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Stability of the wakes of cylinders with
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The stability of the wakes of cylinders with triangular cross-sections at incidence
is investigated using Floquet stability analysis to elucidate the effects of cylinder
inclination on the dominant flow instability. The upper limit of the Reynolds numbers
(scaled by the height projected by the cylinder in this study) at which the wake
of the two-dimensional base flow is time periodic is Re ≈ 140 for most cylinder
inclinations, exceeding which the flow becomes aperiodic, restricting the range
of Reynolds numbers permitted for the stability analysis. Two different instability
modes are predicted to manifest as the first-occurring mode at various cylinder
inclinations – a regular mode possessing perturbation structures consistent with
mode A dominates the wakes of cylinders at inclinations α . 34.6◦ and α & 55.4◦,
with a subharmonic mode consistent with mode C emerging as the primary mode in
the wakes of the cylinder at the intermediate range of inclinations. For all inclinations,
the mode B branch is not detected within the range of Reynolds numbers examined.
The peak instability growth rates corresponding to mode A for all cylinder inclinations
describe a linear variation with (Re− ReA)/ReA, where ReA is the mode A transition
Reynolds number, while those corresponding to mode C vary only approximately
linearly. The generalized trend most pertinently shows mode C to develop more
rapidly than mode A at inclinations which permit it. Examination of the near wake
of the two-dimensional time-periodic base flow demonstrates the dependence of
the development and intensity of mode C on imbalances in the flow solution
over each shedding period, directly implying that the two-dimensional base flow
solutions deviate from the half-period-flip map as the cylinder inclination is increased.
The degree of asymmetry of the two-dimensional base flow relative to the ideal
half-period-flip map is quantified using several measures. The results show distinctly
different trends in these asymmetry measures between inclinations where modes A
or C are dominant, agreeing with results from the stability analysis. The nature of
the predicted instability modes at transition are also investigated by applying the
Stuart–Landau equation, showing the transitions to be supercritical for all cylinder
inclinations, with mode C being consistently more strongly supercritical than mode A.
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1. Introduction
The wakes of flows past bluff bodies have, over the past century, held a prominent

place in the field of fluid mechanics, continuing to be a source of fascination,
inspiring further studies aiming to unravel the complex physics behind them.
The vortex shedding phenomenon and its cascade to turbulence are ubiquitous in
nature, developing various forcing profiles on the solid structure from which the
wake is produced depending on the incident flow, and bears continued importance
from an engineering perspective. The study of the transitions in these flows and
their mechanisms, while fundamental in nature, is pivotal in developing a deeper
understanding in this field.

The primary instability in the wakes of cylindrical structures triggering an
oscillatory flow has been extensively studied for the circular cylinder (Mathis,
Provansal & Boyer 1984; Jackson 1987; Provansal, Mathis & Boyer 1987; Sreenivasan,
Strykowski & Olinger 1987; Monkewitz 1988) and various other cylindrical
geometries (Zielinska & Wesfreid 1995; Yoon, Yang & Choi 2010, amongst
others). However, it is the secondary instabilities through which the flow becomes
three-dimensional that the present study will focus on. Although the spanwise
waviness of the primary vortex loops and streamwise ‘finger-like’ structures that
develop in the transition to turbulence have been observed and studied variously
(Gerrard 1978, amongst others), it was the seminal works of Williamson (1988a,b,
1996) which elucidated the transition scenario for the circular cylinder wake to occur
through two successive stages. Each stage is clearly marked by a discontinuity
in the Strouhal–Reynolds number profile. Subsequent studies further showed
three-dimensional computations of the flow (Thompson, Hourigan & Sheridan
1996) and linear stability theory applied to these wakes (Barkley & Henderson
1996) yielded a remarkable agreement to the experimental results. Analysis of the
spatio-temporal symmetries of two-dimensional time-periodic flows consistent with
the Kármán vortex street (Blackburn, Marques & Lopez 2005) shows the capacity
of these flows to become unstable through three codimension-one symmetry-breaking
bifurcations: two regular modes, for which mode A preserves the half-period-flip
map of the underlying base flow while mode B breaks it, and a complex pair of
quasi-periodic modes (Blackburn & Lopez 2003). These results generally extend to
the wakes of cylindrical geometries with reflectively symmetric cross-sections about
the wake centreline. Indeed, some or all of these instability modes are observed in the
wakes of square cylinders (Robichaux, Balachandar & Vanka 1999), tandem circular
cylinders (Carmo, Meneghini & Sherwin 2010) and elliptical cylinders (Thompson
et al. 2014; Leontini, Lo Jacono & Thompson 2015).

In contrast, research into the wakes of non-circular cylinders at non-reflection-
symmetric inclinations to the flow describes the emergence of a new path to
instability through a pure subharmonic mode. The structure of this subharmonic
mode possesses a wavelength of approximately twice the cylinder’s characteristic
length (between those of mode A and mode B) and has a periodicity that is
twice that of the period of the two-dimensional base flow. An investigation into
the stability of the wakes of the inclined square cylinder by Sheard, Fitzgerald &
Ryan (2009), Yoon et al. (2010) and Sheard (2011) demonstrated the increasing
prevalence of this subharmonic mode C as the dominant instability as the square
cylinder becomes increasingly asymmetric about the wake centreline. It could then
be inferred that the corresponding two-dimensional base flows increasingly deviate
from the half-period-flip map as the asymmetry of the cylinder is increased through
its inclination. This deviation explains the observation of a similar instability mode
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Instabilities in the wakes of triangular cylinders 723

in the wake of a circular cylinder with a trip wire in its vicinity (Zhang et al.
1995; Yildirim, Rindt & van Steenhoven 2013b) as well as for circular cylinders
proximate to a moving wall (Jiang et al. 2017), and has been elucidated through
stability studies of the wakes of rings (Sheard, Thompson & Hourigan 2003, 2005a;
Sheard et al. 2005b), staggered cylinder configurations (Carmo et al. 2008), inclined
flat plates (Yang et al. 2013), inclined elliptical cylinders (Rao et al. 2017) and also
in non-stationary configurations such as flows past a rotating circular cylinder (Rao
et al. 2013). Yildirim, Rindt & van Steenhoven (2013a) and Yildirim et al. (2013b)
further investigated the characteristics of the mode C instability experimentally for
flow past a circular cylinder with a trip wire, showing that fluctuations in the wake
to develop asymmetrically about the wake centreline unlike the case without the wire,
and also that every pair of consecutively shed counter-rotating vortices takes a slightly
different trajectory. The study also demonstrated the non-negligible differences in the
strengths of consecutive counter-rotating spanwise vortices in the wake, and also that
the strengths of the streamwise vortices increases further from the cylinder.

