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a b s t r a c t 

A linear stability analysis is conducted for horizontal natural convection under a Gay-Lussac (GL) type 

approximation in a relatively shallow enclosure cavity. The GL type approximation is developed based 

on extending density variations to the advection term as well as gravity term through the momentum 

equation. Such a treatment invokes the GL parameter ( Ga = β�θ ) as the non-Boussinesq parameter with 

a physical value ranging 0 ≤ Ga ≤ 2 , characterising deviation from the classic Boussinesq approximation. 

Results are compared against the Boussinesq approximation in terms of the Nusselt number and skin 

friction. Extreme values of Ga are found to produce a counter-rotating convection cell at the hot end of 

the enclosure at higher Rayleigh numbers - a feature absent from Boussinesq natural convection mod- 

eling. For stability analysis purposes, linearized perturbation equations under the GL type approxima- 

tion are derived and solved to characterise the breakdown of the steady two-dimensional solution to 

infinitesimal three-dimensional disturbances. Stability results predict that the flow remains stable up to 

R a cr 1 = 6 . 46 × 10 8 for the Boussinesq case ( Ga = 0 ), and then with increasing Ga the flow briefly sta- 

bilises to Ga ∼= 

0 . 2 , then becomes progressively more unstable with futher increases in Ga , yielding a 

critical Rayleigh number R a cr 2 = 4 . 23 × 10 8 at G a max = 2 . Three-dimensional transition is predicted to be 

via an oscillatory instability mode of the steady base flow having a spanwise wavelength that increases 

as Rayleigh number increases. 3D-DNS simulations verify the linear stability analysis predictions in terms 

of growth rate, and elucidate the mode shapes achieved at saturation. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Horizontal convection (HC) is a distinct class of NC in which 

he fluid is heated unevenly across a horizontal boundary. Due to 

C contribution in scientific applications such as earth’s oceanic 

1-3] and atmospheric [4-6] flow patterns and the insight that it 

rovides for the industrial processes such as glass melting [7-8] , 

his class of NC has attracted the attention of researchers during 

he recent decade. As an idealised representation of myriad natu- 

al convection systems, numerical simulation of HC is often per- 

ormed within enclosed domains, such as square and rectangu- 

ar wall-heated enclosures with buoyancy supplied either from the 

pper or lower horizontal boundary. For instance, oceanic circu- 

ation constitutes transportation of warm fluids from the tropical 

egions to high latitudes, where it cools and sinks, subsequently 

efore an up-welling flow across the ocean basin completes the 

ow path [9] . 
∗ Corresponding author. 

E-mail addresses: peyman.mayeli@monash.edu (P. Mayeli), 

zekih.Tsai@monash.edu (T. Tsai), Greg.Sheard@monash.edu (G.J. Sheard). 
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Recent decades have seen a resurgence of horizontal convec- 

ion research. Chiu-Webster et al. [8] , studied the HC for very vis- 

ous fluids in rectangular cavities with aspect ratios ranging 0 . 01 ≤
 ≤ 2 up to Ra = 10 10 and reported Rossby’s [10] famous one-fifth 

ower scaling of the average Nusselt number ( N u ave ∼ R a 1 / 5 ) for 

C. A similar study was performed by Sheard & King [11] for sev- 

ral aspect ratios ranging 0 . 16 ≤ A ≤ 2 up to Ra = 10 10 at Pr = 6 . 14 .

hey reported aspect ratio dependence of N u ave and boundary 

ayer thickness at low Ra , whereas these become independent of 

spect ratio for higher Ra once convection becomes the most dom- 

nant part of the heat transfer mechanism. Hossain et al. [12] anal- 

sed HC for very small aspect ratios ranging 0 . 001 ≤ A ≤ 0 . 16 rele-

ant to oceanic scale at Pr = 6 . 14 up to Ra = 10 12 . They found that

he transition from the diffusion-dominated regime to convection- 

ominated regime scales with A 

−4 , whereas the corresponding av- 

rage Nusselt number at the threshold was proportional to A it- 

elf. Tsai et al. [13] studied linear stability analysis of HC in a 

ather shallow rectangular cavity with an aspect ratio of 0.16 under 

he OB approximation. Their computations indicate that the flow 

eld remains stable up to Ra = 3 . 2 × 10 8 for the Prandtl num- 

er spanning 0 . 1 ≤ Pr ≤ 10 . Tsai et al. [14] also conducted stability

nalysis of HC with different tem perature profiles for the heating 
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Fig. 1. A schematic of the HC problem and boundary conditions in a rectangular 

enclosure. 
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Nomenclature 

A Height to length aspect ratio 

c f skin friction coefficient 

e g unit vector in gravity direction 

Fr Froude number 

g gravity 

Ga Gay-Lussac parameter ( β�θ ) 

