppola, Sherwin & Peiró, 2001). 
Visualization of the particle tracking data was performed 
by calculating particle concentrations in the vicinity of 
each interpolation point used for plotting.  Particle 
concentration was calculated based on a Gaussian 
distribution about each interpolation point, with a variance 
chosen based on the local mesh refinement.  The goal is to 
simulate the softness in dye streaks observed in 
experimental visualization due to both the diffusion of the 
dye in the water, and the dazzling luminescence of high-

concentration regions of dye. Tests verified that this 
technique provided images closely matching photographs 
of laser-fluoresced dyes in water, facilitating the direct 
comparison between experimentally obtained flows, and 
the computational equivalent computed in this study.  

PARAMETER SPACE UNDER INVESTIGATION 
Limited experiments have shown that there is a marked 
variation in flow states possible when either the Reynolds 
number or the translating distance (L/D) is varied.  It is 
well known that above Re = 48 (Provansal, Mathis & 
Boyer, 1987) the wake of a circular cylinder transitions 
from a steady two-dimensional wake comprising a 
counter-rotating vortex pair attached to the rear of the 
cylinder, to a periodic wake comprising a street of shed 
vortices.  This transition point affects the possible flow 
states of the arresting cylinder problem, as for long 
translation distances (e.g., L/D > 50-80) above this 
transition Reynolds number, the initially symmetric vortex 
pair will develop asymmetry due to this Hopf instability.  
A further limitation on the valid parameter space is the 
transition point for three-dimensionality.  For a fully-
developed wake behind a circular cylinder, this transition 
occurs at approximately Re = 188.5 (Barkley & 
Henderson, 1996), but in this system the three-
dimensional transition is not known, as for most L/D ratios 
the wake and surrounding flow is highly transient and 
immature in its development.  Therefore a range of 
Reynolds numbers will be investigated that includes 
values higher than the eventual transition point 
Re ≈ 2 x 102. 
The Reynolds number range to be studied in this 
investigation is 

,100050 << Re            
and the translation distance ratio range to be studied is 

.601 << DL            

WAKES AT THE POINT OF ARREST 
For each computation, the injection points were fixed at 
locations 0.05D from the cylinder surface at the widest 
point around the cylinder normal to the direction of 
motion.  Because of this, the speed with which particles 
entrained into the wake varied with Reynolds number.  
Due to the varying thickness of the boundary layer around 
the cylinder, an increase in Reynolds number caused an 
increase in the velocity at the injection point, which in 
turn increased the velocity of the entraining particles, and 
hence the distance the particles travelled over a given 
amount of time.   
In figure 2, a series of images shows the entrainment of 
particles into the wake of a cylinder at the point of arrest 
for L/D = 3 for a range of Reynolds numbers.  Notice that 
with an increase in Reynolds number, a longer thread of 
particles is observed to spiral into the core of the 
developing recirculating wake vortices.  It is interesting to 
also note that despite the majority of these images being 
captured at Reynolds numbers beyond the nominal 
transition point for unsteady flow, each of these images 
retains symmetry about the wake centreline, suggesting 
that the Hopf transition has had insufficient time to 
develop. 
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Figure 2: Wakes at the point of arrest with L/D = 3 at 
Reynolds numbers (top to bottom) Re = 50, 100, 200, 500 
and 1000.  Prior to arrest, the cylinder was moving from 
left to right. 
 
Keeping the Reynolds number constant and varying the 
translation distance produces a range of wakes which 
differ significantly at the point of arrest.  Here an increase 
in L/D increases the duration of translation, and hence the 
wakes are similar to instantaneous snapshots of the 
developing wake behind a circular cylinder.  A Reynolds 
number of Re = 100 was chosen to reveal any deviation 
from symmetry due to the development of the Hopf 
instability in the cylinder wake.  Figure 3 shows a series 
of images of the wakes at the point of arrest with constant 
Reynolds number and varying translation distance.  For 
the shorter translation distances (L/D ≤ 10) the wake 
remains symmetrical about the wake centreline, but for 
L/D = 60, the wake exhibits the early stages of the 
development of a Kármán vortex street, with broken wake 
centreline symmetry. 
 

 
Figure 3: Wakes at the point of arrest with Re = 100 and 
translation distance (top to bottom) of L/D = 1, 2, 3, 5, 10 
and 60.  Prior to arrest, the cylinder was moving from left 
to right. 

