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The structure and stability of Stewartson shear layers with different heights are
investigated numerically via axisymmetric simulation and linear stability analysis, and
a validation of the quasi-two-dimensional model is performed. The shear layers are
generated in a rotating cylindrical tank with circular disks located at the lid and base
imposing a differential rotation. The axisymmetric model captures both the thick and
thin nested Stewartson layers, which are scaled by the Ekman number (E ) as E 1/4

and E 1/3 respectively. In contrast, the quasi-two-dimensional model only captures the
E 1/4 layer as the axial velocity required to invoke the E 1/3 layer is excluded. A direct
comparison between the axisymmetric base flows and their linear stability in these
two models is examined here for the first time. The base flows of the two models
exhibit similar flow features at low Rossby numbers (Ro), with differences evident
at larger Ro where depth-dependent features are revealed by the axisymmetric model.
Despite this, the quasi-two-dimensional model demonstrates excellent agreement
with the axisymmetric model in terms of the shear-layer thickness and predicted
stability. A study of various aspect ratios reveals that a Reynolds number based on
the theoretical Ekman layer thickness is able to describe the transition of a base
flow that is reflectively symmetric about the mid-plane to a symmetry-broken state.
Additionally, the shear-layer thicknesses scale closely to the expected δvel∝AE 1/4 and
δvort ∝ AE 1/3 for shear layers that are not affected by the confinement (AE 1/4 . 0.34
in this system, the ratio of tank height to shear-layer radius). The linear stability
analysis reveals that the ratio of Stewartson layer radius to thickness should be
greater than 45 for the stability of the flow to be independent of aspect ratio. Thus,
for sufficiently small AE 1/4 and AE 1/3, the flow characteristics remain similar and
the linear stability of the flow can be described universally when the azimuthal
wavelength is scaled against A. The analysis also recovers an asymptotic scaling for
the normalized azimuthal wavelength which suggests that λ∗θ,c ∝ (|Ro|/E 2)−1/5 for
geometry-independent shear layers at marginal stability.
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1. Introduction
Rotating flows occur in a wide range of applications including industrial,

geophysical and astrophysical processes. Geophysical flows in particular engender
much interest due to their importance to our understanding of processes underpinning
Earth’s climate and weather systems. Examples of rotating geophysical flows include
hurricanes and polar vortices, which each exhibit coherent vortical structures. In such
flows, a variety of polygonal configurations have been observed, with Venus’s dipolar
polar vortex (e.g. Taylor et al. 1980; Piccioni et al. 2007; Luz et al. 2011) and
Saturn’s hexagonal northern hemisphere polar vortex (e.g. Godfrey 1988; Fletcher
et al. 2008; Gombosi & Ingersoll 2010; Sánchez-Lavega et al. 2014) representing
well-known examples. Despite our fascination with these polygonal structures, their
formation and preferred azimuthal wavenumbers are still not very well understood.

The polygonal configurations found in the large-scale structures of atmospheric
polar vortices have been hypothesized to be related to barotropic instability (Aguiar
2008; Aguiar et al. 2010; Montabone et al. 2010) and baroclinic instability (e.g.
Godfrey & Moore 1986; Read 1988; Williams 2003; Lian & Showman 2008).
Polygonal patterns that resemble those shown by polar vortices and hurricane eyes
have been created in simple confinements and studied using theoretical, experimental
and numerical approaches. Studies of barotropic instability often examine the stability
of the nested Stewartson layers, whose thicknesses scale with some power of the
Ekman number, E , as produced via differential rotation. The thicknesses of the shear
layers have been shown theoretically to scale with E 1/3 and E 1/4 (Stewartson 1957).
The thicker layer is a depth-independent structure responsible for smoothing out
the azimuthal velocity, while the thinner layer is a depth-dependent structure which
serves to complete the meridional circulation induced by the Ekman layers. Provided
that the differential forcing is sufficiently strong, an initially circular Stewartson
layer becomes unstable, forming a chain of vortices that rearrange themselves into
polygonal configurations (van de Konijnenberg et al. 1999). With increased forcing,
the number of vortices decreases through a merging process, eventually saturating to
a stable polygonal pattern.

Experimental studies of differential-rotating flows have been able to establish the
onset of instability and the trends of the preferred azimuthal wavenumbers with
changing flow conditions (e.g. Rabaud & Couder 1983; Chomaz et al. 1988; Früh
& Read 1999; Bergeron et al. 2000; Aguiar et al. 2010). These set-ups typically
involve a rotating tank, with a disk rotating differentially at the horizontal boundaries
while sharing the same axis of rotation with the tank. A range of small-aspect-ratio
containers (tank height to disk radius) studied by Rabaud & Couder (1983) revealed
a variety of critical Reynolds numbers. This suggests that the instability onset of the
flow is dependent on the aspect ratio. However, this result may be a consequence
of the external Reynolds number definition used, which adopts a length scale based
on the height of the tank. It was later determined by Niino & Misawa (1984) that
a more appropriate parameter required to describe the stability of the flow is a
Reynolds number definition based on the E 1/4 Stewartson layer thickness, namely
the internal Reynolds number (Früh & Read 1999). However, even with this adopted
definition, the linear stability analysis results of Niino & Misawa (1984) demonstrated
an increase in critical internal Reynolds number and an increase in critical azimuthal
wavenumber with increasing shear-layer thickness (in effect, increasing the aspect
ratio or E ) at marginal stability.

A review of the reported critical internal Reynolds numbers and their characteristic
length scales by Vo, Montabone & Sheard (2014) demonstrated a small range of
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instability onset values when characterized by Ro/E 3/4 (proportional to the internal
Reynolds number in Niino & Misawa (1984)), where Ro is the Rossby number.
Niino & Misawa (1984) postulate that Stewartson layers with thickness less than
approximately 4 % of their radius have stability that is insensitive to the shear-layer
radius. Given the dependence of the shear-layer thickness on the enclosure height
expected from Stewartson (1957), it remains unclear how robust the limiting thickness
of 4 % of radius is, and how well Niino & Misawa (1984) predictions for thicker
shear layers (such as might be produced at higher E or in taller enclosures) hold
against simulations of the full enclosure.

A large variation of aspect ratios for similar rotating flows has been explored
previously, although with a different focus. For example, the stability of astrophysical
disks that adopt a Keplerian rotation (Ω ∝ r−3/2) has been studied primarily using a
rotating cylindrical annulus (e.g. Hollerbach & Fournier 2004; Szklarski & Rüdiger
2007; Liu 2008; Avila 2012; Gissinger, Goodman & Ji 2012; Paoletti et al. 2012;
Schartman et al. 2012). A problem with this configuration is that the axial boundaries
have a pronounced effect on the interior flow, which causes difficulty in producing
smooth Keplerian velocity profiles. Thus, the variation of aspect ratios in these studies
stems from the endeavour of minimizing the influence of the end walls by separating
them as much as possible. In contrast, this paper seeks to characterize the aspect
ratio dependence in relation to the structure, stability and preferred azimuthal linear
instability modes of the flow, not only at marginal stability, but also beyond it. This
is achieved using numerical simulation and conducting linear stability analysis across
a large range of flow conditions and a number of aspect ratios.

Another open question is concerned with the validity of the quasi-two-dimensional
model implemented in previous differential-rotation studies (Chomaz et al. 1988; van
de Konijnenberg et al. 1999; Bergeron et al. 2000; Früh & Nielsen 2003) which have
been useful in reinforcing the experimental results. The full three-dimensional flow has
not been simulated previously due to the high computational expense that it demands;
this is hence why the majority of the numerical studies have only considered quasi-
two-dimensional models of the system. These models compute flow on an r–θ plane
with no depth variation, and incorporate friction induced by the Ekman layers on the
horizontal boundaries via a linear forcing term on the quasi-two-dimensional velocity
field. A consequence, though, is that the E 1/3 Stewartson layer is not captured, and
this reason has been cited as a possible explanation for the discrepancies observed
between the experimental and numerical results (van de Konijnenberg et al. 1999;
Früh & Nielsen 2003; Schaeffer & Cardin 2005). The significance of the E 1/3 layer on
the flow structure and its stability still remains unclear due to the lack of simulations
of the full enclosure required for comparison with the quasi-two-dimensional solutions.

A recent numerical study by Vo et al. (2014) implemented an axisymmetric
model to detail the axisymmetric flow structure and its stability for an aspect ratio
of A = 2/3. Two primary linear instability modes were found: a low-wavenumber
mode they referred to as mode I and a high-wavenumber mode referred to as
mode II. The mode I instability structure exhibits a highly depth-independent chain
of alternating-sign vortices within the shear layer, possessing a reflective symmetry
about the mid-depth, while the mode II instability is a disturbance localized at the
disk–tank interface near the horizontal boundaries. Both instability modes displayed
azimuthal deformations resulting in polygonal patterns, although only mode I distorted
the vertical Stewartson layer in the interior. It was proposed that the mode II instability
originates from the breaking of depth independence of the flow, which occurs only
at high internal Reynolds numbers. This result suggests that the mode I and mode II
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instabilities may be related to the instability of the E 1/4 and E 1/3 layers respectively.
This paper extends the methodologies used in the Vo et al. (2014) study through
the addition of quasi-two-dimensional modelling, providing for the first time a
direct comparison between the axisymmetric simulation and quasi-two-dimensional
modelling of Stewartson layers produced by a differential-rotation system. This work
therefore serves to inform the validity and accuracy of quasi-two-dimensional models
employed in previous and future studies.

The remainder of this paper is set out as follows. The numerical methods and
models used throughout this paper are detailed in § 2. Following this, the axisymmetric
flow structures for a wide range of flow conditions are discussed in § 3. This
entails two subsections: a comparison of results between the axisymmetric and
quasi-two-dimensional models for A= 2/3 and a comparison between various aspect
ratios for the axisymmetric model only. Section 4 is structured similarly to § 3 except
that it discusses the linear stability of the flow. Finally, conclusions are presented
in § 5.

2. Methodology
2.1. System description and governing parameters

The system studied in this paper follows that of Früh & Read (1999) and Vo et al.
(2014). Flow in a cylindrical tank rotating with angular speed Ω is differentially
forced at a rate of ω relative to the tank by disks situated flush with the top and
bottom boundaries. A schematic of this system and its key dimensions is illustrated
in figure 1(a). The disk radius is half the tank radius (Rd =Rt/2) and the aspect ratio
of the shear layer is the ratio of the tank height to the disk radius, A=H/Rd.

The flow is governed by the time-dependent incompressible Navier–Stokes
equations, which in an inertial frame of reference are written as

∂u
∂t
+ (u · ∇)u=−∇P+ ν∇2u, (2.1a)

∇ · u= 0, (2.1b)

where u is the three-dimensional velocity field, P= p/ρ is the kinematic pressure, p is
the pressure, ρ is the fluid density and ν=µ/ρ is the fluid kinematic viscosity. These
equations are respectively derived from the principles of conservation of momentum
and mass.

Several important non-dimensional parameters can be obtained by taking the ratios
of viscous, inertial and Coriolis forces. The Rossby number, Ro, is the ratio between
the inertial and Coriolis forces, which provides a measure of rotational importance
in the system. The Ekman number, E , indicates an interaction between the frictional
forces and the Coriolis forces in the system. These are respectively defined as

Ro= Rdω

2ΩH
(2.2)

and
E = ν

ΩH2
, (2.3)

where Ω = Ω + ω/2 is the appropriate mean rotation rate following Früh & Read
(1999) and Aguiar (2008).