H height of the cavity 

k spanwise wavenumber 

L length of the cavity 

N f Number of Fourier modes 

Nu Nusselt number 

p pressure 

p 

∗ modified pressure 

P dimensionless pressure 

Pr Prandtl number 

Ra Rayleigh number 

T Temperature 

x coordinate vector 

X dimensionless coordinate vector 

u velocity vector 

U dimensionless velocity vector 
ˆ U eigenmode 

α thermal diffusivity 

β isobaric expansion coefficient 

θ physical temperature 

� dimensionless temperature 

μ kinematic viscosity 

μ eigenvalue 

ν kinematic viscosity 

ρ density 

ρ0 reference density 

τw 

wall shear stress 

φ gravitational potential 

Subscript 

ave average 

c cool 

h hot 

loc local 

tot total 

ref reference 

art of the geometry. They found that transition from steady to 

ime-periodic convection occurs through a supercritical bifurcation 

cross all imposed temperature profiles, with the step profile be- 

ng the most unstable one. Linear stability analysis of HC under the 

B approximation is also performed by Passaggia et al. [15] for a 

tep temperature distribution along the horizontal surface in a cav- 

ty with A = 0 . 25 at Pr = 1 . They considered Dirichlet and free-slip

oundary conditions for their simulations and reported the criti- 

al Rayleigh number equal to 2 × 10 7 and 1 . 7 × 10 8 , respectively. 

yubimov et al. [16] studied the Rayleigh-Bénard-Marangoni sys- 

em with horizontal temperature gradient under a weakly com- 

ressible type approach in which the momentum and continuity 

quations were considered compressible while the energy equation 

s treated as incompressible. 

In all of these aforementioned works, HC was analysed under 

he Oberbeck—Boussinesq (OB) approximation, which is restricted 

y different assumptions such as small temperature differences. 

 review of different scenarios for non-OB simulation of natural 

onvection related problems can be found in Ref. 17 . One of the 

ncompressible-based strategies to go beyond the OB approxima- 

ion is the Gay-Lussac (GL) approach, which is developed based 
2 
n considering density variations beyond the buoyancy term of the 

omentum equations, i.e. continuity and the advection/convection 

erms of the momentum and energy equations, respectively. An 

mergent feature of this approach is the GL parameter compris- 

ng the product of the volumetric thermal expansion coefficient 

 β) and the reference temperature difference ( �θ ). Pesso & Piva 

18] used this strategy for the square cavity benchmark problem 

ith large density variations. Recently, a GL-type approach was 

roposed by Lopez et al. [19] for non-OB treatment of rapidly ro- 

ating flows, in which density variations were extended only to 

he centrifugal part of the advection term to capture centrifu- 

al effects arising from background rotation in those rapidly ro- 

ating flows. Mayeli & Sheard [20-21] continued this approach 

nd showed that the GL parameter may be also expressed in 

erms of the Rayleigh, Prandtl, and Froude numbers ( Ga = RaPrFr ) 

ith a maximum value ( G a max = 2 ) to avoid an unphysical density 

alue. 

The aim of this study is to investigate the effects of the GL 

odification to buoyancy on the dynamics, heat transfer and lin- 

ar stability of horizontal convection flow. The rest of the pa- 

er is organized as follows. In section 2, geometry and bound- 

ry conditions are described. In section 3, the non-OB approx- 

mation is demonstrated, and linearized perturbation equations 

nder the GL type approximation are presented. Section 4 deals 

ith the temperature difference, local Nusselt number and fric- 

ion coefficient results obtained from the GL and OB approxima- 

ions. Stability analysis results are presented and compared against 

he DNS results in Section 5 . Finally, conclusions are drawn in 

ection 6. 

