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ABSTRACT 

The effects on the wakes of unsteady flows past a 

cylinder with sharp separation edges are investigated. Time 

evolution of the incompressible Navier–Stokes equations is 

achieved by means of a high-order spectral-element method 

in conjunction with a third-order-accurate time integration 

scheme. For this study, the Reynolds number was varied up 

to Reh = 200, where h is the projected frontal height of the 

cylinder having an equilateral triangular cross-section. The 

critical Reynolds numbers for vortex shedding for the 

cylinder at various inclinations are determined using the 

Stuart–Landau equation, and its dependence on the cylinder 

inclination described. As the Reynolds number is increased, 

the Kármán vortex street is observed to first develop 

spatially into a bi-layered wake profile, which then, 

depending on the cylinder inclination, observes a transition 

to either a secondary meandering profile or wakes 

reminiscent of the 2P and P+S modes found for oscillating 

circular cylinders. The flow-induced forces relating to the 

different wake regimes are also reported.  

NOMENCLATURE 

CD Drag force coefficient 

CL Lift force coefficient 

D Cylinder side length 

h Projected frontal height of cylinder 

p Pressure 

Re Reynolds number scaled by h 

St Strouhal number  

u  Velocity vector ‹ux, uy› 
 

α Cylinder incidence angle 

Λ Signal amplitude (Stuart–Landau equation) 

v Kinematic viscosity 

ρ Fluid density 

σ Instability growth rate (Stuart–Landau equation)  

INTRODUCTION 

Studies into the wakes of bluff-bodies continue to yield 

fascinating results, driving a continuing interest to uncover 

their physics in further detail. While early investigations on 

this topic focused primarily on the circular cylinder 

(Kármán, 1911; Taneda, 1959; Durgin and Karlsson, 1971; 

Mathis et al., 1984; Provansal et al., 1987; Cimbala et al., 

1988; and many others), sufficient knowledge of the vortex 

dynamics of these flows have been developed to motivate 

the need to understand how differently these flows behave 

for bluff-bodies of different polygonal shapes (e.g. Sheard 

et al., 2003; Yoon et al., 2010; Thompson et al., 2014). 

The following describes the known wake states of 

flows past a stationary cylinder, mostly found for the 

circular cross-section. Instability leading to transition from 

a steady to unsteady flow has been shown to occur at a 

critical Reynolds number via a supercritical bifurcation. For 

a certain range of Reynolds numbers beyond this transition, 

vortex shedding is observed with the pattern of alternating 

two-dimensional counter-rotating vortices convecting 

downstream representing the Kármán vortex street (after 

von Kármán (1911) who studied the stability of the 

arrangement of the vortices in the wake). Taneda (1959) 

reported the shed vortices to deform as they convect 

downstream, causing the vortex arrangement to eventually 

become unstable and merge to a larger-scale vortex street – 

the vortex spacing playing a crucial role in the deformation 

mode of the vortices (Durgin and Karlsson, 1971). The 

formation of these large-scale vortex structures have also 

been reported to be strongly affected by the geometry of the 

cylinder, and to become more prominent with increasing 

Reynolds numbers (Thompson et al., 2014). The 

importance of the Reynolds number on the resulting wake 

is well established. 

Studies of the wake, stability, flow-induced forces and 

other aspects of two-dimensional flows past various other 

cylinder geometries demonstrate the increased interest in 

the fluid dynamics past non-circular cylindrical bodies (e.g. 

Jackson, 1987; Johnson et al., 2004; Yoon et al., 2010). 