Effect of enclosure height on the structure and stability of shear layers 49

(a) (c)

(d )

Rt

Rd

z
H

see (b)
r

(b)

FIGURE 1. (Colour online) (a) A schematic diagram of the differential-rotating disk set-up
under investigation. The key dimensions are the disk radius Rd, tank radius Rt and tank
height H. The disks and tank rotate about the central axis (dashed line) at rates of Ω +ω
and Ω respectively. An overlay of the spatially discretized semi-meridional r–z plane used
to simulate axisymmetric flows in an A=2/3 enclosure is also shown. The macro elements
and the coordinate system are illustrated. An inset demonstrating the high-order collocation
grid within the macro elements is shown in (b). The inset domain is exact in (a) and (b).
Macro elements for the (c) A= 1/6 and (d) A= 2 meshes are also shown.

The ratio of inertial to viscous forces is represented by the Reynolds number,

Re= UL
ν
, (2.4)

where U and L represent the characteristic velocity and length scales respectively. Two
Reynolds numbers have been defined in the literature for differential-rotating flows,
namely the external and internal Reynolds numbers (Früh & Read 1999). These are
defined using a velocity scale of Rdω and length scales of either H or (E /4)1/4H
respectively,

Re= 2Ro
E

(2.5)

and

Rei =
√

2Ro
E 3/4

. (2.6)

It has been established that a constant internal Reynolds number can describe the onset
of a non-axisymmetric instability (e.g. Busse 1968; Niino & Misawa 1984; van de
Konijnenberg et al. 1999; Früh & Nielsen 2003). Additionally, Vo et al. (2014) found
that by taking into consideration the various characteristic scales used to define Rei,
a consistent instability onset given by |Ro|/E 3/4 ≈ 16 is derived. This corresponds to
Rei,c ≈ 22.4 using (2.6).
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2.2. Axisymmetric and quasi-two-dimensional models
The flows reported in this paper have been computed using two different approaches,
namely the axisymmetric simulation of the full enclosure and quasi-two-dimensional
modelling. With both approaches, the base flows are assumed to be axisymmetric and
are computed on semi-meridional domains using the same numerical treatment. The
governing equations and spatial domain used for axisymmetric modelling are described
first, followed by a description of the quasi-two-dimensional modelling approach.

The dimensionless governing equations are obtained by scaling lengths by Rd,
velocity by RdΩ , time by Ω−1 and pressure by ρ(RdΩ)

2. On replacing variables and
operators with their dimensionless counterparts, the governing equations become

∂u
∂t
+ (u · ∇)u=−∇P+ E A2

1− ARo
∇2u, (2.7a)

∇ · u= 0. (2.7b)

All variables are referred to in their dimensionless forms hereafter. Evidently, there
is a limited range of computable Rossby numbers that stems from the denominator
in the coefficient of diffusion. That is, only simulations that satisfy ARo< 1 achieve
positive diffusion. This restriction is explained by the physical behaviour expressed as
ARo→ 1. It can be shown that ARo= 1 represents the limit of ω→∞ for a constant
Ω , and so this is a physical limit for the system (Vo et al. 2014).

The axisymmetric flow is computed on a semi-meridional domain. The spatially
discretized domain for A= 2/3 is the same as that adopted by Vo et al. (2014). The
macro elements of the mesh are illustrated in figure 1(a) overlaying the schematic
of the system. The mesh elements are densely populated around r = 1 and the
horizontal boundaries where shear and boundary layers are expected. The high-order
collocation grid implemented for the spatial discretization is shown in figure 1(b),
which is a close-up of the inset from figure 1(a). The boundaries of the domain are
solid, with the exception of the left boundary (dashed line), which represents the axis
of rotation and symmetry. This symmetry boundary is treated as per Blackburn &
Sherwin (2004); zero radial and azimuthal velocities are exactly enforced as Dirichlet
boundary conditions, whereas a zero Neumann condition is imposed on the axial
velocity. On solid boundaries, azimuthal velocity profiles are imposed where

ub = uθεθ , uθ =
{
(1+ω)r for r 6 1,
r for r> 1. (2.8)

The variation in aspect ratio is achieved by keeping Rd (and Rt) constant while
changing H. The same mesh properties and boundary conditions as adopted by the
A= 2/3 mesh apply to all values of A investigated in this paper. The macro elements
of the spatially discretized semi-meridional plane for the smallest and largest aspect
ratios (A= 1/6 and A= 2) are portrayed in figure 1(c,d).

Unlike the axisymmetric model, the quasi-two-dimensional model omits axial
dependence of the flow. The Ekman friction induced from the horizontal walls in
the axisymmetric model is instead captured through an external forcing term. Using
the same normalization as used for (2.7), the non-dimensional quasi-two-dimensional
equations are written as

∂u⊥
∂t
+ (u⊥ · ∇)u⊥ =−∇P+ E A2

1− ARo
∇2u⊥ + 2

√
E

1− ARo
(ub − u⊥), (2.9a)

∇ · u⊥ = 0, (2.9b)
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where u⊥ is the two-dimensional velocity field and ub represents the velocity at the
horizontal boundaries as described in (2.8). The last term on the right-hand side of
(2.9a) is a forcing term describing the Ekman friction induced by the Ekman layers
on the horizontal boundaries. These equations have been derived based on the Ekman
solution, following Pedlosky (1987), and their dimensional counterparts are identical
to those employed by Früh & Nielsen (2003).

Since the base flow of the quasi-two-dimensional model is also assumed to
be axisymmetric (∂/∂θ = 0), the solution becomes a one-dimensional problem
in r. However, for consistency with the axisymmetric simulations, the quasi-
two-dimensional simulations are computed using a modified version of the same
spectral-element solver. With the numerical treatment employed in this study, the
one-dimensionality is achieved by adopting a quasi-one-dimensional domain. That is,
a special mesh with a small arbitrary axial extent (0.01 length units) is employed.
Due to the depth-independent solutions for the quasi-two-dimensional model, this
does not relate to the aspect ratio of the tank being investigated.

On the axis and tank sidewall, the same boundary conditions as imposed for the
axisymmetric model are implemented in the quasi-two-dimensional model. Stress-free
conditions comprising a Dirichlet condition of zero axial velocity and Neumann
conditions of zero normal radial and azimuthal velocity gradients are imposed on
the top and bottom boundaries. This approach naturally suppresses axial flow and
dependence, and the addition of the forcing term to the solver achieves the desired
axisymmetric quasi-two-dimensional modelling of the system for any aspect ratio. To
facilitate comparison with previous investigations of the same set-up (Vo et al. 2014),
an aspect ratio of A = 2/3 is considered for the quasi-two-dimensional modelling
reported in this paper.

The governing equations of both models are solved in cylindrical coordinates using
a code adopting a nodal spectral-element discretization in space and a third-order
time-integration scheme based on backward differentiation (Karniadakis, Israeli &
Orszag 1991). Imposed upon each macro-element are Lagrangian tensor-product
polynomial shape functions, for which the polynomial degree can be varied to control
the spatial resolution of the domain. Gauss–Lobatto–Legendre quadrature points are
used for interpolation. This formulation follows that employed by Vo et al. (2014)
and has been validated in previous studies (Sheard & Ryan 2007; Sheard 2009).

A grid independence study of the A = 2/3 mesh used for the axisymmetric
model has previously been conducted in Vo et al. (2014), which determined that an
element polynomial degree Np = 11 produced small errors (ε < O(0.1 %)) in several
global flow quantities. The meshes constructed in this study for other aspect ratios
adopt consistent element sizes, and hence the same polynomial degree is used for
axisymmetric simulations throughout this study. A further test of grid independence
was implemented for the mesh used for quasi-two-dimensional simulations, and,
balancing accuracy against computational expense, it has been decided to employ
Np = 6, achieving ε < O(1 %). The uncertainties expressed for power-law fits
throughout this paper correspond to the standard error (estimated standard deviation)
of the least-squares estimates of the coefficients and exponents arising from a linear
regression of log–log data.

2.3. Linear stability analysis technique
The growth or decay of three-dimensional perturbations introduced into steady-state or
periodic solutions of the base flow can be obtained through a linear stability analysis.
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The adopted method is similar to that described by Barkley & Henderson (1996),
although it is formulated in cylindrical coordinates and retains the full complex form
of the perturbation mode shape for azimuthal precession (Cogan, Ryan & Sheard 2011;
Vo et al. 2014).

The linear stability analysis formulation begins by decomposing the flow variables
into the sum of the axisymmetric base flow and an arbitrarily small three-dimensional
disturbance, u = u(z, r, t) + δu′(z, r, θ, t), where δ is a small positive constant. It
should be noted that u is two-dimensional and u′ is three-dimensional, decomposed
into individual azimuthal Fourier modes with wavenumber k. Substitution of these
decompositions into (2.7) and retaining terms of O(δ) (terms of O(δ2) may be
neglected as they are negligible for small u′) yields the linearized Navier–Stokes
equations,

∂u′

∂t
+ (ū · ∇)u′ + (u′ · ∇)ū=−∇P′ + E A2

1− ARo
∇2u′, (2.10a)

∇ · u′ = 0. (2.10b)

The corresponding linearized equations for the quasi-two-dimensional model are
identical, except that u′⊥ replaces u′, and the forcing term

− 2
√

E
1− ARo

u′⊥ (2.11)

is added to the right-hand side of the momentum equation. The quasi-two-dimensional
perturbation u′⊥ varies spatially in r and θ . The same analysis is performed on the two
sets of equations.

The linear stability analysis calculates the complex Floquet multipliers µF of
the system, which correspond to the eigenvalues of a linearized evolution operator
describing time integration of (2.10). The Floquet multipliers are related to the
exponential growth rates of individual wavenumbers through

µF = e(σR+iω)T, (2.12)

where σR denotes the real component of the growth rate and T is the time interval
over which the equations are integrated within the eigenmode solver. Since only the
real component of the growth rate is considered here, as it is all that is required
to determine the stability of the flow, the subscript ‘R’ is omitted hereafter. Hence,
the growth rate may be evaluated through σ = log |µ|/T . By definition, stable flows
are characterized by σ < 0 while unstable flows are characterized by σ > 0. Neutral
stability occurs when σ = 0 (|µ| = 1). Only the most dominant eigenvalue is sought
for each wavenumber, corresponding to the mode with the largest growth rate. An
implicitly restarted Arnoldi method is used to extract the leading eigenmodes of the
linearized perturbation fields (Sheard 2011).

3. Results: axisymmetric flow
The axisymmetric flows for a wide range of flow conditions have been computed

using both the axisymmetric model and the quasi-two-dimensional model. Time-
evolved solutions are taken to be steady state when velocity variations are less than
10−12 between successive time steps. A comparison between the results of the two
models is first described for an aspect ratio of A = 2/3. Following this, a section
pertaining only to the axisymmetric modelling of a range of aspect ratios is presented.
The flow structures, vertical shear-layer profiles and thicknesses are discussed in each
section.
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3.1. Axisymmetric and quasi-two-dimensional models (A= 2/3)
3.1.1. Steady-state axisymmetric flow structure

A variety of steady-state solutions for A = 2/3 have been obtained using the
axisymmetric and quasi-two-dimensional models. The flow structures from the
axisymmetric model for A = 2/3 have been detailed previously in Vo et al. (2014).
Thus, the focus here is on the comparisons between the two models. Simulations are
performed for Rossby numbers in the range −2.0 6 Ro 6 1.0 and Ekman numbers in
the range 3× 10−5 6 E 6 3× 10−3.