VORTEX DYNAMICS IN THE STATIONARY 
PHASE 
Following the arrest of the cylinder motion, the 
developing wake vortices are carried towards and around 
the circular cylinder by the momentum in the surrounding 
fluid.  Past studies (Leweke, Thompson & Hourigan, 
2004) have shown that for an arresting sphere, this 
backflow of the wake vortices causes induced counter-
rotating vortices to develop at the surface of the body, 
pairing with each passing wake vortex.  The present 
computations have revealed a rich variety of vortex 
dynamics in the surrounding fluid for arresting circular 
cylinders with variation in both Reynolds number and 
translation distance. 
At lower Reynolds numbers, the strong viscous diffusion 
causes a very rapid decay of the residual motion towards a 
steady state.  The images in figure 4 demonstrate the 
effect of Reynolds number changes on the flow patterns at 
several times following arrest for cylinders with 
translation distance L/D = 3. 
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Figure 4: Flows at times t-tarrest = 3, 6 and 9 after arrest 
(left, centre and right images, respectively), with constant 
L/D = 3, at Reynolds numbers Re = 50, 100, 200, 500, 
1000 (top to bottom, respectively).  For each sequence a 
different scale is used to magnify the relevant flow 
features.  Prior to arrest, the cylinder was moving from 
left to right. 
 
Several striking observations can be made about the 
vortex dynamics illustrated by the flows in figure 4.  
Firstly, notice that with an increase in Reynolds number, 
the simulated dye is drawn greater distances from the 

cylinder.  It is apparent, especially from the simulations at 
Reynolds numbers Re = 200 and above, that the backwash 
of the wake vortices over the cylinder induces a secondary 
counter-rotating vortex of a similar but not equal 
magnitude.  These primary and secondary vortices pair up 
and self-propel away from the cylinder.  Due to the 
circulation discrepancy between the primary and 
secondary vortices in each pair, the trajectory of the pair is 
curved, and in each case this curvature trends away from 
the original direction of cylinder motion.  The speed of 
this vortex-pair convection increased with Reynolds 
number, increasing the distance travelled.  It is apparent at 
higher Reynolds numbers that at the formation of the 
secondary vortices leads to the formation of smaller 
vortex features near the upstream surface of the cylinder.  
Figure 5 provides a detail view of these features at 
Re = 500 over the same time intervals as used in figure 4. 
 

 
Figure 5: Detail view of the upstream surface of the 
cylinder at times t-tarrest = 1, 2 and 2 after arrest (left, 
centre and right images, respectively), with constant 
L/D = 3, at Reynolds numbers Re = 500.  Prior to arrest, 
the cylinder was moving from left to right. 
 
The small vortex structures shown in figure 5 are counter-
rotating pair vortices, which appear to develop as a result 
of the injection of narrow jets of fluid from over the 
downstream surfaces of the cylinder, likely a by-product 
of the formation of the strong secondary vortices pairing 
with the wake vortices. 

VORTEX TRAJECTORIES IN THE STATIONARY 
PHASE 
The plot in figure 6 shows the loci of the cores of both the 
primary wake vortex and the secondary induced vortex 
over times 0 < t-tarrest < 24 for a range of Reynolds 
numbers when a constant translation distance L/D = 3 was 
employed.  This plot is revealing as it verifies 
observations discerned from the simulated particle 
tracking images presented here.   
Due to the significant diffusion in the flow at Re = 50, no 
secondary induced vortex was formed.  The region of 
opposite-sign vorticity associated with the backwash 
boundary layer remained attached to the surface of the 
cylinder.  In this simulation, the wake vortex convected 
almost normal to the original direction cylinder motion at 
a slower pace than in the higher-Reynolds-number 
simulations.  In each of the cases from Re = 100 to 1000 a 
secondary induced vortex was detected, although for 
Re = 100 this vortex was only observed for 6 < t-
tarrest < 18.  At lower Reynolds numbers, the secondary 
vortex was observed to be weaker, and as the vortex pair 
convected away from the cylinder, they diffused more 
rapidly than in the higher-Reynolds-number cases.  This 
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meant that the distance travelled by the vortex pair at 
lower Reynolds numbers was shorter than at the higher 
Reynolds numbers.  A curious phenomenon was observed 
at higher Reynolds numbers, where the longer trajectories 
traced by the vortices was seen to curve out and 
backwards, eventually migrating in the opposite direction 
to the original direction of travel of the cylinder and the 
wake.  At the highest Reynolds number investigated 
(Re = 1000), the vortices turned so markedly that they 
began to migrate back towards the wake centreline. 
In every case displayed in the plot in figure 6, symmetry 
about the wake centreline was preserved.  This implies 
that with sufficiently short cylinder translations, the Hopf 
transition in the wake is given insufficient time to evolve, 
even with Reynolds numbers 20 times the critical 
Reynolds number being computed.  However, the final 
image in figure 3 does imply that given sufficiently long 
translation times, asymmetry will eventually develop in 
the wakes. 
 