Despite the interest in these wake flows, studies of flows past cylinders with
triangular cross-sections appear to be lacking in the literature. Cylinders with such
cross-sections subject flows to sharp corners, which are common features in structural
design, vortex generators, heat exchangers and flow measurement devices among
other applications. These sharp corners facilitate flow separation at high Reynolds
numbers, fixing the separation points of the flow from the cylinder unlike those
for the circular cylinder where the separation points can reposition along the smooth
cylinder surface, or the inclined square cylinder where the separated flow can possibly
reattach to the cylinder surface at moderate Reynolds numbers (Yoon et al. 2010). The
triangular cross-section cylinder also shows a stronger lack of geometric symmetry
to the oncoming flow since, with the exception of the cylinder inclined with its
axis perpendicular to the oncoming flow vector, the cylinder will always present an
unequal number of faces to the upstream and downstream directions. The degree
of geometric asymmetry about the streamwise direction, being controlled solely
through the inclination of the cylinder, thus allows the effects of flow asymmetry
on the stability of the wakes of the cylinder to be studied in a more controllable
manner. Most studies on the equilateral triangular cylinder have focused on the
two-dimensional characteristics of the flow: stability analyses by Jackson (1987),
Zielinska & Wesfreid (1995) and De & Dalal (2006) on the wakes of the triangular
cylinder with its apex pointing upstream show the flow to become two-dimensionally
unstable at a critical Reynolds number of Recr ≈ 40, and shows the scaling of the
global modes to be consistent with those predicted by the Stuart–Landau equation;
general structures in the wakes of these cylinders with incidence angle variation, along
with measurements of their force coefficients, have also been reported by Bao, Zhou &
Zhao (2010), Tu et al. (2014) and Ng et al. (2016), noting that the cylinder inclined
with its apex perpendicular to the flow yields the largest lift coefficients. Wind tunnel
experiments by Iungo & Buresti (2009) measured the shedding frequencies and force
coefficients for the flow at Re ≈ 1.2 × 105, showing that the largest lift coefficients
occur at similar angles to those predicted by the two-dimensional flow studies, despite
the significantly higher Reynolds number. Experiments by Luo & Eng (2010) on the
stability of the wakes of an isosceles triangular cylinder with its apex pointing in the
downstream direction report the flow to become unstable through mode A, with the
transition predicted to be subcritical and to occur at ReA= 164, without a subsequent
transition to mode B detected. To the best of the authors’ knowledge, the stability of
the wakes of cylinders with an equilateral triangular cross-section and its variation
with different flow incidence angles have never been reported prior to this paper.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

13
 A

pr
 2

01
8 

at
 1

3:
25

:3
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
16

1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.161


724 Z. Y. Ng, T. Vo and G. J. Sheard

U d
h

FIGURE 1. Schematic diagram of the flow system.

The structure of this paper is as follows. Section 2 introduces the system under
investigation, the solver and stability analysis techniques used. Results from mesh
resolution and domain-dependence studies are also described. The stability of the
periodic flow is discussed in § 3.1 describing the dependence of the Floquet exponent
on the wavenumber, trends in the growth rates of the various instabilities described
in § 3.2 and the structure of the instabilities in § 3.3. Motivated by the results of
the stability analysis, an attempt at quantifying the deviations of the two-dimensional
time-periodic base flow from the ideal half-period-flip map is presented in § 3.4.
Nonlinear aspects of this transition are then discussed in § 3.5, and conclusions are
drawn in § 4.

2. Methodology
The system under investigation in this study comprises a cylinder with an equilateral

triangular cross-section (hereafter referred to as ‘cylinder’ for brevity) immersed in a
uniform flow with velocity U, producing a wake region whose stability characteristics
are sought. A schematic diagram of this system is provided in figure 1. The
cylinder inclination is gradually varied between 0◦ 6 α 6 60◦ (increasing in the
counter-clockwise direction), generally at an increment of α= 6◦, with all inclinations
outside this range being either reflection symmetric about the horizontal centreline,
or identical to the geometries contained within the initial range. Specifically, α = 0◦
corresponds to the case with the triangle cross-section pointing directly upstream,
α = 30◦ corresponds to the case where the triangle is pointing vertically upwards,
α = 60◦ describes the triangle pointing directly downstream and α = 90◦, which is
outside the computed range of angles, is simply the cylinder at α = 30◦ reflected
about the horizontal centreplane. The height projected by the cylinder on the flow
(h) is then a function of the cylinder side length (d) and the inclination angle (α)
through

h
d
(α)= sin(60◦ − |α − 30◦|)+ sin(|α − 30◦|). (2.1)

Choosing h as the characteristic length scale and U as the velocity scale, the Reynolds
number for this study is defined as Re=Uh/ν, where ν is the fluid kinematic viscosity.
The Reynolds number scaled by the cylinder side length d (Red) can be recovered by
dividing Re by the h/d relation in (2.1).

2.1. Numerical scheme
The flow in this system is governed by the time-dependent incompressible Navier–
Stokes equations, comprising mass and momentum conservation equations, which in
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FIGURE 2. (a) The computational domain used in this study detailing the macro-element
distribution. (b–d) Mesh detail in the vicinity of the cylinder for (b) α = 0◦, (c) α = 30◦
and (d) α = 60◦.

their normalized forms are given as

∇ · u = 0, (2.2a)
∂u
∂t
+ (u · ∇)u = −∇p+

1
Re
∇

2u, (2.2b)

where u(x, y, z, t) = (u, v, w) is the velocity scaled by U, t is the non-dimensional
time scaled by h/U and p the non-dimensional pressure scaled by ρU2.

For two-dimensional flow computations, the Navier–Stokes equations are solved
using a spectral-element method for spatial discretization (Karniadakis & Triantafyllou
1992) and evolved in time using a third-order time-integration scheme based on
backward differentiation (Karniadakis, Israeli & Orszag 1991; Blackburn & Sherwin
2004). Briefly, the computational domain is first subdivided into quadrilateral
macro-elements onto each of which a Lagrangian tensor-product polynomial
shape function is imposed. The shape functions are then interpolated at the
Gauss–Legendre–Lobatto quadrature points, enabling the use of highly efficient
quadrature methods for integration. Three-dimensional flows in this study are
computed using a spectral-element/Fourier-algorithm (Karniadakis & Triantafyllou
1992; Thompson et al. 1996; Blackburn & Sherwin 2004) which discretizes flow
variables in the spanwise direction using a Fourier series. This naturally enforces a
periodic condition on the flow at the limits of the spanwise domain. The present
solver has been implemented and validated previously in Sheard et al. (2007), Sheard
et al. (2009) and Blackburn & Sheard (2010) for two-dimensional flow computations,
and in Sheard et al. (2009) and Ryan, Butler & Sheard (2012) for three-dimensional
flow computations.

The computational domain (shown in figure 2a) is treated with the following
boundary conditions: the inlet (left edge) has an imposed uniform flow in the
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726 Z. Y. Ng, T. Vo and G. J. Sheard

streamwise direction (u = U), transverse boundaries are treated with a stress-
free/impermeable condition (v= 0, ∂u/∂y= 0), the outlet is assigned a zero reference
pressure and a zero outward normal gradient of velocity and the cylinder surface is
assigned a no-slip condition. On all boundaries assigned with a Dirichlet velocity
condition, a suitable Neumann boundary condition is imposed on the outward normal
gradient of pressure to maintain the overall third-order accuracy of the scheme
(Karniadakis et al. 1991).