Figure 2 presents azimuthal velocity and axial vorticity solutions obtained from
the quasi-two-dimensional model (a) and axisymmetric model (b). Flow conditions
are of various Ro for E = 3× 10−4. For visualization purposes, the one-dimensional
solution is projected vertically. The Ro conditions presented here are largely chosen
to demonstrate the difference in the depth dependence of the flow between the two
models. It should be noted that the contour levels plotted for both models at each
Ro are the same. At Ro= 0.1 (i), the flow from the axisymmetric model is strongly
depth-independent and is reflective of that observed from the quasi-two-dimensional
model. These low-Ro flows typically reveal a concentrated band of axial vorticity at
r= 1 which aligns with the radial location of the disk–tank interface. Indeed, the flow
solutions between the two models become more similar at smaller Rossby numbers
as the effects of Ekman pumping/suction become weaker (see also Vo et al. 2014,
figure 3ai).

At larger Rossby numbers, the stronger circulations induced by the Ekman layers
are captured in the axisymmetric model and therefore the depth independence
observed at lower Ro is lost. This loss is observed at Ro= 0.5 (panel ii) whereby the
azimuthal velocity and axial vorticity contours are no longer parallel to the axis of
rotation. The axial vorticity contours clearly depict diagonal negative-vorticity strands
originating from the disk–tank interface instead of a continuous vertical shear layer.
The solutions of the quasi-two-dimensional model provide a very good agreement
with the interior of the axisymmetric solutions despite not simulating depth-dependent
features. Quantitative comparisons are provided in § 3.1.2.

Similarly, for negative-Ro flows, there is a transition from highly depth-independent
flow to depth-dependent flow as |Ro| is increased. As was observed by Vo et al.
(2014), negative-Ro flows are able to maintain depth independence at higher |Ro| as
compared with positive-Ro flows. Hence, the flow at Ro = −1.0 (panel iii) in the
axisymmetric model displays traits that are very similar to small positive Ro. Again,
the solutions of the quasi-two-dimensional model demonstrate very good agreement
in the radial locations of the contour lines and their values. This is in contrast to
the stronger Ro = −2.0 flow (panel iv), where axial invariance is broken, although
in a different manner compared with that observed in the positive-Ro regime. The
axisymmetric model presents negative regions of vorticity on the inner side of the
vertical shear layer in addition to the thin negative-vorticity boundary layer along the
horizontal. The interior region occupying r < 1 exhibits both positive and negative
axial vorticity. However, the quasi-two-dimensional flow exhibits only negative axial
vorticity for r< 1.

Overall, the agreement between the two models is excellent at low |Ro| and remains
robust outside the shear layer for |Ro| exceeding the loss of depth independence. The
key difference between the two models is primarily observed in the axial vorticity
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FIGURE 2. (Colour online) Structure of the axisymmetric flows visualized on the
semi-meridional r–z plane. Azimuthal velocities (u⊥θ , uθ ) (left) and axial vorticities
(ω⊥z, ωz) (right) are shown for E = 3 × 10−4 at (i) Ro = 0.1, (ii) Ro = 0.5, (iii) Ro =
−1.0 and (iv) Ro=−2.0. The flow solutions from the (a) quasi-two-dimensional model
and (b) axisymmetric model are shown. For the azimuthal velocity plots, equi-spaced
contour levels are plotted between ±|2(Ro + ω) + ω/Ro|, while for the axial vorticity
plots, equi-spaced contour levels are plotted between 2Ω ± 10|ω|. Dark to light shading
represents low to high values, respectively, while solid and dashed contour lines identify
positive and negative contour levels respectively. The domain shown represents the entire
semi-meridional plane with 0 6 r 6 2 for the quasi-two-dimensional model and 0 6 r 6 2
and 0 6 z 6 2/3 for the axisymmetric model. The quasi-two-dimensional solutions have
been stretched vertically (without loss of correctness) for visual clarity.

contours where the vertical shear layer is broken. It has been proposed in Vo et al.
(2014) that the breaking of the depth independence in the flow may be connected
with the mode II linear instability. As depth independence is implicit in the quasi-
two-dimensional model, the mode II instability is not expected to emerge in the linear
stability analysis of the quasi-two-dimensional model. The linear stability of these
flows is discussed later in § 4.1.
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FIGURE 3. (Colour online) (a) Scaled relative azimuthal velocity and (b) scaled
relative axial vorticity profiles for E = 3 × 10−4 at various Ro: quasi-two-dimensional
model (left); axisymmetric model (right). The relative azimuthal velocity is scaled by
the non-dimensional differential-rotation rate u(⊥)θ,rel = (2ARo)/(1 − ARo) while the
relative axial vorticity is scaled by the non-dimensional axial vorticity attributed by
the differential-rotation rate 2u(⊥)θ,rel = (4ARo)/(1 − ARo). The profiles have been
extracted at mid-depth for the axisymmetric model. The quasi-two-dimensional solutions
are z-independent.

3.1.2. Vertical shear-layer profile and thickness
Profiles of the azimuthal velocity relative to the tank and axial vorticity have

been extracted from the quasi-two-dimensional and axisymmetric models. Typical
profiles of these two flow variables for E = 3× 10−4 have been scaled and are shown
in figure 3. The azimuthal velocity profiles have been scaled by the non-dimensional
differential-rotation rate 2ARo/(1 − ARo), while the axial vorticity profiles have
been scaled by the non-dimensional axial vorticity of the differential-rotation rate
(ω(⊥)z − 2)(1 − ARo)/(4ARo). There is a strong similarity in the scaled relative
azimuthal velocity profiles across the various Rossby numbers in both models. In fact,
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there is no difference in the quasi-two-dimensional flow solutions, whereas a deviation
is observed at Ro= 0.5 in the axisymmetric model caused by the breaking of depth
independence in the flow. Despite this, the profiles are very similar between the two
models for small Ro, which is expected since the use of the quasi-two-dimensional
model does not directly affect the azimuthal component of the flow. The collapse of
the data demonstrates a flow that rotates at a relative angular rate of ω for r . 0.9,
while the flow rotates at the tank rate Ω for r & 1.2. In the intermediate region, there
is a transition from the disk rotation rate to the tank rotation rate, which is achieved
through the E 1/4 Stewartson shear layer. Indeed, the E 1/4 layer functions to smooth
out the azimuthal velocity (Smith 1984; Vooren 1992; Schaeffer & Cardin 2005).
Furthermore, by using the appropriate scaling and adopting the azimuthal velocity
profile derived by Niino & Misawa (1984), a strong change over the same radial
extent (0.9 . r . 1.2) is demonstrated, consistent with the computed shear layer.

Distinct differences between the two models are seen in the profiles of the scaled
axial vorticity profiles around r= 1 (figure 3b). A sharp change in the gradient of the
profile at r = 1 exists in the quasi-two-dimensional solution, which is smooth in the
axisymmetric model solutions. This difference is explained by the absence of axial
variation in the quasi-two-dimensional flows, which is required to capture the E 1/3

layer. That is, the meridional circulation supported by the E 1/3 layer smooths out
the axial vorticity in the axisymmetric model solutions. Consequently, the minimum
axial vorticity value from the quasi-two-dimensional model is much lower compared
with the axisymmetric model solution. Moreover, there are no differences in the
scaled profiles across the range of Rossby numbers in the quasi-two-dimensional
solutions, which is in contrast to the axisymmetric model solutions. Again, the depth
dependence induced by the higher differential-rotation rates (high Ro) is the reason
for the deviation seen in the Ro = 0.5 profile compared with the other Rossby
numbers of the axisymmetric model. That is, at Ro= 0.5 the single minimum in the
profile is replaced by a flattened band of weaker vorticity. The axial vorticity minima
in both models suggest that the flows may be susceptible to shear instability via
the Rayleigh–Kuo criterion (Rayleigh 1880; Kuo 1949). The Rayleigh–Kuo criterion
states that the radial derivative of the absolute axial vorticity (sum of the background
and relative vorticities) must change sign somewhere within the domain in order for
instability to exist. This criterion is a necessary but not sufficient condition.

Measurements for the E 1/4 Stewartson layer thickness were conducted using
similar techniques to those performed for the axisymmetric base flows in Vo
et al. (2014) (see their figure 5). The E 1/4 layer thickness, δvel, is defined as the
difference in radial locations corresponding to ({uθ−rel/r}max − 0.151{uθ−rel/r}) and
({uθ−rel/r}min+ 0.151{uθ−rel/r}), where uθ−rel represents the relative azimuthal velocity
and 1{uθ−rel/r} is the difference between the maximum and minimum values of
uθ−rel/r. Although this 15 % threshold has been chosen arbitrarily to represent the
results, it has been determined that the scalings obtained using this approach are
quite insensitive to the chosen threshold value. The thickness of the E 1/3 layer,
δvort, is defined as the difference in radial locations corresponding to maximum
and minimum radial gradients of axial vorticity. The thickness of this layer is
not measured for the quasi-two-dimensional solutions since the discontinuous axial
vorticity profile consistently yields a zero thickness. This result is supported physically
as the quasi-two-dimensional model does not compute any depth-dependent structures
and is therefore unable to generate the E 1/3 layer responsible for smoothing out the
discontinuous vorticity.
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FIGURE 4. (Colour online) The shear-layer thickness based on the relative azimuthal
velocity, δvel, as a function of E for quasi-two-dimensional solutions. The data are
independent of |Ro|.

A power-law fit to the thickness of the E 1/4 layer against E is determined as
δvel = 1.26(±0.02)E 0.260±0.002 for the quasi-two-dimensional model and is shown
in figure 4. This relationship is found to be independent of Ro. Pleasingly, this
is extremely close to the relationship obtained for the axisymmetric flows with
A = 2/3 and very small |Ro|, which was found to be δvel = 1.22(±0.03)E 0.260±0.003.
It should be noted that Vo et al. (2014) measured the shear-layer thickness
differently and hence the relationships presented here are different from those
reported previously. Using their thickness measurement method, we obtain δvel =
1.32(±0.02)E 0.219±0.002 for the quasi-two-dimensional model, which is in good
agreement with their reported δvel=1.31E 0.220 using an axisymmetric model. Although
the quasi-two-dimensional and axisymmetric models demonstrate excellent agreement
with thickness relationships at |Ro| = 0.005, the Ro independence of the E 1/4

layer thickness is not observed in the axisymmetric model solutions computed here
(consistent with Vo et al. 2014). This represents a key difference between the two
models and suggests that the thickness of the E 1/4 Stewartson layer is modified by
meridional circulations, which become stronger as |Ro| is increased, and are excluded
from the quasi-two-dimensional simulations.