Specifically for the stationary triangular cylinder in an 

unbounded flow with its apex facing upstream, Jackson 

(1987) and Zielinska and Wesfreid (1995) conducted 

stability analyses on the flow and predicted the critical 

Reynolds number to be 35 and 38.3 respectively, along with 

the corresponding critical Strouhal numbers. De and Dalal 

(2006) performed a similar analysis for the same triangular 

cylinder inclination but also included the flow-induced 

forces, and reported the critical Reynolds number to be 

39.9. Wind-tunnel experiments by Iungo and Buresti (2009) 

at Re≈1.2x105 varied the incidence angles of triangular 

cylinders of finite span and reported large variations in the 

mean drag and lift forces for different cylinder inclinations 

corresponding to changes in the wake flow features, and the 

trends of which appear to be similar at lower Reynolds 

numbers of 100 and 150 for a cylinder of infinite span (Bao 

et al., 2010). In any case, the effects of intermediate 

triangular cylinder inclinations on the wake stability and 

flow dynamics have yet to be investigated. This study 

addresses this question using computational fluid 

dynamics. 
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METHODOLOGY 

 
Figure 1: Schematic of the system under investigation.  
 

The system under consideration (summarised in figure 

1) consists of a cylinder having an equilateral triangular 

cross-section placed in an unbounded uniform flow. The 

cylinder cross-section has side length D, and is inclined at 

an angle α, thus presenting a projected height h to the 

oncoming flow such that: 

ℎ

𝐷
(𝛼) = sin(60° − |𝛼 − 30°|) + sin(|𝛼 − 30°|) . 

For this study, the velocities are scaled by the 

freestream velocity U∞, while the lengths are scaled by h, 

and the Reynolds number is defined as 

𝑅𝑒 =
𝑈∞ℎ

𝜈
  ,   

where v is the kinematic viscosity. 

Numerical formulation 

The relevant governing equations in this study are the 

Navier–Stokes equations, which for an incompressible fluid 

comprise mass and momentum conservation equations 

𝛁 ∙ 𝐮 = 0   ,                                           (1a) 
𝜕𝐮

𝜕𝑡
+ (𝐮 ∙ 𝛁)𝐮 =  −

1

ρ
𝛁𝑝 +  𝜈𝛁2𝐮  ,                (1b) 

where u is the velocity field ‹ux, uy›, p is the pressure, and 

ρ the fluid density.  

The in-house solver used in this study evolves equation 

(1) as follows: spatial discretisation of the computational 

domain is achieved via a nodal spectral-element method 

where a Lagrangian tensor-product polynomial shape 

function is imposed on each macro-element and 

interpolated at the Gauss–Legendre–Lobatto quadrature 

points enabling the use of efficient quadrature methods, 

with the order of the polynomial shape function N being 

varied to control the spatial resolution (Karniadakis and 

Triantafyllou, 1992). The equations are then integrated in 

time using a third-order accurate operator splitting scheme 

based on backward differentiation (Karniadakis et al., 

1991; Blackburn and Sherwin, 2004). The advantages of the 

spectral-element method are its near spectral convergence 

properties with increasing N, and the ability to control of 

the mesh density over the computational domain. This code 

has been implemented and validated in previous studies by 

Sheard et al. (2007), Hussam et al. (2011), Sheard (2011), 

and Vo et al. (2014) among others. 

The following boundary conditions are imposed on the 

computational domain, an example of which is shown in 

Figure 2. A uniform freestream velocity field (U∞, 0) is 

imposed on the inlet boundary (left edge), while a standard 

zero reference pressure outflow condition is imposed on the 

outlet boundary (right edge); the cylinder surface is defined 

with a no-slip boundary condition; and the transverse 

boundaries (top and bottom edges) are prescribed a stress-

free impermeable condition using a zero transverse velocity 

component, uy = 0, and a zero outward normal gradient of 

velocity, ∂u/∂y = 0. A suitable Neumann boundary 

condition is enforced on the outward normal gradient of 

pressure on all boundaries where a Dirichlet condition is 

imposed on the velocity field to maintain the third-order 

accuracy of the time-integration scheme (Karniadakis et al., 

1991). 

 
Figure 2: Example computational domain utilised for this 

study showing the macro-element distribution. 