2.2. Linear stability analysis
Let (ū, p̄) be the solution of a time-periodic two-dimensional base flow that
is homogeneous in the spanwise direction. If an infinitesimal three-dimensional
perturbation field (u′, p′) is imposed on the two-dimensional base flow such that
u= ū+ u′ and p= p̄+ p′, then substituting these into (2.2) and neglecting nonlinear
perturbation product terms yields the base flow evolution equations as well as the
perturbation evolution equations. The latter are given as

∇ · u′ = 0, (2.3a)
∂u′

∂t
+ (u′ · ∇)ū+ (ū · ∇)u′ = −∇p′ +

1
Re
∇

2u′. (2.3b)

The perturbation terms (u′, p′) in (2.3) can further be expressed as the sum of
all Fourier modes in the spanwise direction, which reduces the problem to a set
of decoupled equations allowing for the stability to be investigated independently
for each different mode/wavenumber m at a given incidence angle and Reynolds
number. This stability analysis method yields the eigenmodes corresponding to the
Floquet multipliers (µ) of the leading instability modes at a given wavenumber,
which are related to the instability growth rates through |µ| = exp(σT) where T is
the period of the unsteady base flow. The mode is considered to be unstable when
the perturbation growth rate σ > 0 (|µ| > 1), neutrally stable when σ = 0 (|µ| = 1)
and stable when σ < 0 (|µ| < 1). It is the leading eigenmode which is of primary
interest as it pertains to the fastest growing instability at a given wavenumber. The
Floquet multipliers describe how the predicted instabilities interact with the underlying
base flow. Positive real multipliers indicate that the instability is synchronous with
the two-dimensional base flow, negative real multipliers indicate that the predicted
instability mode is subharmonic to the base flow and simultaneous complex-conjugate
multipliers indicate that the instability is quasiperiodic. The predicted wavelength of
the instability can then be obtained through λ= 2π/m.

The eigenmodes for this stability analysis are computed using an implicitly restarted
Arnoldi method (Barkley & Henderson 1996; Blackburn & Lopez 2003), which is
implemented through the ARPACK eigenvalue solver (Lehoucq, Sorensen & Yang
1998). The present stability analysis code has been implemented and validated
previously in Sheard et al. (2009), Blackburn & Sheard (2010) and Sheard (2011).

2.3. Grid independence and validation
Spatial resolution in the computational domain can be controlled through the degree of
the polynomial shape function (Np) imposed on the macro-elements. This is known as
a p-type refinement as opposed to an h-type refinement where the number of macro-
elements is varied. To ensure that the dynamics of the flow is sufficiently resolved,
a p-type grid-dependence study is performed for the cylinder inclined at α = 30◦
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FIGURE 3. Relative errors with increasing Np for the Strouhal number (@), mean drag
coefficient (A), mean lift coefficient (C), r.m.s. of the lift coefficient (6) and the leading
instability wavenumber (D) and its corresponding multiplier (E).

as this inclination angle possesses the largest macro-elements in the vicinity of the
cylinder owing to the mesh construction. Re= 200 was used as this Reynolds number
is anticipated to be high enough for the flow to exhibit three-dimensionality. The
computational domain extends through −30 6 x/h 6 35 and −30 6 y/h 6 30 with the
cylinder centrally placed at (x, y) = (0, 0). The relative errors with increasing Np of
the Strouhal number St, the mean drag coefficient cD and the mean lift coefficient
cL for this case have been quantified and presented in a previous study (Ng et al.
2016), and are repeated here to include those of the root mean square (r.m.s.) of the
lift coefficient c′L, and the Floquet multiplier and wavenumber of the dominant mode
(|µ|peak and mpeak, respectively). As shown in figure 3, all parameters from the two-
dimensional flow computations show a convergence to better than 0.1 % for Np > 8,
which is generally smaller than most experimental uncertainty thresholds. The relative
error of the Floquet multipliers, however, increases to ≈0.26 % between Np= 7 and 8,
but remains at approximately the same order of magnitude and subsequently decreases
with increasing Np. Errors computed relative to Np = 12 (highest polynomial-order
tested) clarify this issue by showing a monotonic decrease for Np > 8, with the largest
error at Np=8 being ε|µ|=0.36 %. A polynomial order of Np=8 is thus applied for all
computations in this study since most parameters of the flow are shown to change by
less than 0.1 % with increasing polynomial order, and the larger magnitudes of ε|µ| are
justifiable considering that the analysis deriving |µ| would compound the underlying
resolution errors from the two-dimensional base flow.

Uncertainties associated with finite domain sizes have also been quantified and are
reported in Ng et al. (2016). That study revealed that the two-dimensional vortex
street has a tendency to undergo several topological changes, including the breakdown
of the primary Kármán vortex street leading to the formation of a secondary one of
a larger scale. The development of this secondary vortex street has generally been
attributed to an instability of the mean flow, and its onset within the computation
domain introduces incommensurate frequencies into the wake. This places a restriction
on using larger domain sizes, and on the range of Reynolds numbers at which the
Floquet stability analysis can be performed.
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728 Z. Y. Ng, T. Vo and G. J. Sheard

The final meshes used throughout this study possess 1016 quadrilateral macro-
elements, and imposes a polynomial shape function of Np= 8, examples of which are
shown in figure 2.

3. Results
3.1. Floquet multiplier dependence on wavenumber and neutral stability

Prior studies on the stability of flows past cylinders of various cross-sections
have associated the various predicted instability modes with the complex Floquet
multiplier obtained from the stability analysis as follows: both regular modes A
and B observed in the wakes of circular cylinders (Barkley & Henderson 1996;
Sheard et al. 2003), square cylinders (Robichaux et al. 1999; Sheard et al. 2009) and
bluff rings (Sheard et al. 2003) among other geometries become unstable through a
positive real multiplier, with modes A or B being discernible through the structure and
spatio-temporal symmetry of the resulting instability; the quasi-periodic mode (QP)
becomes unstable through a complex-conjugate pair of multipliers simultaneously
crossing the unit circle |µ| = 1 (Blackburn & Lopez 2003); while the subharmonic
mode C becomes unstable through a negative real multiplier (Sheard et al. 2003,
2005a, 2009; Carmo et al. 2008). Two instability modes are predicted to develop
in the wakes of the cylinders in this study resembling the mode A and mode C
instabilities, and will be referred to similarly as mode A and mode C with further
discussion supporting this classification presented later in this paper.