3.2. Variation of the aspect ratio of the axisymmetric model
The effect of varying the aspect ratio is numerically investigated by varying the height
of the tank while keeping the disk radius constant in the axisymmetric model. The
motivation for this originates from the theoretical definition of the Stewartson layer
thickness, which scales linearly with height (i.e. δvel∝ (H/Rd)E 1/4). The height of the
container can be expressed through the non-dimensional aspect ratio parameter, and
therefore the effect of varying A in relation to the Stewartson layer can be determined.
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The neutral stability curves obtained by Niino & Misawa (1984) in a differentially
forced flow demonstrated a stabilizing effect with increasing A. For their idealized
differential single-disk set-up, they reported that the shear layer was not influenced
by the geometry provided that the ratio of the disk radius to the E 1/4 theoretical
thickness was greater than 25 (i.e. γ =Rd/(E /4)1/4H> 25). Considering the smallest
and largest Ekman numbers in this study (E =5×10−5 and E =3×10−3 respectively),
the criterion of Niino & Misawa (1984) gives that geometrical effects are negligible
for A . 0.24 and A . 0.67 respectively.

The flow structures produced at aspect ratios in the range 1/6 6 A 6 2 for the
axisymmetric model are presented in this section. This range of aspect ratios allows us
to probe the changing structure and stability characteristics of the flow in comparison
with Niino & Misawa (1984).

3.2.1. Steady-state axisymmetric flow structure
Contours of the axial velocity and axial vorticity of the axisymmetric steady-state

base flows for a variety of values of A at fixed Ro = 0.3 and E = 7 × 10−4 are
illustrated in figure 5. The contours of axial velocity demonstrate a pair of meridional
circulations on each horizontal boundary for all A investigated, while the axial
vorticity contours display a column of vorticity at r= 1. For small A, variation of the
flow is largely confined near r=1, where the axial vorticity is strongly concentrated as
a column. The meridional circulation and the vorticity column broaden as the aspect
ratio is increased. This broadening effect is more clearly seen in the contours of axial
velocity where at A = 2, the recirculation zones have extended to the entire radial
domain. It is apparent that the axis of symmetry and the sidewalls are influencing the
flow at this aspect ratio. Presumably this will act to limit the Stewartson layer scaling
with H (and A). Despite this, the reflective symmetry about mid-depth in the axial
velocity contours is maintained throughout the entire range of A. Although the shear
layer becomes progressively weaker and thicker with increasing A, an approximately
depth-independent region still persists at large A. These characteristics are consistent
through a large range of E and Ro conditions investigated here, as will be discussed
in § 3.2.3.

3.2.2. Vertical shear-layer profile and thickness
Despite the qualitative similarities between the solutions for the various aspect

ratios, the profiles of axial vorticity for the smallest and largest A illustrate significant
differences. The data for the axial vorticity have been extracted at mid-depth and
are presented using two different scalings in figure 6(a,b). In (a), the relative axial
vorticity has been scaled by (4ARo)/(1 − ARo), which collapses the disk and tank
vorticities to values of 1 and 0 respectively. This plot demonstrates a weakening of
the vorticity in the shear layer and a broadening of the shear layer with increasing A.
That is, the shearing effect is less pronounced as the aspect ratio is increased. For
A= 1/6, the profile strongly depicts flow adopting an axial vorticity value associated
with the differential-rotation rate ((ωz − 2)(1 − ARo)/(4ARo) = 1) for r . 0.9, and
a value associated with the tank rotation rate ((ωz − 2)(1 − ARo)/(4ARo) = 0) for
r & 1.1. As the aspect ratio is increased, the radial extent over which the flow adopts
neither 1 or 0 for (ωz − 2)(1 − ARo)/(4ARo) also increases. At sufficiently high A,
the flow begins to exhibit values less than those induced by the disk and tank. That
is, there is no part of the interior exhibiting solid-body rotation with either the disk
or the tank – the enclosure is confining the Stewartson layer. For example, at A= 2,
the flow adopts approximately 88 % of the relative axial vorticity generated by the



Effect of enclosure height on the structure and stability of shear layers 59

(a)

(b)

(c)

(d )

FIGURE 5. (Colour online) Structure of the axisymmetric flows visualized on the semi-
meridional r–z plane. Axial velocities, uz (left), and axial vorticities, ωz (right), are shown
for Ro= 0.3 and E = 7× 10−4 at A= 1/6 (a), 2/3 (b), 4/3 (c) and A= 2 (d). The images
are to scale. For the axial velocity plots, equi-spaced contour levels are plotted between
±0.1|Ro|(1+ω), while the axial vorticity contour levels are as per figure 2.

disk at r = 0 and approximately 91 % of the axial vorticity generated by the tank at
r= 2. The pronounced meridional circulations evident at larger A may be responsible
for the weakening of axial vorticity in the interior flow.

In panel (b), the unscaled relative axial vorticity is shown to demonstrate similarity
in the radial locations of the profile minima. The radius has been scaled as (r− 1)/A
to portray the similarity between each curve and to illustrate the diminishing radial
range over which a constant vorticity value is exhibited with increasing A. A slight
shift in the local minimum of each curve towards the tank sidewall with increasing A
can also be seen.

The shift in the local minimum can be explained by the asymmetry in the
recirculation on either side of the axial jet produced at the disk–tank interface,
as shown in panel (c). Although it is difficult to see, the profile of A = 1/6 is
almost symmetric about the disk radius with the circulations on either side of the
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FIGURE 6. (Colour online) Profiles of variables as a function of aspect ratio: (a) the
scaled relative axial vorticity against radius; (b) the relative axial vorticity against a scaled
radius; (c) the axial velocity against radius; (d) the axial velocity normalized by its
respective maximum value against a scaled radius. Panels (a,b) have been extracted at
z/A= 0.5 (mid-depth) while (c,d) have been extracted at z/A= 0.9.

jet exhibiting similar strengths. However, the asymmetry becomes more pronounced
with increasing aspect ratio. The asymmetry is more clearly depicted in panel (d),
which is a plot of the axial velocity scaled against its respective maximum value as
a function of (r− 1)/A. The magnitude of the axial velocity is seen to increase with
increasing A for negative values of (r− 1)/A while it decreases for positive values of
(r− 1)/A. Thus, it appears that the jet has shifted slightly towards the tank sidewall
in order to compensate for the stronger circulation displayed on the side closer to the
axis of rotation.

The measured thicknesses for δvel and δvort have been plotted against their
respective theoretical scalings of AE 1/4 and AE 1/3 in figure 7. Both shear layers
demonstrate a very good agreement with the theoretical scaling, as evidenced by
the highly linear relationship (power-law exponent of unity). The relationships of
the fitted data (long-dashed lines) are given by δvel = 1.71(±0.02)[AE 1/4]1.00±0.005 and
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FIGURE 7. The shear-layer thickness based on (a) the relative azimuthal velocity δvel
and (b) the axial vorticity δvort, as a function of AE 1/4 and AE 1/3 respectively. Data for
A = 1/6 (♦), A = 2/3 (@), A = 4/3 (A) and A = 2 (E) are shaded as a function of E ,
where dark and light shading represents low and high E respectively. The Rossby number
examined is close to zero at Ro = 0.005. The fitted long-dashed line is represented by
δvel = 1.71(±0.02)[AE 1/4]1.00±0.005 (a) and δvort = 2.26(±0.04)[AE 1/3]0.991±0.006 (b).

δvort=2.26(±0.04)[AE 1/3]0.991±0.006. Here, a unit exponent is obtained from thicknesses
measured using a 15 % threshold (see § 3.1.2). This scaling was almost insensitive to
the arbitrary threshold used for thickness measurements; threshold values between 5 %
(achieving 0.980± 0.010 exponent) and 30 % (achieving 1.01± 0.005 exponent) also
demonstrated a highly linear relationship between δvel and AE 1/4. The small-thickness
data (low E and small A) align very well with the fitted line, which is in contrast to
the large-thickness data points (high E and large A) where slight deviations from the
fitted line are observed. The data begin to depart from the fitted line for AE 1/4 & 0.34.

The theoretical scaling is lost at sufficiently high AE 1/4 and AE 1/3 due to the
confining effects of the enclosure. This is more evident with the E 1/4 layer as
it is the thicker Stewartson layer. For the range of E and A investigated here,
the E 1/3 does not appear to be significantly affected by the confinement. These
observations are supported by power-law fits of the shear-layer thicknesses as
a function of E alone for 1/6 6 A 6 2. The exponents on E obtained for δvel
are 0.245 ± 0.002 (A = 1/6), 0.260 ± 0.003 (A = 2/3), 0.248 ± 0.003 (A = 4/3)
and 0.204 ± 0.005 (A = 2), deviating from the theoretical value by approximately
2 %, 4 %, 0.8 % and 18.4 % respectively. The large deviation at A = 2 is due to
the confinement effects of the container experienced by the thicker shear layers.
However, for δvort the exponents remain consistent around the theoretical value
of 1/3, suggesting that confinement effects are not pronounced at these aspect
ratios. The exponents on E for δvort are given by 0.315 ± 0.016 (A = 1/6),
0.310 ± 0.004 (A = 2/3), 0.317 ± 0.002 (A = 4/3) and 0.323 ± 0.002 (A = 2). To
further support the hypothesis that δvel loses its E 1/4 scaling due to the thicker shear
layers at high E and A = 2, a systematic analysis was conducted whereby a set of
regressions incorporating successively more points (starting from the smallest E ) were
fitted to the power law. The data demonstrate an exponent on E of 0.255± 0.002 for
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E 6 1× 10−4, which gradually decreases towards 0.204± 0.005 (E 6 3× 10−3) when
larger E data are included. On performing the same analysis for A = 4/3, exponent
values close to 1/4 are consistently yielded, which suggests that over the range of
Ekman numbers studied here, the Stewartson layers produced in A . 4/3 containers
are unaffected by the confining walls.

Similarly, an independent relationship between δ and A can be established to
determine the agreement with the theoretical definition of the Stewartson layer
thickness, which has linear scaling with A. Power-law fits of the data yield
δvel ∝ A0.959±0.036 and δvort ∝ A1.02±0.01 at the largest E = 3× 10−3, and δvel ∝ A1.01±0.01

and δvort ∝ A1.04±0.01 at the lowest E = 5 × 10−5. An approximate unit exponent
for A is obtained between these two extreme E cases. Again, δvort demonstrates
excellent agreement with the theoretical scaling across all E since the thinner shear
layers in this system are not significantly influenced by the confinement. In contrast,
the thicker shear layers are modified by the confinement, resulting in the sub-unity
exponent 0.959± 0.036 at the largest Ekman number considered.

It has now been demonstrated that the theoretical relationships δvel ∝ AE 1/4 and
δvort ∝ AE 1/3 hold strongly throughout the majority of the explored parameter space.
The slight deviations from the theoretical scalings are attributed to the confinement
effects experienced by the shear layer. Additionally, the independent scalings of
A, E 1/4 and E 1/3 for the shear-layer thicknesses have been recovered.

It has been determined that increase in E for a constant Ro yields an increasingly
stable shear layer (Früh & Read 1999; Vo et al. 2014). Thus, it is expected that
increase of the shear-layer thickness by increasing A will also result in a more stable
flow. Results of a linear stability analysis conducted on flows produced in large-aspect-
ratio containers reinforce this idea and are examined later in § 4.2.