Grid resolution study 

To ensure that the meshes used in this study are 

sufficiently refined to capture the dynamics of the flow with 

sufficient accuracy, a grid refinement study is conducted by 

varying the polynomial order N. The mesh selected for this 

purpose is the cylinder inclined at α=30o as it possesses the 

largest macro-elements – the construction of the mesh 

defined the macro-element sizes in the vicinity of the 

cylinder parametrically based on the cylinder side length D, 

which is largest for α=30o. The flow for the upper bound of 

Reynolds numbers considered, Re=200, was then evolved 

to a saturated state for 5 ≤ N ≤ 11, monitoring the Strouhal 

number St, time-averaged lift force coefficient CL, time-

averaged drag force coefficient CD, and the L2-norm of the 

velocity for convergence. Table 1 summarises the results 

for 6≤ N ≤10 with its relative errors based on the (N–1)th 

order shown in the parentheses. 
 

N St CD CL L2-norm 

6 
0.1692 1.9991 -1.4887 7892.0 

    

7 
0.1687 1.9983 -1.4861 7899.7 

(0.296%) (0.040%) (0.175%) (0.097%) 

8 
0.1686 1.9993 -1.4873 7901.3 

(0.059%) (0.050%) (0.081%) (0.021%) 

9 
0.1685 1.9994 -1.4879 7902.2 

(0.059%) (0.005%) (0.040%) (0.011%) 

10 
0.1685 1.9994 -1.4885 7902.4 

(0.000%) (0.000%) (0.040%) (0.002%) 

Table 1: Values of St, CD, CL, and L2-norm as N is 

increased. Bracketed values are the errors of each 

parameter relative to the lower N value. 
 

The output parameters monitored for N≥8 show 

convergence to a precision of 0.1%, indicating that the 

underlying flow dynamics are sufficiently resolved. Thus, 

all meshes used in this study are discretised using an N=8 

order polynomial shape function. The computational 

domain extends 30h upstream, 35h downstream, and 30h 

transversely on either side of the cylinder centre yielding a 

domain blockage ratio of 1.7% (1/60). The computational 
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domain is larger than most previous numerical studies 

referenced to minimize domain effects on the flow. 

RESULTS 

Unsteady flow past the cylinder 

To map the unsteady flow regime, the critical 

Reynolds numbers for various cylinder inclinations is first 

studied. This transition being of a Hopf type is accurately 

modelled by the Stuart–Landau equation, which describes 

the non-linear growth of a perturbation in the flow field; 

Mathis et al. (1984), Provansal et al. (1987) and 

Sreenivasan et al. (1987) showed this transition to be 

supercritical for circular cylinders. Retaining only the first 

two terms of the real component of the Stuart–Landau 

equation yields 
d(log |Λ|)

d𝑡
= σ + 𝑙|Λ|2 ,                            (2) 

where |Λ| is the magnitude of the signal amplitude, and σ is 

the growth rate of the perturbation in the flow field. The l 

parameter in equation 2 is necessarily negative valued for 

supercritical Hopf bifurcations, which are sufficiently 

described by equation 2.  
 

(a) 

 
(b)  

 
Figure 3: Typical plots of (a) d(log|Λ|)/dt against |Λ|2, and        

(b) the infinitesimal growth rate σ against the Reynolds 

number. The dotted line shows the zero growth rate 

position, while the solid line shows the fitted function 

extrapolated to obtain the critical Reynolds number. 
 

The approach taken to obtain the critical Reynolds 

number for each flow scenario in this study was to first 

obtain a saturated unsteady base flow, and impose an 

impulsive drop in Re to allow the wake to decay to a steady 

state. Time histories of the transverse velocity oscillations, 

uy, and the lift force coefficients, CL, of the decay were then 

analysed to obtain the signal amplitude decay rate 

d(log|Λ|)/dt, and |Λ|2. Plotting these values as described in 

equation 2 (a typical plot of which is provided in Figure 3a) 