Several generic profiles of the perturbation growth rate versus wavenumber develop
at various ranges of cylinder inclination at Reynolds numbers below the aperiodic
wake threshold. For cylinder inclinations of 0◦ 6 α < 24◦ and α = 60◦ (figure 4a), a
single local maximum comprising positive real Floquet multipliers in the perturbation
growth rate profile was observed, having wavenumbers consistent with mode A.
Negative real Floquet multipliers indicative of subharmonic modes were not obtained
at these inclinations within the testable range of Reynolds numbers. At cylinder
inclinations 18◦ < α < 34◦, the regular mode is observed to develop similarly to the
lower range of inclinations, but a second local maximum composed of subharmonic
eigenvalues emerges (as shown in figure 4b). Trends of the peak growth rates
versus Reynolds number for the subharmonic modes obtained within this range of
inclinations describe a negative local maximum, indicating that the subharmonic
mode remains stable. At higher cylinder inclinations 36◦ < α < 54◦, a single local
maximum consisting of negative real Floquet multipliers is observed; the regular mode
being almost entirely absent from the perturbation growth rate profile (figure 4c).
Figure 4(d) shows a scenario limited to cylinder inclinations α ≈ 36◦ and α ≈ 54◦
about which the dominant instability mode is expected to switch to (or from for
the latter inclination) mode C with increasing Reynolds number. Only a small range
of cylinder inclinations (α ≈ 34◦, and 54◦ < α < 60◦) demonstrated the potential for
mode C to become unstable beyond mode A, and this exhibits a perturbation growth
rate profile similar to that shown in figure 4(b), it also however exhibits a positive
local maximum for the subharmonic peak. As mode C for these cases is predicted to
occur beyond the point of mode A becoming unstable, the flows could be sufficiently
altered by the initial transition such that the onset of mode C might be observed
differently.

Figure 5(a) shows the neutral stability thresholds for the mode A and mode C
instabilities across the range of inclination angles. Pleasingly, neutral stability always
occurs where the two-dimensional flow is periodic. Across cylinder inclinations
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FIGURE 4. (Colour online) Growth rate versus wavenumber profiles for the wakes of a
cylinder inclined at (a) 60◦ showing the single regular peak profile, (b) 30◦ showing the
dual-peaked profile with the regular mode becoming unstable, (c) 48◦ showing the single
subharmonic peak profile, (d) 54◦ showing the dual-peaked profile with the subharmonic
mode becoming unstable. For all cases, the red (darker) symbols indicate a positive
real multiplier (regular), orange (lighter) symbols indicate a negative real multiplier
(subharmonic) and hollow symbols indicate a complex multiplier (quasi-periodic).
Different symbols represent multipliers obtained at different Re as indicated in the line
legends.

0◦ 6 α . 34.6◦, three-dimensional transition is predicted to occur via mode A, with
its transition Reynolds number (ReA) increasing monotonically from ReA = 100.2
when α = 0◦, to ReA = 126.1 when α = 30◦, and to ReA = 138.3 when α = 34◦
– the primary instability is predicted to switch to the subharmonic mode beyond
this inclination. The rate at which ReA increases with cylinder inclination (dReA/dα)
shows a small shift at inclinations of approximately α = 30◦, which remains even
after rescaling ReA by the cylinder side length d. The stability analysis predicts that
mode A resumes as the dominant instability mode for α& 55.4◦ as the flow recovers
some sense of symmetry, with ReA = 134.7 at α = 56◦, decreasing to ReA = 126.3
when α= 60◦. Within 34.6◦. α. 55.4◦, mode C is predicted to be the first-occurring
three-dimensional mode. The transition Reynolds number for mode C (ReC) decreases
from ReC = 131.0 at α= 36◦ to reach a local minimum at α≈ 45◦ with ReC = 111.9,
and increases again to ReC = 129.4 when α = 54◦.

The variation in spanwise wavelengths of the predicted instability modes at
transition are shown in figure 5(b). Similar to figure 5(a), two distinct branches
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FIGURE 5. (a) Neutral stability map across the range of cylinder inclinations, and (b) the
corresponding critical wavelength of the instability at its onset. Solid lines describe the
neutral stability threshold for the regular mode A, while dash-dotted lines mark that for the
subharmonic mode C. Symbols (×) mark cylinder inclinations where the stability analysis
was performed.

corresponding to mode A are observed to be separated by the mode C branch, with
the two distinct mode A branches exhibiting different ranges of wavelengths (the
mode A being consistently two to three times larger than mode C). For brevity, we
will refer to the mode A branch for inclinations within 0◦ 6 α . 34.6◦ as mode A1,
and that for inclinations within 55.4◦ . α 6 60◦ as mode A2. The critical spanwise
wavelengths of mode A1 (λA) vary quite noticeably with the cylinder inclination,
increasing from λA = 5.80h at α = 0◦ to λA = 5.97h when α = 18◦ (approximate
inclination for which the wake shows the largest critical spanwise wavelengths for
mode A1), and decreasing again thereafter. The curve through these points show a
similar gradient discontinuity in dλA/dα, again at α = 30◦. Upon mode A2 resuming
as the dominant instability mode after the subharmonic mode branch, the critical
spanwise wavelengths decrease with increasing cylinder inclination from λA= 4.34h at
α = 56◦ to λA = 4.21h at α = 60◦. The mode C instability predicted in the wakes of
the cylinder at inclinations 34.6◦.α. 55.4◦ show an approximately consistent critical
spanwise wavelength, varying from λC = 1.75h at α = 36◦ to λC = 1.68h at α = 45◦,
and increasing to λC = 1.67h at α = 54◦. As a comparison, the critical spanwise
wavelength of mode A1 ranges between 5.80d 6 λA 6 5.97d for α 6 30◦, appearing
consistent with the values reported for mode A in the wakes of square cylinders
(Sheard et al. 2009) (approximately 5d–6d) while mode A2 becomes unstable at
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0–0.2–0.4 0.2 0.4

–0.1

0.1

0.2

–0.2

0

FIGURE 6. (Colour online) Variation of the peak instability growth rates with ε about the
predicted transition Reynolds number. Red triangles (q, darker) mark peak mode A growth
rates, orange triangles (q, lighter) mark peak mode C growth rates and hollow circles (E)
mark those for the circular cylinder’s mode A. The lines through the data are the fitted
linear approximations for each predicted instability mode: the solid line for mode A in
this study, dash-dotted lines for mode C and the dotted line for mode A of the circular
cylinder.

wavelengths 4.21h 6 λA 6 4.34h which compares well with the 4h to 5h wavelengths
reported for circular and elliptical cylinder wakes (Barkley & Henderson 1996;
Williamson 1996; Thompson et al. 2014) as well as the square cylinder at lower
inclinations angles (Sheard 2011). The critical spanwise wavelengths of mode C
appear slightly lower than the approximately 2d wavelength reported for inclined
square cylinders at incidence in Sheard et al. (2009).