3.2.3. Aspect ratio dependence on the flow characterization
The height dependence of the flow structure as a function of the aspect ratio is

now examined. A pair of non-dimensional parameters independent of height can be
obtained from the Rossby and Ekman numbers. Substitution of H = ARd into the
definitions of Ro and E ((2.2) and (2.3)) and the search for a group of variables
independent of height yield

ARo= ω

2Ω
, (3.1)

E A2 = ν

ΩR2
d

. (3.2)

The effect of the height dependence of the flow is examined through the non-
dimensional groupings of ARo and E A2. These parameters appear, incidentally,
in the coefficient of diffusion in the dimensionless governing equations, namely
E A2/(1− ARo) (see 2.7a).

The height dependence of the flow has been visually characterized into two
categories as determined through contours of axial velocity. The categories and their
associated axial velocity contours are shown in figure 8, with both cases belonging
to the positive-Ro regime. Category 1 demonstrates a reflective symmetry about the
mid-plane while category 2 portrays a breaking of this symmetry.

The solution of the flow condition combined with the aspect ratio has been
characterized as either category 1 or 2. Figure 9 shows a plot of ARo and E A2 and
their respective category. Small-ARo and large-E A2 regimes are seen to be dominated
by category 1 flows. The flow transitions to category 2 with increasing ARo and
decreasing E A2.
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FIGURE 8. (Colour online) The two types of axial velocity contours used to characterize
the height dependence of the flow. Characterization is determined for steady-state
axisymmetric flows. Category 1 (a) is reflectively symmetric about the mid-plane while
category 2 (b) breaks the mid-plane symmetry. The flow conditions are (a) (Ro, E ) =
(9.97×10−3,2.99×10−3) and (b) (Ro,E )= (0.692,2.31×10−3). Dark shading and dashed
lines denote negative values; light shading and unbroken lines denote positive values.

lo
g 1

0 
(E

A
2 )

log10 (ARo)
–3.0 –2.5 –2.0 –1.5 –1.0 –0.5 0

–6.5

–6.0

–5.5

–5.0

–4.5

–4.0

–3.5

–3.0

–2.5

–2.0

–1.5

Category 1
Category 2

FIGURE 9. (Colour online) A plot of ARo against E A2 and its respective category as
characterized in figure 8. The categories are coloured such that category 1 is represented
by dark-shaded symbols (blue online) and category 2 by light-shaded symbols (yellow
online). Aspect ratios of A = 1/6 (A), A = 1/3 (C), A = 2/3 (@), A = 4/3 (♦) and
A = 2 (E) are represented by different symbols. The solid line represents the transition
between reflectively symmetric (category 1) and symmetry-broken (category 2) flow, which
is governed by Roc1−c2 = 13.35E 0.5 (ReE = 26.7). An upper bound for the transition
represented by the dashed line is described by Roc1−c2=28.2E 0.5 (ReE =56.4). The shaded
region bounded by the solid line and the dashed line represents a transition zone which
exhibits both category 1 and category 2.

A transition between reflectively symmetric (category 1) and symmetry-broken flow
(category 2) has been estimated. This was achieved by determining thresholds first for
the appearance of category 2 flows and second for the disappearance of category 1
flows. The equation ARoc1−c2= 13.35(E A2)0.5 describes the onset of category 2 flows
well and was determined by visual inspection. The relationship simplifies to Roc1−c2=
13.35E 0.5, which is independent of the aspect ratio, and is shown by the solid line
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(a) (b)

FIGURE 10. (Colour online) Axial velocity contours of (a) Ro=−0.3 and (b) Ro=−2 for
E = 3× 10−4. Both cases demonstrate reflective symmetry about the horizontal mid-plane.
The contour levels are as per figure 5.

in figure 9. Similarly, the equation Roc1−c2 = 28.2E 0.5 was determined to describe
where category 1 flows cease to appear, as is shown by the dashed line. These two
relationships respectively form the lower and upper bounds of a transitional regime
occupied by either category, as represented by shading in the figure. The relationships
of the transitions suggest that the symmetry-breaking threshold can be described by a
constant governed by Ro/

√
E . This parameter group can be expressed in terms of the

forcing parameters through
Ro√

E
= Rdω

2
√
Ων

. (3.3)

Furthermore, the presence of
√

E suggests that the breaking of reflective symmetry
may scale with the Ekman layer thickness. By adopting a length scale of L= E 1/2H
and a velocity scale of U = Rdω, a Reynolds number based on the Ekman layer
thickness can be defined as

ReE = UL
ν
= 2Ro

E 1/2
. (3.4)

Thus, combination of the threshold equations of Roc1−c2 = 13.35E 0.5 (lower bound)
and Roc1−c2= 28.2E 0.5 (upper bound) with (3.4) yields constant values of ReE = 26.7
and ReE = 56.4 respectively.

All of the axisymmetric steady-state flows in the negative-Ro regime demonstrated
reflective symmetry about the mid-plane in the axial velocity contours. The axial
velocity contours for a small and large negative-Ro flow are shown in figure 10
(also see figure 2b iii, iv). The small-Ro flow with Ro = −0.3 demonstrates Ekman
pumping and suction on the horizontal boundaries which is reflectively symmetric
about the mid-plane, similar to that of the small-positive-Ro cases. Increase of |Ro|
in the negative-Ro regime causes a deviation from this typical structure such that
an extra circulation is created at the inner side of the fluid pumping and suction
zone. However, this altered structure continues to exhibit reflective symmetry about
the mid-plane in the axial velocity contours. Thus, in considering only axisymmetric
steady-state flows, the negative-ARo regime is characterized only by category 1 flow.
In the positive-ARo regime, the flow conditions are limited by ARo = 1, which
corresponds to ω→∞. This constraint has been described in § 2.2.

4. Results: linear stability analysis
Following the structure of the previous section, a comparison between the

axisymmetric and quasi-two-dimensional solutions for A = 2/3, and the solutions of
the axisymmetric model for a variety of A are described separately in the following
subsections.
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4.1. Axisymmetric and quasi-two-dimensional models (A= 2/3)
The growth rates for a range of azimuthal wavenumbers were obtained throughout the
parameter space for both the quasi-two-dimensional and axisymmetric models. The
data identify the most unstable linear wavenumbers and the onset of instability as
a function of Ro and E . Regime diagrams for both the negative- and positive-Ro
regimes have been generated for the axisymmetric model with A = 2/3 in Vo et al.
(2014). Here, similar regime maps have been generated for the quasi-two-dimensional
model with A = 2/3. Again, the discussion in this section is focused on quasi-two-
dimensional results with differences from the axisymmetric model being highlighted.

4.1.1. Preferred azimuthal wavenumbers
The linear stability analysis determined growth rates over a wide range of azimuthal

wavenumbers. Fractional peak wavenumbers and the corresponding peak growth
rates were then calculated via the local maximum of a parabolic fitting of the
peak and the adjacent wavenumbers (growth rate data are shown later in § 4.1.2).
The analysis predicts identical preferred azimuthal wavenumbers for positive- and
negative-Ro quasi-two-dimensional flows, and therefore the most unstable wavenumber
is a function of |Ro| rather than Ro itself. The regime diagram of the preferred
wavenumber as a function of |Ro| and E is presented in figure 11(a). The number
depicted within the contour bands on the regime diagram represents a range of
fractional wavenumbers. For example, a contour band of 7 represents wavenumbers
in the range 6.56 k< 7.5. Data from over 100 different flow conditions were used to
produce the regime diagram. The regime diagram also includes the instability onset
determined from both models for comparison.

The threshold line was determined by empirically fitting data points of Ro and E
that correspond to zero growth rates for both positive- and negative-Ro flows. This
yields a relationship between |Ro| and E given by

|Roc| = 18.7(±0.7)E 0.769±0.005. (4.1)

The exponent of E is comparable with the relationship obtained from the axisymmetric
model, namely 0.767 ± 0.006, and is in good agreement with the theoretical value
of 3/4. This suggests that the E 1/3 shear layer does not significantly influence the
stability of the base flow to three-dimensional disturbances, particularly at the onset
of instability. Furthermore, the values of the coefficient of the Ekman number in
the stability threshold relationship between the quasi-two-dimensional model and
the axisymmetric simulations are comparable, namely 18.7(±0.7) and 18.1(±0.8)
respectively.

The linear stability analysis also demonstrates an increase in preferred azimuthal
wavenumber with increasing |Ro| and decreasing E . This is surprising since the
preferred azimuthal wavenumber of the instability was thought to be related to the
thickness of the shear layer, for which quasi-two-dimensional flows have shown no
dependence on Ro (§ 3.1.2). Thus, these trends depict unstable wavenumbers as being
functions of both Ro and E , in agreement with previous experimental studies (Früh
& Read 1999; Aguiar et al. 2010).

The preferred wavenumbers depict trends similar to those observed from the
axisymmetric model (see Vo et al. 2014). The lines of constant wavenumber of the
quasi-two-dimensional solutions in figure 11(a) illustrate comparable contour lines
to those in the positive low-Rei regime and all negative-Rei flows produced via
axisymmetric simulations. The difference at high-Rei flows in the positive-Rei regime
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FIGURE 11. (Colour online) (a) The regime diagram of the most unstable linear
wavenumber as a function of E and |Ro| for the quasi-two-dimensional model. The
short-dashed lines represent the transition between one wavenumber and another, denoted
by the labels shown within the band. The azimuthal wavenumber is associated with the
mode I instability. The solid boundary lines represent the range of triangulation. The left
thick-dashed boundary line represents the stability threshold, which is given by |Roc| =
18.7(±0.7)E 0.769±0.005 (quasi-two-dimensional model) and |Roc| = 18.1(±0.8)E 0.767±0.006

(axisymmetric model). These thresholds are determined using both positive- and
negative-Ro data. (b) Regression of the preferred azimuthal wavelength of the mode
I instability through a plot of log10(λθ ) against log10(|Ro|/E 2). The data points here
correspond to flow conditions of ReE . 26.7 from the quasi-two-dimensional solutions.
The fitted lines are defined by λθ = 10.7(±0.4)[|Ro|/E 2]−0.160±0.002 (quasi-two-dimensional
model) and λθ = 12.0(±0.4)[|Ro|/E 2]−0.169±0.002 (axisymmetric model).

is due to the depth-dependent structures that arise in the axisymmetric model, which
in turn encourages the growth of other instability modes (i.e. mode II). Thus, a
comparison of the data associated with reflectively symmetric flows can be used to
illustrate the similarities in preferred wavenumbers between the two models. From
§ 3.2.3, it is now known that the regime of reflectively symmetric flow is given by
ReE . 26.7. Under this constraint, the preferred wavelength relationship is found
to be λθ = 12.0(±0.4)[|Ro|/E 2]−0.169±0.002 for the axisymmetric model, which is
represented by the dashed line in figure 11(b). For the same range of ReE , the
quasi-two-dimensional model provides a preferred azimuthal wavelength relationship
given by

λθ = 10.7(±0.4)[|Ro|/E 2]−0.160±0.002, (4.2)

represented by the solid line. Despite the agreement in the instability thresholds
between the two models, there is a statistically significant difference between the
wavelength relationships. This may be due to the wavelength relationship utilizing
data throughout the entire parameter space rather than only those situated at the
threshold. Vo et al. (2014) observed unstable azimuthal wavenumbers, changing its
dependence from Ro and E at low Rei to predominantly Ro at higher Rei where the
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FIGURE 12. (Colour online) Growth rate σ as a function of azimuthal wavenumber k
for various E at Ro = 0.395 from (a) the quasi-two-dimensional model and (b) the
axisymmetric model. The quasi-two-dimensional solutions illustrate only the mode I
instability while the axisymmetric model demonstrates modes I and II. The dashed line
represents neutral stability, where points above and below symbolize unstable and stable
modes respectively.

mode II instability arises. Although empirical fits were performed on ReE . 26.7,
there is still evidence of the preferred wavenumber of the mode I instability differing
between the quasi-two-dimensional and axisymmetric models in that regime.