shows a nearly linear profile near the vertical axis intercept 

which corresponds to σ, and a negative gradient l indicating 

the transition for triangular cylinders are supercritical like 

the circular cylinder. A plot of the growth rate of the 

perturbation σ as a function of Reynolds number is 

produced, and the data trends extrapolated to a zero growth 

rate (marginal stability) to obtain an estimate of the critical 

Reynolds number, Rec. While in some previous studies the 

perturbation growth rate against Reynolds number plots 

agreed to a linear fit (Provansal et al., 1987; Sreenivasan et 

al., 1987), the data obtained for the triangular cylinder was 

evidently not linearly dependent (figure 3b). To facilitate a 

better prediction of the critical Reynolds numbers from the 

data obtained, an inverse polynomial fit was utilized for 

extrapolation purposes. Repeating the procedures outlined, 

the critical Reynolds numbers are obtained for all cylinder 

inclinations tested, with results shown in Figure 4. 

 
Figure 4: Map of the critical Reynolds number Rec (●) 

and Rec,D (□) as α is varied. The fitted line is described by 

equation 3. 
 

The critical Reynolds numbers scaled by D, Rec,D show 

a smooth trend, and is fitted with a Fourier function. Curve 

fitting for Rec,D(α) was performed using MATLAB®’s 

‘cftool’ application and the resulting equation 

reproduced Rec,D values to within 0.1% of the values 

obtained.  

        𝑅𝑒𝑐,𝐷(α) = 𝑎0 + 𝑎1 cos(𝜔α) + 𝑏1 sin(𝜔α)

+ 𝑎2 cos(2𝜔α) + 𝑏2 sin(2𝜔α)
+  𝑎3 cos(3𝜔α) + 𝑏3 sin(3𝜔α)
+ 𝑎4 cos(4𝜔α) + 𝑏4 sin(4𝜔α)      (3) 

where a0 = 40.067, a1 = 9.385x10–1, a2 = –4.588x10–1, a3 = 

2.176x10–2, a4 = –1.159x10–1, b1 = 3.054, b2 = –1.481, b3 = 

–1.302x10–1, b4 = 8.442x10–2, and ω = 3.938, are the 

coefficients of equation 3. The cylinder inclined at α=28o 

shows the highest Rec,D value, and the lowest being for 

α=60o. An immediate explanation for the peak value would 

be to surmise that the cylinder at α≈30o possesses the 

smallest h relative to D of the range of inclinations making 

it more stable than the other inclinations, but this simple 

explanation does not account for the different critical 

Reynolds numbers for the cylinder at α=0o and α=60o, as 

well as the trends described by the Rec curve. Focusing then 

on the Rec curve itself, the critical Reynolds numbers for 

cylinder inclinations between 0o ≤ α ≲ 18o do not show 

significant differences, but produces a strong dip in the 

critical Reynolds numbers for 18o < α ≤ 30o. We believe that 

this behaviour is due to the fact that at these inclination 

values, the cylinder presents a single side of the triangle to 

the downstream flow and that the recirculation region forms 

only over this single side causing it to remain similar for the 

lower range of incidence angles, and the drop in the critical 

Reynolds number values for the higher range of inclinations 

as the cylinder approaches α=30o to be due to a developing 

negative ux-velocity bubble (localised backflow) on the 

steeper upstream side of the triangle. For cylinder 

inclinations 30o < α ≤ 60o, the cylinder presents two sides 

of the triangle to the downstream flow, and demonstrates a 



 

 

Copyright © 2015 CSIRO Australia 4 

small critical Reynolds number peak to occur at α ≈ 34o. 

The difference between the two sides of this peak are that 

the cylinder inclined at 30o < α ≲ 34o shows the 

recirculation region to develop over a single side of the 

triangle, while the recirculation region of the cylinder at 

inclinations of 34o ≲ α ≤ 60o develops over the two 

downstream facing sides of the triangle, producing a 

broader wake compared to all other cylinder incidence 

angles (Iungo and Buresti, 2009). 
 

 
Figure 5: Map of the parameter space where the different 

vortex street shedding modes were observed. (I) is the 

Kármán vortex street, (II) the bi-layered vortex street, (III) 

the secondary vortex street, (IV) the P+S-like vortex 

street, and (V) the 2P-like vortex street. Note region (IV) 

is bounded within the −∙∙−, which intersects with region 

(III) at higher cylinder inclinations. 
 