3.2. Growth rate dependence on the Reynolds number
As described earlier, the peak growth rates for each instability branch in the growth
rate against Floquet multiplier plots were predicted and used to estimate the critical
parameters for their neutral state as shown in figure 5(a,b). To determine any
generality in the growth of the linear instability modes, the variation of the growth
rates with an ε parameter quantifying the distance between the Reynolds number
and its corresponding transition Reynolds number (ε = (Re − Ret)/Ret, where Ret is
the transition Reynolds number corresponding to modes t = A, C) for all cylinder
inclinations, was determined and is shown in figure 6. Near the transition point,
the function may be approximated using a linear fit while enforcing that σ = 0.
For data within |ε| 6 0.1, the growth rates of mode A for all cylinder inclinations
collectively aggregate about dσ/dε= 0.2840, while separately mode A1 appears to be
well described by dσ/dε = 0.2712 and mode A2 by dσ/dε = 0.3461 (R2 > 0.98 for
all cases). As a comparison, a similar function through the peak growth rates of the
mode A instability in the wake of the circular cylinder computed at 170 6 Re 6 210
is described by dσ/dε = 0.3322. In contrast to mode A, the mode C data showed a
larger scatter about the linear trend through the intercept, yielding a linear function
σ = 0.6434ε (R2

= 0.984). The scatter of these points about the linear trend can
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(a)

(b)

(c)

FIGURE 7. (Colour online) Superposition of the two-dimensional base flow and the
three-dimensional instability mode showing the mode A structure. The flow direction is
from left to right. Images are shown for cylinder inclinations (a) 0◦, (b) 30◦ and (c) 60◦
at Reynolds numbers and wavenumbers as labelled. Blue (darker) and yellow (lighter)
isosurfaces are the positive and negative streamwise perturbation vorticities, respectively,
and the translucent red isosurfaces describe the two-dimensional vortex loops at |ω̄z| = 1.

be attributed to the effect of the cylinder inclination, changing which gives rise to
slightly different base flows which ultimately affect the dynamics of the system. It is
then interesting to note that the peak mode A growth rates for all cylinder inclinations
aggregated strongly about a common linear trend, indicating that the different cylinder
inclinations, and to a certain extent the cylinder geometry, have little effect on the
growth of the mode A instability with increases in Reynolds number at low ε. These
results also demonstrate that mode C generally develops more rapidly than mode A
with increasing Reynolds number at approximately twice the rate, a point which will
be further explored in § 3.5 in relation to the nonlinear growth and saturation of the
instability modes. The peak growth rates at each individual cylinder inclination still
vary monotonically with increasing Reynolds number.

3.3. Structure and symmetry of the unstable modes
Further evidence of the regular instability mode being consistent with the circular
cylinder’s mode A, aside from the nature of the Floquet multiplier, can be observed
through the structure of the instability. Visualizations of the perturbation fields from
the stability analysis presented here are obtained by superimposing the Fourier mode
of the instability onto its corresponding two-dimensional base flow. These perturbation
fields are shown for cylinder inclinations α= 0◦, 30◦ and 60◦ for the regular mode in
figure 7, being representative of the structures of modes A1 and A2. The instability
is observed to develop primarily within the cores of the two-dimensional vortex
loops, which alludes to the elliptical instability mechanism suggested by Leweke &
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(a)

(b)

FIGURE 8. (Colour online) Mode C structure, shown for the wakes of the cylinder
at inclinations (a) 36◦ and (b) 45◦ at Reynolds numbers and wavenumbers as labelled.
Isosurfaces and colours are as described in figure 7.

Williamson (1998) and Thompson, Leweke & Williamson (2001). The distinction
between modes A1 and A2 lies in the spatial region where the instability is observed
to develop more dominantly – the perturbation structures for mode A1 develop
more intensely in the near wake of the cylinder and decay in strength as it moves
downstream, while the perturbation structures for mode A2 appear to develop more
intensely in the downstream regions of the flow.

The perturbation fields of the mode C instability are shown for the cylinder inclined
at α = 36◦ and α = 45◦ in figure 8. For all cylinder inclinations becoming unstable
through this mode, the instability manifests strongly in the near wake, but rapidly
decays in strength as it advects downstream.

3.4. Quantifying asymmetries in the cylinder wake
Prior studies on the stability of the wakes of various cylindrical configurations have
shown the prevalence of mode C to be intrinsically linked to the geometric asymmetry
about the horizontal centreline (Sheard et al. 2003, 2009; Rao et al. 2017). As such,
it is surprising to note that mode C in this study becomes unstable at incidence
angles α > 30◦, despite the cylinder at an inclination of α= 30◦ possessing the largest
geometric asymmetry, as observed through the maximum lift coefficients incurred
on the cylinder (hence largest flow asymmetry about the body) about this incidence
angle (Ng et al. 2016). Mode symmetry studies by Marques, Lopez & Blackburn
(2004) and Blackburn et al. (2005) have described the generic bifurcations for wakes
possessing spatio-temporal symmetries consistent with the ideal Kármán vortex street,
with Blackburn & Sheard (2010) further showing the smooth transition from the
generic quasi-periodic mode to one of a subharmonic nature as the wake symmetry
was gradually broken beyond a small finite level. Considering that the stability of
these wakes are entirely described from the characteristics of their base flows, the
results obtained from the present stability analysis then pose a question regarding the
extent to which the two-dimensional base flow can be asymmetric before mode C

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

13
 A

pr
 2

01
8 

at
 1

3:
25

:3
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
16

1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.161


734 Z. Y. Ng, T. Vo and G. J. Sheard

becomes the preferred instability over mode A, and whether a robust measure of this
asymmetry exists. Experiments on flows past a circular cylinder with a trip wire by
Yildirim et al. (2013a) elucidated the mode C structure similar to Zhang et al. (1995),
but further attempted to characterize the three-dimensional mode. The study showed
an imbalance in the streamwise flow fluctuations about the wake centreline, and also
showed the unequal strengths of counter-rotating spanwise vortices at a position 10
cylinder diameters downstream. The present study extends this idea of asymmetry by
first proposing and quantifying several measures alluding to a deviation in symmetry,
and further attempts to draw a connection from these deviations in ideal symmetries
to the observed instability modes from the stability analysis.

The ideal Kármán vortex street possesses the spatio-temporal symmetry

u(x, y, t)= u(x,−y, t+ T/2)= u(x, y, t+ T),
v(x, y, t)=−v(x,−y, t+ T/2)= v(x, y, t+ T),
p(x, y, t)= p(x,−y, t+ T/2)= p(x, y, t+ T),

 (3.1)

where (u, v, p)(x, y, t) are the streamwise and transverse velocity fields and the
pressure field, respectively, and T is the period of the base flow. The spanwise
vorticity, ωz = ∂v/∂x− ∂u/∂y, exhibits the symmetry

ωz(x, y, t)=−ωz(x,−y, t+ T/2)=ωz(x, y, t+ T). (3.2)

Ideally then, the shed vortices would each possess a peak vorticity given by

ω+z (x)=ωz(x, y+(x), t+(x)),
ω−z (x)=ωz(x, y−(x), t−(x)),

}
(3.3)

where ω+z and ω−z denote the peak positive and negative vorticities in the vortex
loops, respectively, with the corresponding times of these peaks denoted by t+ and t−,
with y+ and y− being its transverse position; such that |ω+z | = |ω

−

z |, y+ = −y−, and
t+/T = t−/T + 1/2. Indeed, these relations are observed to hold in the laminar wake
of the circular cylinder. However, the wakes of the two-dimensional base flows for
non-reflection-symmetric cylinder inclinations in this study exhibit small deviations,
as expected.