. Horizontal convection problem and boundary conditions 

The GL-type approximation is applied for the HC problem in a 

ectangular enclosure with a fixed aspect ratio A = H / L = 0 . 16 . A

chematic of the problem associated with boundary conditions is 

hown in Fig. 1 . In this problem, a linear temperature distribution 

s applied along the bottom wall while other surfaces are thermally 

solated (zero temperature gradient normal to the walls), and the 

uid is taken to have a constant Prandtl number Pr = 1 , applicable 

o fluids including air. Therefore, the fluid is cooled and heated up 

long the left and right side of the bottom wall, respectively, and a 

ounter-clockwise circulation is formed due to a buoyancy-driven 

ow. A no-slip boundary condition is imposed on all boundaries 

or the velocity. 

. Governing equations under the Gay-Lussac approximation 

nd numerical consideartions 

The GL approximation is an incompressible based strategy that 

ollows the fundamentals of the OB approximation including negli- 

ible viscous heat dissipation, constant thermophysical properties, 

mall temperature differences, and small hydrostatic pressure vari- 

tions compared to thermodynamic presseure variations. However 
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A

nder the GL approximation for buoyancy-driven flows, in contrast 

o the OB approximation in which the density variations are re- 

tricted to the gravity term, density variations are extended be- 

ond the gravity term. Derivation of the governing equations under 

he GL approach begins with dividing the incompressible Navier—

tokes equations plus an advection-diffusion transport equation 

or temperature, taking density ρ to be variable, and dividing the 

quations by a reference density ( ρ0 ) in the absence of additional 

ody forces and neglecting viscous heat dissipation in the energy 

quation, 

 · u = 0 (1) 

 

ρ/ ρ0 ) ∂ u /∂ t ∗ + ( ρ/ ρ0 ) ( u · ∇ ) u = −( 1 / ρ0 ) ∇p + ν∇ 

2 u + ( ρ/ ρ0 ) e g 

(2) 

 

ρ/ρ0 ) ∂ T /∂ t ∗ + ( ρ/ρ0 ) ( u · ∇ ) T = α∇ 

2 T . (3) 

onsistent with conventional application of the OB approximation, 

 linear state relation ρ/ ρ0 = 1 − βθ connecting density to tem- 

erature is adopted. The dimensionless form of the governing mass 

onservation, momentum and temperature transport equations un- 

er the GL approximation may be written as 

 · U = 0 (4) 

 

1 − Ga�) ∂ U /∂ t + ( 1 − Ga�) ( U · ∇ ) U = −∇P + Pr ∇ 

2 U − RaPr�e g 

(5) 

 

1 − Ga�) ∂ �/∂ t + ( 1 − Ga�) ( U · ∇ ) � = ∇ 

2 �. (6) 

ere dimensionless symbols include velocity U , time t , pres- 

ure P and temperature �. These have respectively been non- 

imensionalised by 

 = 

t ∗α
L 2 

, X = 

x 

L 
, Y = 

y 

L 
, U = 

uL 

α
, P = 

p 

∗L 2 

ρα2 
, � = 

θ

�θ
= 

T − T 0 

T h − T c 
. 

(7) 

qs. (4 - 6 ) introduce the Gay-Lussac parameter Ga = β�θ that is 

wice of the relative temperature difference ( Ga = 2 ε), a Rayleigh 

umber characterising the ratio of buoyancy to viscous dissipation, 

a = g β�θL ref 
3 
/ να, and the Prandtl number characterising the ra- 

io of viscous to thermal dissipation, Pr = ν/α. The Gay-Lussac 

aramter is equivalent to the Boussinesq parameter describing the 

elative density difference [22] . As it will be shown later, under 

his approach the Gay-Lussac paramter should not exceed a spec- 

fied range for a physical density value. It should be noted that, 

ince in the considered range of Ra and Ga at a fixed Pr = 1 , the 

ase flow remains steady, non-Boussinesq effects are not consid- 

red in the transient terms. Also, e g is the unit vector in the direc- 

ion of gravity ( e g = g / | g | ). 
It may be seen that as Ga → 0 ( �θ → 0 ), the governing equa-

ions under the conventional Boussinesq approximation are recov- 

red. In the present formulation, ( 1 − Ga�) acts as a pre-factor 

n different terms and its effect becomes more important by in- 

reasing the reference temperature difference. In practice, Ga can- 

ot exceed a specified value to avoid an unphysical (negative) 