The relationships of both models scale approximately with λθ ∝E 1/3/|Ro|1/6. It was
proposed by Vo et al. (2014) that the E 1/3 scale may be due to the E 1/3 Stewartson
layer. However, since the quasi-two-dimensional model does not capture the E 1/3

layer, this analysis conclusively demonstrates that the E 1/3 scaling in the preferred
wavelength is not related to the E 1/3 Stewartson layer.

The linear stability analysis results thus far have illustrated very small differences
between the quasi-two-dimensional and axisymmetric model solutions in terms of the
preferred wavenumbers for reflectively symmetric flows and the onset of instability. To
further elucidate the similarities and differences between the two models, the growth
rates and the instability mode shapes are investigated in the following sections.

4.1.2. Growth rates
A comparison between the linear stability analysis results obtained from the

quasi-two-dimensional model and the axisymmetric model at high Rei is demonstrated
in figure 12 for Ro = 0.395 at various values of E . A single instability mode
is observed in the quasi-two-dimensional model solutions (figure 12a) which is
associated with the mode I instability. The absence of the mode II instability in the
quasi-two-dimensional solutions supports the suggestion from Vo et al. (2014) that
the origin of the mode II instability is related to depth-dependent features in the base
flows. The presence of the mode II instability is illustrated in (b), which shows the
growth rates predicted from the axisymmetric model for the same flow conditions as
in (a). The flow is unstable to the mode II instability for E 6 9.47× 10−4. Although
the growth rate data for E = 1.05× 10−3 depict a waveband for structures consistent
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with the mode II perturbations, the growth rates are all negative and therefore the
mode II instability would not be observable at that Ekman number. The growth rates
and the most unstable azimuthal wavenumber are comparable for E = 3.16 × 10−3

between both the axisymmetric and quasi-two-dimensional models, while the mode II
instability is absent in the axisymmetric model solution. This agreement is lost at
lower E where the depth-dependent structures suppress the growth of the mode I
instability and lower the preferred wavenumber. This is why the wavelength analysis
presented in the previous section was conducted for reflectively symmetric flows only.

The qualitative trends in growth rate and preferential wavenumber are similar
between the axisymmetric and quasi-two-dimensional models. That is, the growth
rates of the perturbations introduced into the base flow increase with decreasing
E . This may be explained as follows: decreasing the Ekman number causes the
Stewartson layers to become thinner, which leads to greater susceptibility to instability.
Additionally, the preferred azimuthal wavenumber increases with decreasing E
provided the flow is mode I dominant. Similar trends are observed with varying
Rossby number, whereby increasing Ro yields larger growth rates and higher
preferred azimuthal wavenumbers. A clearer depiction of these trends is illustrated
via the regime diagram (figure 11a). Furthermore, it is determined that the preferred
azimuthal wavenumbers between the positive- and negative-Ro regimes are identical
for the quasi-two-dimensional model, which is in contrast to the results for the
axisymmetric model (Vo et al. 2014). However, the growth rates differ between
positive- and negative-Ro in the quasi-two-dimensional model despite the identical
wavenumbers. The difference in growth rates between the two regimes is discussed
later in § 4.1.4.

4.1.3. Global instability mode shapes and visualization on the horizontal plane
The profile of the growth rate as a function of azimuthal wavenumber for

the quasi-two-dimensional model has revealed only one type of instability mode
which is suspected to be the mode I instability. To confirm this, the dominant
quasi-two-dimensional eigenvector fields are visualized in figure 13(a). The contours
of axial vorticity for k= 3 (Ro= 0.395 and E = 3.16× 10−3) and k= 6 (Ro= 0.395
and E = 5.26 × 10−4) are viewed in the r–θ plane. The growth rates for these
flows have been illustrated in figure 12(a). Both k = 3 and k = 6 eigenvector fields
demonstrate two rings of alternating-sign vortices bracketing the disk–tank interface
(r = 1). This structure is consistent with the mode I instability portrayed in the
axisymmetric model solutions obtained by Vo et al. (2014) and those computed for
various A as shown later in § 4.2.2.

A visualization of the non-axisymmetric structure predicted by the linear stability
analysis is obtained by superimposing the leading eigenmodes onto their respective
axisymmetric base flows. Illustrations of these structures for the instability modes
are shown in figure 13(ii). It is emphasized that the depictions in the r–θ plane
are not representations of the actual three-dimensional flow structure, rather they
are an illustration of the linear instability mode for which the amplitudes have
been arbitrarily scaled. Importantly, this type of visualization reveals the type of
distortions on the base flow made capable by the most unstable azimuthal instability
mode. For both k = 3 and k = 6, which belong to the mode I branch in the
quasi-two-dimensional solutions, the shear layer deforms into a polygon with the
number of sides corresponding to that of the unstable azimuthal wavenumber: a
triangle for k = 3 and a hexagon for k = 6. In these examples, a thin layer of
axial vorticity is present and forms the border of the polygonal shape. This layer is
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FIGURE 13. (Colour online) Dominant instability mode structures for Ro = 0.395 with
(a) E = 3.16 × 10−3 (k = 3) and (b) E = 5.26 × 10−4 (k = 6). (i) Contours of axial
vorticity of the two-dimensional perturbation field depicted on the r–θ plane. Given the
arbitrary scaling of linearized eigenvector fields, equi-spaced contour levels are plotted
between ±(|ω⊥z,min| + |ω⊥z,max|)/2. (ii) A linear non-axisymmetric flow approximation
constructed by superimposing the axisymmetric base flow and the leading instability
mode with azimuthal wavenumber in panel (i). This flow field is not representative of
the three-dimensional non-axisymmetric flow since nonlinear effects are omitted here but
rather serves as a guide to the flow distortions invoked by the instability. Contours of axial
vorticity are plotted, with levels as per figure 2. The orientation is such that the positive
Ro causes the central region to rotate counterclockwise faster than the outer region.

weaker in comparison with both its interior and the surrounding flow in terms of its
vorticity. These types of deformations are representative of the mode I instability and
are in agreement with those obtained in the axisymmetric model. Additionally, the
negative-Ro flows demonstrate the same type of deformations.

The perturbation fields and the superposition with their base flow have strongly
demonstrated that the first unstable wavenumber branches (mode I) from both the
quasi-two-dimensional and axisymmetric models are the same. It is believed that this
instability mode is associated with the instability of the E 1/4 layer, responsible for the
polygonal deformations in the azimuthal direction. The linear stability analysis results
further reinforce the idea that the mode II instability, which was found to be localized
to the disk–tank interface, is related to the E 1/3 layer. This suggestion arises from the
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coincident region between the mode II instability and the interaction of the Ekman
pumping and the Stewartson layer in the axisymmetric model solutions, both of which
are absent from the quasi-two-dimensional solutions.

4.1.4. Similarity in growth rates between positive and negative Rossby numbers in
quasi-two-dimensional flows

It was revealed that the peak azimuthal wavenumbers between positive- and
negative-Ro regimes in the quasi-two-dimensional solutions are identical (§ 4.1.1).
However, the growth rates between the two regimes are different. Thus, a relationship
describing the growth rates between positive- and negative-Ro flows is sought. The
growth rate as a function of the Rossby number for a particular wavenumber (k= 4)
is illustrated in figure 14(a). An increase in |Ro| and decrease in E achieves a
larger growth rate. However, the rate of increase differs between the positive- and
negative-Ro regimes. That is, in assuming that the growth rates are all positive, the
curves adopt a power-law behaviour of σ ∝ Roα such that α < 1 and α > 1 for
negative and positive Ro respectively.

It is noted that the dimensionless growth rate used here has been scaled by Ω
(as per the governing equations, § 2.2), whereas Ro and E have been scaled by Ω .
Therefore, a more consistent comparison of the growth rates between the positive- and
negative-Ro regimes may be achieved by using a dimensionless growth rate that is
scaled by Ω . The growth rate has dimensions of the reciprocal time scale and can be
written as σ ∗=Ωσ . Thus, a factor of Ω/Ω is required to convert the growth rate to
a Ω scaling, and can be rewritten as Ω/Ω = 1− ARo. The dimensional growth rate
scaled by Ω is then given by

σ ∗

Ω
= (1− ARo)σ . (4.3)

The rescaled dimensional growth rate as a function of Ro is illustrated in figure 14(b).
The growth rate data now demonstrate reflective symmetry about Ro= 0. This is more
clearly observed in (c), which is a plot of (1 − ARo)σ as a function of |Ro|, with
square and triangle symbols representing positive- and negative-Ro data respectively.
The growth rates associated with the negative- and positive-Ro flows demonstrate a
very strong collapse. Thus, the relationship (1−ARo)σpos Ro= (1−A(−Ro))σneg Ro holds
true for quasi-two-dimensional flows, where σpos Ro and σneg Ro represent the growth
rates associated with positive- and negative-Ro flows respectively. The ratio of growth
rates between the two Ro regimes is thereby described by

σpos Ro

σneg Ro
= 1+ A|Ro|

1− A|Ro| . (4.4)

Figure 14(d) is an illustration of the perfect agreement for k = 4. The ratio
of positive- and negative-Ro growth rates was also calculated for every azimuthal
wavenumber throughout the parameter space, and the results consistently exhibited the
relationship described in (4.4). Therefore, the ratio of the growth rate is independent
of the azimuthal wavenumber and the Ekman number. It is interesting to note that,
in the case where Ro > 0, (4.4) is identical to the normalized disk speed in the
positive-Ro regime, which is given by

Ω +ω
Ω
= 1+ ARo

1− ARo
. (4.5)

The relationship describing the growth rates between positive- and negative-Ro regimes
is not observed for the solutions of the axisymmetric model. This difference may
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FIGURE 14. (Colour online) (a) Growth rate σ as a function of Ro for various E at k= 4.
The dashed line represents neutral stability, where points above and below symbolize
unstable and stable modes respectively. (b) The product of (1−ARo) and σ as a function
of Ro for both the positive- and negative-Ro regimes. Each line represents a different
Ekman number with k = 4. (c) A reproduction of panel (b) except that the magnitude
of Ro is used to demonstrate the reflective symmetry about the vertical axis between
positive- and negative-Ro data. (d) The relationship of the ratio between growth rates
obtained from positive- and negative-Ro flow as a function of |Ro|. The growth rates have
been computed from the quasi-two-dimensional model.

be explained by the Ekman suction/pumping (depending on the sign and magnitude
of Ro) induced by the Ekman layers in the axisymmetric model which is not captured
by the quasi-two-dimensional model.