Given that a ‘half-period’ in a T-periodic wake corresponds to T/2 where, ideally,
T/2 = t+ − t−, and that the magnitudes of the peak vorticities in each vortex core
should ideally be equal at the same streamwise position, some measures of deviations
from the Kármán vortex street symmetry could be posed as

εt(x)=
∣∣∣∣ t+(x)− t−(x)

T
− 0.5

∣∣∣∣ ,
εω(x)= |ω+z (x)+ω

−

z (x)|,

 (3.4)

where εt estimates the imbalance in the anti-phases of consecutive counter-rotating
vortices, and εω measures the imbalance in the peak vorticity within each shedding
cycle, both being functions of the streamwise position x. Measures based on the
symmetry deviations of the (u, v) two-dimensional velocity fields were not utilized
due to the lack of a planar wake centreline for non-symmetric cylinder inclinations.
Figure 9 shows that consecutive counter-rotating vortices in the two-dimensional base
flow differ in size and shape spatially, and consequently in their peak strength. Taking
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(a)

(b)

(c)

(d)

(e)

( f )
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0 –2–4 0 2 46 12
x y

FIGURE 9. (Colour online) (a–c) Spanwise vorticity contours for the cylinder inclined at
(a) 0◦, (b) 30◦ and (c) 45◦. Red (lighter) and blue (darker) contours indicate positive and
negative vorticity values, respectively. (d–f ) Spanwise vorticity profiles in the cross-flow
(y) direction, taken at a downstream position x= 4h at 52 equispaced time intervals over
one shedding cycle, each corresponding to the flows in the left images. The red squares
(p) indicate peak vorticity values ω+(x= 4h, y+, t+) and ω−(x= 4h, y−, t−) as labelled.

these factors into consideration, the εω measure might be improved to account for
the variability of the vortices by considering the accumulation of vorticity over a
shedding cycle at various streamwise positions in the wake, as given by

εΓ (x)=
∫ t+T

t

∫
∞

−∞

ωz(x, y, t) dy dt. (3.5)

The εω asymmetry measure shown in figure 10(a) shows that the discrepancy in
the peak vorticity of consecutive counter-rotating vortices increases with cylinder
inclination, reaching a maximum at α ≈ 36◦, and having negligible magnitudes at
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0.9

0.3

0

0.6

(a)

3010 20 40 50 60

0.2

0.1

0

(b)

3010 20 40 50 60

0.1

0

0.2

(c)

3010 20 40 50 60

FIGURE 10. Variation of (a) εω, (b) εt, and (c) εΓ with cylinder inclination α. Solid
lines weave through deviation values for x/h67, while dash-dotted lines connect deviation
values for x/h> 7 where some wakes exhibit a change in their two-dimensional structure.
The shaded region spans cylinder inclinations where the subharmonic mode branch can
be observed from the stability analysis (figure 4b,d), while the region enclosed within
the vertical dashed lines (α ≈ 34◦ and 54◦) covers cylinder inclinations where the
three-dimensional flow transition is predicted to occur via mode C (figure 4c).

reflection-symmetric inclinations. This shows an approximate agreement with the
dependence of the lift force coefficient with cylinder inclination (Ng et al. 2016),
but lacks a clear correlation with the emergence of the mode C branch besides the
higher εω levels within the corresponding range of incidence angles (region enclosed
within the vertical dashed lines in figure 10). The εt levels of the base flow instead
(figure 10b) show a stronger correlation to the emergence of mode C, demonstrating
that consecutive counter-rotating vortices in the base flow possess a noticeably larger
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Instabilities in the wakes of triangular cylinders 737

deviation in phase in the near wake which rapidly decreases downstream within the
range of inclinations where mode C can be observed. These variations in asymmetry
levels for εt and εω may be related to the vortex shedding dynamics in the wake. For
all cylinder inclinations, flow separation from the upper half of the cylinder remains
fixed at the upper edge where the vortex forms. Flow separation from the underside of
the cylinder experiences two different scenarios depending on the cylinder inclination.
For α < 30◦, flow separation and vortex formation occur similarly to the upper half
of the cylinder, leading to an approximately similar vorticity distribution across both
vortices. The commensurate increase in the magnitude of εω with increasing α then
arises primarily from the difference in strengths of the flow reversal into the wake
about the two rear vertices, leading to increasingly unequal peak vorticities. The
arrangement of vortices in the vortex street will then be affected to maintain its
stability, leading to an increase in εt. For 30◦6 α. 60◦, the flow initially separates at
the forward cylinder edge, and undergoes a subsequent separation about the rear edge
before the underside vortex is shed. In the latter case, the abrupt secondary separation
of the already strained shear layer induces a stronger suction into the cylinder wake,
entraining a proportion of the flow (forming vortex) into the upper region of the
cylinder near wake. This broadens the vorticity distribution, resulting in a lower
peak vorticity ω+z as the vortex is shed, which results in a larger εω magnitude. The
reversal about the rear cylinder edge also introduces a lag in the shedding of the
underside vortex, which results in larger εt magnitudes in the near wake.

The εΓ measure (figure 10c) also shows a similar increase in asymmetry in the
near wakes of cylinders at inclinations where mode C is observed. However, the
variation of εΓ with streamwise position appears significant at cylinder inclinations
whose wakes exhibit the development of the subharmonic mode branch from the
stability analysis (shaded region of figure 10). Wakes becoming unstable through
mode A show εΓ magnitudes to remain fairly constant spatially, without necessarily
possessing εΓ = 0. This implies that the flow can be asymmetric and unstable to
mode A provided that the asymmetry levels (εΓ and to a certain extent εt) are
consistent globally where the Kármán vortex street exists. Curiously, the rapid decay
of εΓ downstream of the cylinder for the mode C range of incidence angles show
a correlation with the perturbation structures obtained for mode C from the stability
analysis wherein the perturbations appear most intensely closest to the cylinder where
the deviations are largest, and are almost unobservable where levels of εΓ appear
low (see figure 8). Perhaps these imbalances in the base flow give rise to mode C
instead of mode A – the instability acting as a mechanism to compensate for the
asymmetries.

It is important to note that the deviations quantified here focus primarily on the near
wake where the wake exhibits a structure similar to the Kármán vortex street, ranging
between positions 2 6 x/h 6 12. Wakes of the cylinder at inclinations ranging 54◦ .
α. 56◦ develop a dual layer wake within the range of streamwise positions, with the
approximate position of the onset of the dual layer wake affecting the corresponding
values of εt and εΓ as observed through the sudden increase in asymmetry measured
at approximately x/h > 7 (figure 10b,c).