 
Figure 6: Loci of the cores of the primary wake vortex (∆) 
and the secondary induced vortex (□) from time t-tarrest = 0 
(solid symbols) through to t-tarrest = 24 (open symbols).  A 
constant L/D = 3 was used, and Reynolds numbers 
Re = 50 (blue), 100 (red), 200 (green), 500 (orange) and 
1000 (purple) are displayed.  The circular cylinder is 
shown in grey.  Due to symmetry in the flow, only the 
trajectories in one half of the wake are shown. 
 
Vortex core trajectories at a constant Reynolds number 
(Re = 100) are shown in figure 7 for a range of translation 
distances 1 ≤ L/D ≤ 10.  This plot demonstrates that at a 
constant Reynolds number, there is only a weak 
dependence of the vortex core trajectories on L/D.  Notice 
that especially for the wake vortices, the final path taken 
was almost independent of translation distance despite the 
markedly different start locations of each trajectory.  The 
secondary induced vortices tended to be substantially 
weaker; only emerging at 6 time units after arrest for 
L/D = 3, 5 and 10, and not being observed at all at lower 
translation distances. 

 
Figure 7: Loci of the cores of the primary wake vortex (∆) 
and the secondary induced vortex (□) from time t-tarrest = 0 
(solid symbols) through to t-tarrest = 24 (open symbols) for 
simulations at Re = 100 at L/D = 1 (blue), 2 (red), 3 
(green), 5 (orange) and 10 (purple).  The circular cylinder 
is shown in grey.  Due to symmetry in the flow, only the 
trajectories in one half of the wake are shown. 

COMPARISON WITH EXPERIMENT 
An experimental dye visualization experiment was 
performed to validate this study.  A circular cylinder with 
a high aspect ratio (greater than 20) was suspended from 
fine thread in a water tank of generous dimensions (40mm 
by 40mm wide and 1m high).  By coating the cylinder in 
Fluorescein dye, the wake vortices could be identified by 
illuminating the dye entraining into the fluid from the 
cylinder using a blue laser sheet.  The comparison in 
figure 8 demonstrates the excellent degree of similarity in 
vortex structures and dynamics between the simulations 
and experiment.  This comparison also verifies that in a 
fashion similar to the delayed onset of the development of 
the Hopf instability in flows with a short translation 
distance even at Reynolds numbers far beyond the 
transition; so too is the transition to three-dimensionality.  
Here it is seen that over the presented timeframe, at a 
Reynolds number approximately 2.6 times that of the 
transition Reynolds number for three-dimensionality in 
circular cylinder wakes, the experimental visualization 
compares so closely that it is clear that three-dimensional 
flow features have either not developed, or are 
insignificant.  This verifies the physicality of the 
numerical results provided in this study.  
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Figure 8: Comparison between the computed particle 
trace simulations (top) and experimental dye visualization 
(bottom) for a case with Re = 500 and L/D = 2.  From left 
to right, non-dimensional times t-tarrest = 0, 1, 2, 3, 4, 5 are 
shown. 
 
A useful direction for future research would be an 
investigation into the three-dimensional stability of the 
flows considered here.  This would verify the 
appropriateness of the two-dimensional assumption being 
imposed on the flows in this study.  It was observed 
experimentally that the computed and observed vortex 
trajectories deviated after approximately 10 time units, 
and a numerical stability analysis would assist in 
determining if this deviation was due to three-dimensional 
instability in the flow or experimental error. 

CONCLUSIONS 
A range of translation distances and Reynolds numbers 
have been investigated for an arresting cylinder.  A novel 
technique for visualization of the computed flows was 
used whereby simulated particle tracking was used to 
mimic the entrainment of dye into the wake in 
experimental dye visualization, and plots of the 
concentration of particles based on a Gaussian weighted 
distribution local to each interpolation point permitted 
comparison with experimental photography. 
These simulations have revealed that with a translation 
distance of three diameters, the vortices around the 
cylinder tend to deviate sideways and backwards rather 
than rolling past the cylinder and continuing in its original 
direction of motion.  The viscous effects at lower 
Reynolds numbers were observed to retard the 
propagation of the counter-rotating vortex pairs, and at 
higher Reynolds numbers, the vortices travelled larger 
distances – in some cases turning back on themselves and 
meeting again behind the cylinder.  For longer translation 
distances, Hopf instability in the wake eventually 
destroyed the symmetry about the wake centreline for 
Reynolds numbers above the transition point.  
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