At Reynolds numbers beyond Rec, the unsteady flow 

develops several visually different vortex streets, the map 

of which is presented in figure 5 and visualisations of each 

vortex street encountered provided in figure 6. The initial 

regime encountered for increasing Reynolds numbers for 

all cylinder incidence angles is the classic Kármán vortex 

street.  Increasing the Reynolds number of the flow 

however causes the Kármán street, at some position 

downstream of the cylinder, to re-align into a bi-layered 

wake structure due to the deformation of the vortices into 

an elliptic form, the major axis of each vortex aligning with 

other like-signed vortices (Durgin and Karlsson, 1971). For 

most cylinder inclinations at even higher Reynolds 

numbers, this bi-layered wake is further destabilised 

downstream and begins to distort, forming a secondary 

vortex street of a much larger scale than the Kármán vortex 

street. This is similar to the effect seen behind circular 

cylinders (Taneda, 1959; Durgin et al., 1971; Cimbala et 

al., 1988) and elliptical cylinders (Johnson et al., 2004; 

Thompson et al., 2014). As the frequency ratio of the near-

wake to the far-wake structures shows no clear relation, the 

secondary vortex street does not develop by the merging of 

the primary vortices (Cimbala et al., 1988). The 

development of the bi-layered vortex street and the 

secondary vortex street may possibly be observed at 

Reynolds numbers lower than those predicted in figure 5 

since these structures develop at increasing distances 

downstream from the cylinder at progressively lower 

Reynolds numbers, with the current study limiting the 

downstream domain length to 35h. These vortex streets are 

formally produced by 2S modes as two counter-rotating 

vortices are shed per shedding cycle, with the Kármán 

vortex street dominating the near wake shedding for most 

cylinder inclinations.  

For the cylinder inclination range of 30o < α < 54o, the 

bi-layered vortex street is shown to develop differently 

when the Reynolds number is further increased. The 

cylinder inclined at 30o < α < 42o produced a vortex street 

resembling that produced by the 2P shedding mode for 

oscillating circular cylinders, while cylinder inclinations 

42o < α < 54o showed the vortex street to resemble that 

produced by the P+S shedding mode instead (Williamson 

and Roshko, 1988), with both the 2P-like and P+S-like 

modes differing to the actual 2P and P+S modes by the 

order in which the vortices are shed. 
 

(I) 

 
(II) 

 
(III) 

 
(IV) 

 
(V) 

 
Figure 6: Vorticity contours of (I) the Kármán vortex 

street, (II) the bi-layered vortex street, (III) the secondary 

vortex street, (IV) the P+S-like mode, and (V) the 2P-like 

mode. Each image label corresponds to the same labelled 

regime in figure 5. 

Forces induced on the cylinder 

Analysis of the time-averaged force coefficients for the 

different cylinder inclinations and Reynolds numbers show 

trends which agree with results reported by Bao et al. 

(2010) and Iungo and Buresti (2009) despite the latter 

conducting experiments at much higher Reynolds numbers. 

The force coefficients reported in this section are thus 

scaled by the cylinder side length D for direct comparison 

with their results. For fixed Reynolds numbers and 

increasing the cylinder inclination from 0o to 60o, the time-

averaged drag force coefficients show a minimum at an 

inclination of α≈30o and a maximum at α=60o – the higher 

drag force coefficients obtained for higher incidence angles 

are observed to arise from the broader wakes produced at 

these angles (Iungo and Buresti, 2009). The time-averaged 

lift force coefficients instead indicate that maximum 

forcing occurs for the cylinder inclined at α=30o, and seem 

negligible for cylinder inclinations α=0o and α=60o due to 

the fluctuation magnitudes being symmetric about the mean 

(Figure 9(bottom)). 
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Figure 7: Phase of the lift forces to the drag forces for the 

cylinder inclined at (top) α=36o, (middle) α=42o, (bottom) 

α=60o, with the plots on the left being at Re=80 (all 

describing the Kármán vortex street) and the plots on the 

right being at Re=200 (describing the 2P-like mode, the 

P+S-like mode, and the secondary vortex street, 

respectively). The axis range for each plot is defined such 

that 0.75 ≤ CD ≤ 1.50 and -1.25 ≤ CL ≤ 0.75. 
 