4.2. Variation of the aspect ratio of the axisymmetric model
Attention is now turned towards the linear stability analysis results obtained for the
axisymmetric model at various aspect ratios. This section covers the growth rates,
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FIGURE 15. (Colour online) Growth rate σ as a function of (a) the azimuthal wavenumber
k and (b) the scaled azimuthal wavenumber kA, for Ro= 0.1, E = 7× 10−4 and various
aspect ratios.

global instability mode shapes and aspect ratio dependence. Agreement with the linear
stability analysis results of Niino & Misawa (1984) is also discussed.

4.2.1. Growth rates
The growth rates for a range of azimuthal wavenumbers have been determined

via a linear stability analysis performed on steady-state axisymmetric base flows for
a variety of values of A. In considering a single aspect ratio, the effect of varying
the Rossby and Ekman numbers on the growth rate as a function of azimuthal
wavenumber demonstrates the same trends as observed in the previous section
(A= 2/3). That is, increase of the Rossby number or decrease of the Ekman number
invokes larger growth rates in the perturbations and causes a preference towards
higher azimuthal wavenumbers.

Typical profiles of growth rates against wavenumber for various values of A are
shown in figure 15(a), with Ro = 0.1 and E = 7 × 10−4. The reference aspect ratio
A = 2/3 described in the previous section demonstrates a single peak in the profile
associated with the mode I instability, with a corresponding integer peak wavenumber
of kpeak = 4. The mode I waveband is in the range 1 . k . 9. By decreasing A,
the stability of the flow is seen to shift its preference towards higher azimuthal
wavenumbers and increase its mode I waveband. For example, for A = 1/3 the
integer peak wavenumber increases to kpeak= 7 and the waveband extends its range to
1. k . 18. In contrast, increase of the aspect ratio to A= 2 yields a smaller preferred
azimuthal wavenumber (kpeak = 2) with a decreased mode I waveband (1 . k . 4).

Upon closer inspection of the growth rate profiles, it appears that the A= 4/3 and
A=2 data exhibit peak growth rates that are smaller than for the cases of A62/3. For
this particular flow condition, the growth rates for A= 2 portray a stable flow to all
non-axisymmetric disturbances, with the slowest decaying wavenumber characterized
by kpeak = 2. The negative growth rates conveyed by all wavenumbers in this case
demonstrate the increased stability of the flow, which is in agreement with what was
expressed in § 3.2.2, namely a thicker shear layer produced by a larger A results in a
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more stable flow. Thus, increase of the aspect ratio decreases the observed azimuthal
wavenumber and growth rates. The trend of increasing A causing the flow to favour
lower wavenumbers is seen not only for this flow condition but throughout the large
parameter space covered. These trends further suggest that the instability associated
with the Stewartson layer is weak due to the reduction of the velocity gradients across
the shear layer, as was observed in the radial profiles of axial vorticity (see figure 6a).

The similarity in the magnitudes of the peak growth rates for cases of A 6 2/3 in
figure 15(a) suggests that a specific flow condition has a corresponding maximum
growth rate which is independent of the aspect ratio, provided that the shear layer
is not greatly affected by the confinement. The theoretical shear-layer thickness
δ = A(E /4)1/4 suggests that the thickness is scaled with the enclosure height. If
the dominant wavenumber scales with the thickness, then this suggests that the
wavenumber can be rescaled by A also, such that a universal collapse of the data is
achieved for σ as a function of kA. This is illustrated in figure 15(b). The collapse for
cases A 6 2/3 demonstrates strong agreement with each other. This can be explained
by the similar profiles exhibited in the scaled axial vorticity throughout the shear
layer, which is the unstable part of the flow (see figure 6). This also explains why
the growth rate profiles for A = 4/3 and A = 2 do not conform with the lower
aspect ratios since at these aspect ratios the E 1/4 Stewartson layer is affected by the
confinement.

4.2.2. Global instability mode shapes and visualization on the horizontal plane
The three-dimensional perturbation fields of the most unstable wavenumber have

been obtained through a linear stability analysis. A comparison between the leading
eigenvector fields for Ro= 0.1 and E = 7× 10−4 with A= 1/6, 2/3 and 2 is portrayed
in figure 16. The contours of axial vorticity for each value of A demonstrate a strong
pair of opposing axial vorticity bands at the disk–tank interface (left and middle
columns), which is indicative of the mode I instability. This is in agreement with
the growth rate data, which illustrate a single maximum that is representative of
the mode I instability (figure 15). The r–z plane of the leading perturbation field
has been extracted such that the plane passes approximately through a maximum
amplitude of the sinusoidal azimuthal disturbance. With increasing A, the positive- and
negative-vorticity bands are seen to increase in thickness and almost fill the entire
domain for A = 2. Thus, the region that is susceptible to instability increases as A
increases due to the thickening of the E 1/4 shear layer.

The perturbation field associated with the most unstable azimuthal wavenumber
has been superimposed onto its respective base flow for visualization purposes.
The resultant contours of axial vorticity for the different cases are illustrated in
the right column of figure 16. For each wavenumber, the flow demonstrates a
polygonal configuration bordering r = 1. Similarly to the structures obtained in
A= 2/3, the ring of vorticity is comprised of very low vorticity surrounded by higher
axial vorticity. These characteristics are consistent with the mode I instability and
support the reported polygonal structures obtained experimentally in both small- and
moderate-aspect-ratio containers (e.g. Rabaud & Couder 1983; Chomaz et al. 1988;
Früh & Read 1999; Aguiar et al. 2010).

4.2.3. Aspect ratio dependence in the axisymmetric model
A regime diagram of the most unstable wavenumber as a function of Ro and E

has been generated for A= 1/6 (not shown here; instead a universal regime diagram
that incorporates these data is shown later in figure 17a). The same characteristics
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(a)

(b)

(c)

FIGURE 16. (Colour online) Flow conditions of (Ro, E ) = (0.1, 7 × 10−4) for (a) A =
1/6, k = 15, (b) A = 2/3, k = 4 and (c) A = 2, k = 2. Left column: contours of axial
vorticity of the three-dimensional perturbation field of a given azimuthal wavenumber
depicted on the full meridional r–z plane (−26 r 6 2). The plane has been extracted such
that it passes through an approximate maximum amplitude of the sinusoidal azimuthal
disturbance. Contour levels are as per figure 13. Middle column: the same as the left
column except viewed in the r–θ plane at mid-depth. Right column: the respective linear
non-axisymmetric flows constructed by superimposing the axisymmetric base flow and the
most unstable azimuthal linear instability wavenumber at mid-depth. Contour levels are as
per figure 2.

as displayed in the regime diagram for A = 2/3 (Vo et al. 2014) are seen. A wide
range of unstable azimuthal wavenumbers of 7 6 k 6 35 was observed throughout
the computed parameter space. This range is much greater than that obtained for
A = 2/3 (2 6 k 6 9). However, taking into consideration the aspect ratio, the scaled
wavenumbers are in the range 1 6 kA 6 6 for both A= 1/6 and A= 2/3.

It was established in § 4.2.1 that for a sufficiently small A (A.2/3), the growth rate
data can be universally described by scaling the azimuthal wavenumber by A. Thus,
a regime diagram of the scaled parameter kA can be produced as a function of Ro
and E . This is illustrated in figure 17(a). The contour lines of integer kA values for
both the A = 1/6 (solid lines) and A = 2/3 data (dashed lines) overlay the contour
map. Despite the large difference in the values of A, the kA lines for both values of A
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FIGURE 17. (Colour online) (a) The regime diagram of the most unstable linear
wavenumber scaled with the aspect ratio, kA, as a function of E and positive Ro
(axisymmetric model). This plot is representative of a universal regime diagram such that
the linearly predicted azimuthal wavenumber can be determined by dividing the kA value
by the aspect ratio considered. The contour map is constructed using A = 2/3 data (Vo
et al. 2014). The solid lines denote integer scaled wavenumbers determined from A= 1/6
data while the dashed lines are those determined from A= 2/3. The left thick boundary
lines represent the stability thresholds for A= 1/6 (solid line) and A= 2/3 (dashed line),
which are given by Roc = 16.0(±1.2)E 0.756±0.010 (using positive data only) and Roc =
18.1(±0.8)E 0.767±0.006 respectively. The wide-dotted line represents the transition from
reflectively symmetric flow to symmetry-broken flow, defined as Roc1−c2= 13.4E 0.5 (ReE =
26.7). (b) Regression of the preferred normalized azimuthal wavelength for flows described
by Re . 26.7 as a function of |Ro|/E 2. The normalized azimuthal wavelength is defined
as λ∗θ = 2π/(kA). Data for A= 1/6 (@) and A= 2/3 (A) are shown with fits described by
λ∗θ = 26.1(±1.7)[|Ro|/E 2]−0.188±0.005 and λ∗θ = 18.0(±0.7)[|Ro|/E 2]−0.169±0.002 respectively.

portray a good alignment throughout much of the explored parameter space. This map
is approximately universal as there is not a perfect agreement between the two sets of
data: the linearly predicted azimuthal wavenumber can be determined by dividing the
value by the aspect ratio of interest. That is, the regime diagram for A= 2/3 (Vo et al.
2014) (and for any other aspect ratio A.2/3) can be reproduced by using figure 17(a)
and multiplying the values by 1/A. The slight discrepancy between the scaled data for
A= 1/6 and A= 2/3 is discussed in detail later in this section.

The preferred wavenumber trends are dependent on two regimes, namely the
reflectively symmetric and symmetry-broken regimes. The transition between these
two regimes is described by Roc1−c2 = 13.4E 0.5 (ReE = 26.7, § 3.2.3). The trends
in both aspect ratio cases conform well to their respective regions separated by the
transition threshold because the relationship itself is independent of the aspect ratio.
Generally, flows in the reflectively symmetric regime (ReE < 26.7) portray an increase
in the preferred azimuthal wavenumber with either increasing Ro or decreasing E .
In the symmetry-broken regime (ReE > 26.7), the contours of preferred wavenumbers
become largely independent of E .
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The instability threshold for A = 1/6 is Roc = 16.0(±1.2)E 0.756±0.010, which is
comparable with that obtained for A = 2/3 (Roc = 18.1(±0.8)E 0.767±0.006). This is
expected since the maximum growth rates associated with the mode I instability
appear to have little dependence on the aspect ratio (§ 4.2.1), provided the shear
layer is not affected by the container walls. In fact, the flow conditions in A = 1/6
demonstrated slightly higher growth rates as compared with A = 2/3, which is
probably due to the greater velocity gradients across the shear layer. Thus, the
instability threshold of A = 1/6 would be more representative of a pure E 1/4

Stewartson layer becoming unstable. This explanation is reinforced by the exponent
of E demonstrating an almost identical value to the theoretical prediction of 3/4 (the
value 3/4 lies within the error bounds of the scaling for A = 1/6 but not A = 2/3).
This also explains the greater deviation of the Ekman number exponent from the
theoretical 3/4 value and that predicted for A = 2/3. That is, the E 1/4 Stewartson
layer is slightly affected by the confinement in A= 2/3 and therefore the instabilities
are not able to grow to the maximum potential associated with the flow conditions
(characterized by Ro and E ). The instability threshold for A = 1/6 corresponds to
Rei,c ≈ 22.6, which importantly equates to a critical Ro/E 3/4 of approximately 16.
This critical value is the average value determined by previous studies (see table 1
in Vo et al. 2014).