To test the predictive capacity of these asymmetry measures in more general
wake flows, the measures were applied to simulations of the flows past an inclined
square cylinder whose stability characteristics have been mapped and described in
Sheard et al. (2009), Yoon et al. (2010) and Sheard (2011). In these studies, the
first-occurring three-dimensional mode was observed to change depending on the
inclination of the square cylinder, starting with mode A when the cylinder presents
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0 7.5 15.0 22.5 30.0 37.5 45.0

FIGURE 11. Variation of (a) εω, (b) εt and (c) εΓ with cylinder inclination α for the
square cylinder. Solid lines weave through deviation values for x/h< 7, while dashed lines
connect deviation values for x/h > 7.

a face normal to the flow (their α = 0◦), changing to mode C at intermediate
cylinder inclinations (α ≈ 10.5◦–26◦), before mode A recovers as the first-occurring
instability mode again (α & 26◦). For these flows, εω, εt and εΓ were obtained
from the two-dimensional time-periodic base flows of the inclined square cylinder,
generally at increments of 7.5◦, and are shown in figure 11. The region enclosed
within the vertical dashed lines in figure 11 highlights inclination ranges where
stability analysis predicts mode C to be the first unstable mode (Sheard et al. 2009;
Yoon et al. 2010; Sheard 2011). Similar to the triangular cross-section cylinder
in this study, the deviations obtained were larger in magnitude within inclination
ranges where the flow becomes unstable through mode C (region enclosed within
the vertical dashed lines in figure 11). Both εt and εΓ for the square cylinder wake
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Instabilities in the wakes of triangular cylinders 739

(figure 11b,c) exhibit a similar rapid decay in space to the εΓ measure for the
triangular cylinder. Since a stability analysis on the wakes of the inclined square
cylinder was not performed here, an estimate of the range of cylinder inclinations
where the subharmonic mode branch might be predicted from the stability analysis
of the flow is made by observing the spatial variation and magnitudes of εt and
εΓ , and is represented by the shaded regions in figure 11 spanning incidence angles
7.5◦.α< 45◦. This range of cylinder inclinations predicted purely from the deviations
of the two-dimensional base flows from the Kármán vortex street symmetry show a
strong agreement with those reported in Sheard et al. (2009) and Yoon et al. (2010)
as ranging between 7.5◦ . α . 37.5◦. These results are also consistent with those for
the three-dimensional wake of a circular cylinder with a trip wire, where Yildirim
et al. (2013a) describes the difference in strengths of consecutive spanwise vortices
(similar to the present εΓ measure) 10 cylinder diameters downstream. The difference
between the present measurements and those reported in Yildirim et al. (2013a) being
that the present work quantifies these deviations and makes predictions of the stability
characteristics purely from the two-dimensional base flows instead of requiring the
full three-dimensional flow.

3.5. Nonlinear dynamics of the three-dimensional flow transition
To model the nonlinear dynamics of the transition, three-dimensional flow simulations
were performed for several cylinder inclinations at Reynolds numbers just above the
predicted transition. The cylinder inclinations chosen for this analysis were selected
to cover a range of inclinations where the flow is predicted to become unstable
through modes A1, C, and A2, and the spanwise domain was set to the wavelength
of the leading instability mode for each case. The simulations were performed at
Reynolds numbers within ε < 0.1, where ε = (Re−Ret)/Ret is the distance parameter
used earlier in § 3.2 and is similar to that defined in Henderson (1997), with Ret
corresponding to either ReA or ReC depending on which mode is the first to become
unstable. This range of ε was chosen to limit the study to Reynolds numbers where
the peak growth rates of the dominant modes predicted from the stability analysis
vary linearly with ε as discussed in § 3.2. Resolution studies performed showed
that 8 Fourier modes (NF) sufficiently resolved the flow to within 0.1 % relative to
NF = 32 (highest tested), measured through the growth rates of the leading Fourier
mode corresponding to the most unstable linear mode (d log |E1|/dt), the mean total
energy at saturation of the fundamental and leading Fourier modes (E0,sat, E1,sat) and
the mean spanwise flow velocity at a point in the wake at saturation (w(x, y, z, t)).

Modelling the flow as a complex oscillator, a weakly nonlinear approximation can
be applied to the flow to understand the nature of the transition. The Stuart–Landau
equation describes the evolution of the complex amplitudes in these systems, and can
be written as

dA
dt
= (σ + iω)A− l(1+ ic)|A|2A+ · · · , (3.6)

where A(t) is the complex amplitude of a given signal (Landau & Lifshitz 1976;
Drazin & Reid 2004). Assuming A(t) takes the form |A| exp(iΦ), equation (3.6) can
be decomposed into real and imaginary components to form

d log |A|
dt

= σ − l|A|2 + · · · , (3.7a)

dΦ
dt
= ω− lc|A|2 + · · · , (3.7b)
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where |A| and Φ are the magnitude and phase angle of the complex amplitude signal,
respectively, σ is the growth rate, ω is angular frequency and l and c are coefficients
describing the nonlinear departure of the mode evolution from the linear regime.
Considering only up to linear form as shown in (3.7) (up to cubic terms of A in
(3.6)), the nature of the transition can be described sufficiently through the sign of
the l coefficient (commonly called the Landau coefficient) in (3.7a). The transition is
supercritical for l> 0 close to the vertical axis, and subcritical when l< 0. This model
has been applied extensively for similar bluff-body flows (Henderson 1997; Sheard,
Thompson & Hourigan 2004; Sheard et al. 2009, among others), and various other
flow configurations such as those for confined channel flows (Sapardi et al. 2017)
and flows in differential-disk rotating systems (Vo et al. 2015). For the configuration
in the present study, the energy growth of the Fourier mode corresponding to the
leading instability mode predicted from the linear stability analysis is used as the
complex amplitude measure similar to Henderson (1997), and is given by

|Am|(τ )=

[∫
V
|um(τ )|

2 dV
]1/2

, (3.8)

where τ is the normalized time t/T sampled once per period of the two-dimensional
flow, and is thus necessarily an integer, |Am|(τ ) is the magnitude of the oscillatory
signal and m corresponds to the dominant mode. For all cylinder inclinations
investigated, the transitions for both modes A and C are found to be supercritical
(positive l), indicating a smooth transition from the two-dimensional base state to the
unstable three-dimensional modes. Examples of these are shown in figure 12. Hence
transition to three-dimensional flow is expected to occur at the predicted critical
Reynolds numbers with no hysteresis. This is in contrast to the mode A transitions
observed in the wakes of the circular cylinder where Henderson & Barkley (1996)
and Henderson (1997) showed the transition to be subcritical. Also, Sheard et al.
(2009) reported the mode A transition of the square cylinder wake to be either sub-
or supercritical depending on the cylinder inclination, whereas the mode C transitions
were always supercritical. The present results also show the supercritical nature of
mode A here to differ from the hysteretic nature of the mode A transition reported for
the wake of a downstream-pointing isosceles triangular cylinder (Luo & Eng 2010)
where the two downstream faces of the cylinder in their study were longer than
the normally oriented side at the fore of the cylinder, as opposed to the equilateral
triangular cross-section cylinder investigated here. This demonstrates the possible
sensitivity of the criticality of the transition to the experimental set-up.