The motivation for considering the force coefficients 

in this study, however, was to determine if the transition to 

the different shedding modes incurred any changes to the 

force profiles. For the cylinder inclined at α=36o (figure 

7(top)), the phase trajectory of the instantaneous force 

coefficients shows that the onset of the 2P-like mode alters 

the profile entirely. This change in the phase trajectory 

profile, however, was not observed for the cylinders 

inclined at α=42o (figure 7(middle)) and α=60o (figure 

7(bottom)) – the non 2P-like shedding modes being 

formally 2S modes, including the P+S-like vortex street.  

As observed from the phase trajectories, the 

asymmetric cylinder inclinations α=36o and α=42o show a 

biased profile compared to the cylinder inclined at α=60o. 

For α=36o, the fluctuations are observed to broaden upon 

the onset of the 2P-like mode despite having little effect on 

its time-averaged force coefficients (figures 8a and 9a). 

This broadening of the force fluctuations in the profile were 

not observed for cylinders at incidence angles α=42o and 

α=60o (figures 8b,c and 9b,c); the α=42o profile shows an 

increase in the drag force coefficients to Re ≈ 130 and a 

decreasing trend thereafter, while the lift force increases 

more steeply past this Reynolds number. 
 

(a) 

 
(b) 

 
(c) 

 
Figure 8: Plots of the drag force coefficients against Re 

for cylinder inclinations: (a) 36o, (b) 42o, and (c) 60o. 

Time-averaged force coefficients are given by the solid 

line, the extrema of the fluctuations by the dashed lines, 

and the r.m.s. of the fluctuations about the time-averaged 

value given by the (−∙∙−) line. 
 

 (a) 

 
(b) 

 
(c) 

 
Figure 9: Plots of the lift force coefficients against Re for 

cylinder inclinations: (a) 36o, (b) 42o, and (c) 60o. The 

different lines follow the definitions in figure 8. 
 

The Reynolds number where this drop in the drag force 

coefficient occurs for α=42o was not the Reynolds number 

for the transition from the Kármán vortex street to the bi-

layered vortex street (the bi-layered wake was already well 

observed at that Reynolds number). The fluctuations of the 
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lift force coefficients for the cylinder inclined at α=60o 

showed very small changes for increasing Reynolds 

numbers indicating the lift forcing might be near a Re-

independent state. 

CONCLUSION 

The parameter space for the unsteady flow past a 

cylinder of triangular cross-section was explored for 

varying cylinder inclinations and Reynolds numbers up to 

Re=200. The critical Reynolds numbers were determined, 

showing the strong dependence of the instability to the 

cylinder inclination, with smaller α generally having higher 

critical Reynolds numbers. The two-dimensional unsteady 

flows at higher Reynolds numbers are reported, with the 

wake structures developing from the classic Kármán vortex 

street to a bi-layered wake profile, and then to either of a 

secondary vortex street of larger-scaled structures, a 2P-like 

vortex street or a P+S-like vortex street depending on the 

incidence angle of the cylinder. The forces induced on the 

cylinder for the different wakes observed are described in a 

time-averaged sense, and the strengths of the fluctuations 

of the force signals are quantified. The phase-trajectory of 

the drag force to the lift force shows the transition from the 

2S mode to the 2P-like mode to produce a strongly different 

profile, unlike the transitions to the other vortex streets 

which remain similar for increasing Reynolds numbers. The 

transition to the 2P-like mode (shown for α=36o) also 

describes an abrupt change in the drag and lift force profiles 

as Re is increased, indicating the dominant effect of the near 

wake shedding mode on the forces produced. 
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