The slight differences between the scaled data for A = 1/6 and A = 2/3 can be
explained by revisiting the marginal stability results of Niino & Misawa (1984). They
determined that the critical internal Reynolds number and critical wavenumber become
constant when the ratio of the disk radius to the E 1/4 theoretical thickness is greater
than 25 (i.e. γ = Rd/(E /4)1/4H > 25). That is, the curvature effect becomes more
negligible with decreasing A or decreasing E . It transpires that only the A= 1/6 data
satisfy this condition for the entire range of Ekman numbers considered in this study
(achieving γ & 36). Thus, the results of Niino & Misawa (1984) predict that the larger
aspect ratios produce shear layers that are influenced by the geometry and therefore
will exhibit a larger Rei,c and larger kc.

It is possible to quantify the effect of non-negligible shear-layer thickness (i.e. large
A) on the resulting relationship between Ro and E at marginal stability. Taking data
from figure 5 of Niino & Misawa (1984), the critical internal Reynolds number
is found to fit very well to Rei,c = 11.5 + 69.1γ −1.96 (it should be noted that
their Rei definition differs by a factor of 1/

√
2 from ours, see Vo et al. (2014)).

The ranges of Ekman numbers (5 × 10−5 6 E 6 3 × 10−3) and enclosure aspect
ratios (1/6 6 A 6 2) investigated here are applied to the empirical relationship to
determine Rei,c. Correction of the Rei prefactor and empirical fitting of power-law
curves to the marginal Rossby–Ekman number pairs yield exponents for the E in
Ro/E η as provided in table 1. For negligibly thin shear layers (A→ 0), η→ 3/4,
which is equivalent to that obtained theoretically by Busse (1968). The exponent
deviates from this value as A increases. As a comparison, the exponents obtained
numerically (figure 17a) and those calculated from Niino & Misawa (1984) given
in table 1 differ by just 0.65 % and 0.16 % for A = 1/6 and A = 2/3 respectively.
Furthermore, the predicted exponents in table 1 suggest that a more suitable threshold
for geometry-independent shear layers is γ & 45. This value is required to achieve an
error of less than 0.1 % when compared with the theoretical value of 3/4. This is a
revised value to the γ > 25 previously quoted by Niino & Misawa (1984) and would
align the neutral curve closer to the γ →∞ curve illustrated in their figure 5.

Turning attention now to the preferred azimuthal wavelength, a plot of the preferred
normalized azimuthal wavelength (λ∗θ = 2π/(kA)) against |Ro|/E 2 for A = 1/6 and
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A η Deviation (%) γ (E < 3× 10−3)

2 0.855 13.96 >3
4/3 0.805 7.35 >5
2/3 0.766 2.11 >9
1/6 0.751 0.15 >36

0.135 0.7507 0.1 >45
→ 0 → 3/4 — →∞

TABLE 1. Exponent of the Ekman number η, for Ro/E η describing marginal stability for
various values of A based on the marginal stability analysis of Niino & Misawa (1984).
The deviation is calculated from (η − 3/4)/(3/4), where 3/4 represents the theoretical
exponent value. The range of γ achieved for E < 3× 10−3 and a fixed A is also displayed.

A = 2/3 is shown in figure 17(b). The data only include flow conditions of ReE .
26.7. Both sets of aspect ratio data demonstrate different relationships for the preferred
unstable wavelengths due to the curvature effects. These relationships are given by

λ∗θ = 26.1(±1.7)[|Ro|/E 2]−0.188±0.005 (4.6)

and
λ∗θ = 18.0(±0.7)[|Ro|/E 2]−0.169±0.002 (4.7)

for A= 1/6 and A= 2/3 respectively. It is seen that the approximate E 1/3 scaling is
lost for A = 1/6 (∝ E0 · 376 instead of ∝ E0 · 338). Thus, the E 1/3 scaling obtained
for A= 2/3 is merely coincidental, and is unrelated to the E 1/3 layer. This confirms
the earlier conjecture to this effect from the quasi-two-dimensional results described
in § 4.1.1. The difference in the preferred wavelength is observed to be greatest
at low |Ro|/E 2 (predominantly large E ), and to decrease with increasing |Ro|/E 2

(predominantly decreasing E ) until approximately log10(|Ro|/E 2)= 8. The large and
small differences in preferred wavelengths at large and small E respectively are
reflected in figure 17(a) via the lines of integer kA. That is, the discrepancy between
the lines becomes more prominent at larger E , corresponding to thicker shear layers.

The scaling for the azimuthal wavelengths at marginal stability can now be
determined by substituting Roc into the relationship for λ∗θ . Thus, at the onset of
instability the scaled azimuthal wavelength is expressed in terms of E only. The
exponents of E are calculated to be 0.234 and 0.208 for A = 1/6 and A = 2/3
respectively. Linear theory in various rotating shear layers predicts that at the threshold
of instability, the wavelength should scale linearly with the thickness of the shear
layer (e.g. Drazin & Howard 1966; Niino & Misawa 1984; Sommeria, Meyers
& Swinney 1991). Here, this implies that λ∗θ,c ∝ E 1/4. Equations (4.6) and (4.7)
demonstrate that for the present system, λ∗θ,c ∝ (|Ro|/E 2)κ , where the exponents are
κ = −0.188 ± 0.005 and κ = −0.169 ± 0.002 for A = 1/6 and A = 2/3 respectively.
Substitution of the theoretical scaling Roc ∝ E 3/4 for vanishingly thin shear layers
(A → 0) yields λ∗θ,c ∝ (E −5/4)κ . Thus, an exponent of κ = −1/5 is required for
λ∗θ,c ∝ (|Ro|/E 2)κ to satisfy the E 1/4 scaling from linear theory. The empirical
exponents of −0.169 ± 0.002 and −0.188 ± 0.005 are consistent with the scaling
approaching the limiting −1/5 exponent as A → 0. The fact that the exponent is
not −1/5 at A = 1/6 reflects the earlier suggestion that geometry-independent shear
layers are somewhat thinner than the γ > 25 threshold suggested by Niino & Misawa
(1984) for the parameter range considered in this study.
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5. Conclusions
In this paper, the axisymmetric base flow structure of a differential-rotating flow and

its linear stability have been examined via axisymmetric and quasi-two-dimensional
models. A direct comparison between the solutions from both models was performed
to determine the validity of the models and in turn establish the importance of the
role of the Stewartson E 1/3 layer on the linear stability of the flow. In addition to
this, various aspect ratio containers were investigated using the axisymmetric model
to study the aspect ratio dependence to reinforce the marginal stability results of Niino
& Misawa (1984) and further the understanding reported by Vo et al. (2014).

Flows with Rossby numbers in the range −2.0 6 Ro 6 1.0 and Ekman numbers
in the range 5 × 10−5 6 E 6 3 × 10−3 were investigated. The same flow features
were obtained between the axisymmetric and quasi-two-dimensional models for small
|Ro|, with differences observed at large |Ro|, where depth-dependent features become
present. Both models displayed a shear layer produced at the disk–tank interface
for positive- and negative-Ro flows. The similarity in the flows is reflected in the
measured E 1/4 layer thickness whereby the axisymmetric and quasi-two-dimensional
solutions yield δvel = 1.22(±0.03)E 0.260±0.003 and δvel = 1.26(±0.02)E 0.260±0.002

respectively. It is interesting to note that the thickness relationship for the quasi-
two-dimensional model is independent of Ro, rather than being limited to Ro→ 0.

Despite the Ro independence in the shear-layer thickness in quasi-two-dimensional
solutions, the azimuthal wavenumber preference for the linear instability of the flow
remains dependent on both Ro and E , similar to that illustrated by the axisymmetric
model. Additionally, the quasi-two-dimensional solutions displayed identical preferred
azimuthal wavenumbers between the positive- and negative-Ro regimes, which is in
contrast to the axisymmetric model. Despite these differences, the onset of instability
and wavenumbers at low Rei were comparable between the two models. A fit of the
azimuthal wavelength as a function of |Ro|/E 2 suggested that λθ scales approximately
with E 1/3/|Ro|1/6. A similar relationship was obtained for the axisymmetric model.
However, it is now known that the 1/3 exponent is not related to the E 1/3 layer and
these exponents instead are a consequence of the non-negligible shear-layer thickness
leading to a deviation from the ideal marginal wavelength scaling of (|Ro|/E 2)−1/5.

The growth rate as a function of the wavenumber demonstrates the typical trend of
increasing growth rate and corresponding azimuthal wavenumber with increasing
Ro and decreasing E . More importantly, the quasi-two-dimensional solutions
only revealed the mode I instability branch, which is associated with the pair of
opposite-signed vorticity shown throughout the interior coinciding with the disk–tank
radius. The superposition of the axisymmetric base flow and the perturbation field
highlighted the resulting deformed structures, which were consistent with the mode I
instability. The absence of the mode II instability further reinforces the argument that
this instability is generated as a consequence of the breaking of depth independence
in the axisymmetric base flow, as proposed by Vo et al. (2014). In general, this paper
has demonstrated that the quasi-two-dimensional model is accurate in describing the
onset of instability, the linearly preferred azimuthal wavenumber and the qualitative
trends, as compared with the axisymmetric model.

A closer examination of the axisymmetric model was conducted by investigating
aspect ratios in the range 1/6 6 A 6 2. The effect of a large-aspect-ratio container
yielded a broadening of the shear layer, while a more concentrated shear layer was
obtained for small-aspect-ratio containers. It was found that the thickness data deviate
from the theoretical scaling with either increasing A or E due to the confinement
effects. However, this was mainly evident with the thicker δvort layer at A=2. The data
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deviated from the theoretical scaling for AE 1/4 & 0.34 in this system. The thinner δvort
layer consistently displayed exponents that were in agreement with theory. The effect
of the aspect ratio on the structure of the flow was determined via a universal diagram
governed by log10(E A2) and log10(ARo). A transition between reflectively symmetric
and symmetry-broken flows was observed, and the empirical fits of the transition lines
yielded no dependence on the aspect ratio.

The linear stability analysis of flows in various aspect ratios revealed that beyond a
certain A, the Stewartson E 1/4 layer becomes weaker and shifts its preference towards
low azimuthal wavenumbers. In contrast, given a sufficiently small A whereby the
Stewartson layer is unhindered by the confining walls, the growth rates demonstrate
a similar maximum to that obtained by A = 2/3. The threshold of instability was
determined to be Roc∝E 0.756±0.010 for A= 1/6, which is closer to the ideal scaling of
E 1/4 than that obtained for A= 2/3 (Roc ∝ E 0.767±0.006). The difference in exponents
is explained via an analysis of the marginal stability results obtained by Niino
& Misawa (1984), who suggested that curvature effects become significant below
γ 6 25. The results here predict γ . 45 as a more suitable threshold. Despite the
slight differences realized between A = 1/6 and A = 2/3 at marginal stability, the
difference in preferred azimuthal wavenumber between the two aspect ratios was
largely corrected by scaling the wavenumber by the aspect ratio. The universality in
aspect ratio was demonstrated through a regime diagram of kA as a function of Ro
and E for flows beyond marginal stability.

It is noted that the results presented in this paper on the stability of the shear layer
have focused on its linear evolution. The interaction between several instability modes
and other nonlinear effects are likely to alter the evolution of instabilities and their
ultimate azimuthal wavenumber in the saturated flow state.
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