A comparison of the l coefficients across the different cylinder inclinations shows
that they adopt distinctly different values depending on whether they are derived
from mode A or mode C, whereas the difference between values within each
mode is relatively small. For mode A, these Landau coefficients are measured to
be lA ≈ O(10−2), while those for mode C are consistently higher, in the range
O(10−1)< lC<O(1) (figure 13a). Thus, the transition through mode C is more strongly
supercritical than those through mode A, regardless of the Reynolds number for
ε < 0.1. This suggests that the Landau coefficient may find utility in the classification
of three-dimensional instability modes; this could be helpful experimentally in cases
where fluid opacity precludes optical approaches for visualization (e.g. laser-induced
fluorescence) and velocimetry (e.g. particle image velocimetry).

As a consequence of this, the saturated amplitudes (|A|sat) of the asymptotic state of
mode C remain small where |A|2C,sat≈O(ε) (figure 13b), and show a strong agreement
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0 0.01 0.02

FIGURE 12. Examples of the growth of the predicted instability modes from the initially
two-dimensional flow, shown for (a) α = 0◦, Re = 110, and (b) α = 45◦, Re = 115,
being representative of mode A and mode C, respectively. The dashed lines through data
points are the measured amplitude growths (|A|2sat), while the solid lines project the linear
gradient near the axis, showing the departure due to nonlinear interactions in the flow, as
well as describing the envelope of the limiting amplitude predicted from the cubic-order
truncation Stuart–Landau equation (|A|2lim).

with the limiting amplitudes (|A|lim) predicted by the cubic-order truncation (linear
form) of the Stuart–Landau equation (the d log |A|/dτ = 0 intercepts in figure 12) such
that |A|2C,lim ≈ |A|

2
C,sat as shown in figure 13(c). This suggests that any coupling to

the primary mode is weak near the onset of the mode C instability similar to that
described for mode B by Henderson (1997). The saturated amplitudes of mode A
(|A|A,sat) instead consistently asymptote at a larger amplitude than mode C despite
being within the same ε range (figure 13b), but still indicate a fair agreement with the
predicted limiting amplitude (|A|A,lim), such that |A|2A,sat =O(|A|2A,lim) (figure 13c). The
scatter of the mode C points about the |A|2lim= |A|

2
sat line in figure 13(c) is also found

to be significantly smaller than that for mode A as quantified by the residual sum of
squares error of these points, normalized by the number of points (akin to a variance
measure). Flows unstable through mode C are also observed to reach their asymptotic
state much more rapidly than mode A, which agrees with the results reported in § 3.2
where the peak growth rates of mode C increased at approximately twice the rate of
those of mode A with increasing ε.

4. Conclusions
This paper reports on the stability of the wake of a cylinder with a triangular

cross-section at various inclinations to the incident flow, computed through a Floquet
type stability analysis. The results indicate that the transition to three-dimensionality
occurs through two instability modes, each being dominant across various cylinder
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FIGURE 13. (Colour online) Plots of (a) the l coefficient against the distance parameter
ε, (b) the squares of the amplitude at saturation of the mode (|A|2sat) versus ε and (c)
squares of the predicted limiting amplitudes (|A|2lim) versus |A|2sat. For all panels, the red
triangles (q, darker) correspond to mode A simulations, while the orange triangles (q,
lighter) correspond to mode C. The dashed lines in (b) and (c) map the linear functions
|A|2sat = ε and |A|2sat = |A|

2
lim, respectively.

inclination ranges. The regular mode is shown to possess Floquet multipliers and
spatio-temporal characteristics consistent with the mode A observed in the wakes
of circular and square cylinders, and is the primary mode through which the flow
transitions for cylinder inclinations 0◦ 6 α . 34.6◦ (denoted mode A1, possessing
instability wavelengths ranging 4.6 . λA/h . 6.0) and 55.4◦ . α 6 60◦ (denoted
mode A2 with instability wavelengths 4.2 . λA/h . 4.4). The subharmonic mode
instead exhibits a negative real only Floquet multiplier and shows the instability
structure to have a period that is twice that of the two-dimensional flow, consistent
with descriptions of the mode C from various prior studies. Mode C is predicted as
the first instability across cylinder inclinations 34.6◦ . α . 55.4◦, with an instability
wavelength ranging 1.6 . λC/h . 1.8. The peak growth rates corresponding to
mode A1 and mode A2 for all cylinder inclinations demonstrate a linear dependence
with (Re − ReA)/ReA, while the peak growth rates of mode C lack the same level
of linearity with (Re − ReC)/ReC. Despite this, the trends still describe mode C
developing more rapidly than mode A with increasing Re past its onset.
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An attempt to elucidate and quantify deviations of the symmetry of the underlying
two-dimensional base flow from those of the Kármán vortex street was presented.
Suggested measures for the degree of asymmetry possessed by the base flow are
the εω, εt and εΓ parameters, which describe the imbalance in the peak vorticities of
consecutive counter-rotating vortices in each period, the deviations from the anti-phase
temporal arrangements of vortices and a net circulation measure, respectively. The
performance of each measure was discussed, showing εΓ to provide the strongest
correlation to the mode C predictions obtained through stability analysis of the flow –
where the stability analysis predicts the mode C to be unstable, the corresponding base
flows show a strong deviation in the near wake which rapidly decreases downstream
of the cylinder, particularly for the εt and εΓ measures. Cylinder inclinations unstable
to mode A instead show these deviation measures to remain fairly constant spatially
through the near wake, particularly the εΓ measure. These results were verified by
applying the same deviation measures to the two-dimensional time-periodic wakes
of flows past an inclined square cylinder, and then comparing the results against
the predicted stability characteristics as reported previously in Sheard et al. (2009)
and Yoon et al. (2010). The results describe a similar spatial variation at cylinder
inclinations where stability analysis predicts mode C to be unstable, similar to the
case for the triangular cylinder wake. Whether these results hold true for all flow
systems exhibiting the mode C is presently unknown, but the ability to delineate the
occurrence of the various instability modes through the two-dimensional base flow
would be quite useful in attempting to further investigate the physical mechanism
behind these transitions.

Analysis of the results from three-dimensional flow simulations at low Reynolds
numbers past the predicted onset of instability shows the transitions to be supercritical
for all cylinder inclinations, with mode C being more strongly supercritical than
mode A. This is reflected in the mode C flows reaching an asymptotic state more
rapidly than those through mode A. The final saturation amplitudes of mode C are
also shown to be small compared to those of mode A, and these saturation amplitudes
remain close to those predicted through the linear approximation, similar to those for
mode B in the wake of circular cylinders as described by Henderson (1997).
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