ensity, 

/ ρ0 = 1 − βθ = 1 − β�θ� = 1 − Ga� > 0 . (8) 

ased on the defined dimensionless temperature, here the maxi- 

um Ga cannot exceed 2 ( G a max = 2 ). As mentioned earlier, Ga is 

 product of Rayleigh, Prandtl, and Froude numbers ( Ga = RaPrFr ), 

here Fr is the Froude number ( Fr = α2 / g L 3 ) characterising the ra- 

io of inertia to gravity. It can be shown that, ignoring ( 1 − Ga�) 

refactor from the continuity equation simplifies the the full GL 
3 
pproach as an incompressible based strategy and reduces the 

omputational cost while the final results under two approaches 

re almost identical [23-24] . The simplified GL approach follows 

he same fundamentals of the Boussinesq approximation as men- 

ioned earlier and physical range of the Gay-Lussac paramter. In 

his study, we follow the idea proposed by Lopez et al. [19] , where

 GL-type approximation was applied to the momentum advection 

erm to capture centrifugal effects in rotating flows. Ignoring den- 

ity variations in the momentum time derivative and thermal con- 

ection terms simplifies the GL approximation [20-21] to, 

 · U = 0 (9) 

 U /∂ t + ( U · ∇ ) U = −∇P + Pr ∇ 

2 U − RaPr�( e g − Fr ( U · ∇ ) U ) 

(10) 

 �/∂ t + ( U · ∇ ) � = ∇ 

2 �. (11) 

q. (10) is consistent with the momentum equation under the OB 

pproximation, except for the additional inertial buoyancy term on 

he right-hand side of the momentum equation. When expressed 

n this form, it is apparent that the action of this additional term 

s to modify the effective direction (and strength) of the gravity 

ocally throughout the flow, which is ignored in the conventional 

oussinesq approximation. Indeed, regions that are experiencing 

igher spatial accelerations described by ( U · ∇ )U , will experience 

eviations from the OB buoyancy approximation. The strength of 

hese deviations relative to gravity is described by Fr , with Fr → 0 

hence Ga → 0 ) recovering the classical OB approximation. 

The linearised Navier—Stokes equations under the GL-type ap- 

roximation are derived in the conventional fashion, whereby ve- 

ocity, pressure and temperature are decomposed into a 2D base 

ow and infinitesimal fluctuating disturbance component, i.e. U = 

 2 D + U 

′ , P = P 2 D + P ′ and � = �2 D + �′ , where constant | ε| << 1 .

hese decompositions are substituted into Eqs. (9) to (11) , and re- 

ention of terms of order O (ε) reveals the following equations, 

 · U 

′ = 0 , (12) 

 U 

′ /∂t = 

[
1 − RaPrFr ̄�

]((
Ū · ∇ 

)
U 

′ + 

(
U 

′ · ∇ 

)
Ū 

)
= −∇ P 

′ + Pr ∇ 

2 U 

′ − RaPr�′ (e g − Fr 
(
Ū · ∇ 

)
Ū 

)
, (13) 

 �′ /∂t = −
[(

Ū · ∇ 

)
�′ + 

(
U 

′ · ∇ 

)
�̄

]
+ ∇ 

2 �′ . (14) 

 further important additional simplification is possible thanks to 

he invariance of the geometry in the spanwise direction. The flow 

ariables may be represented as Fourier series in the z -direction, 

nd a consequence of the linearization of Eqs. (12–14) is that each 

ourier mode couples only with the 2D base flow, not other modes. 

t is therefore efficient to evolve individual 2D Fourier modes us- 

ng the same spatial discretisation as used for the base flow, rather 

han evolving a full three-dimensional perturbation field. The di- 

ensionless spanwise-periodic wavelength of an individual pertur- 

ation field, λ = 2 π/ k , where k is the spanwise wavenumber char- 

cterising the perturbation. This reduces an evolution of a three- 

imensional perturbation field to a set of 2D evolutions, with k 

merging as an additional parameter to Rayleigh number, Froude 

umber and Prandtl number. By defining A(τ ) to represent the 

inear evolution operator for time integration of a perturbation 

eld comprising a single phase-locked spanwise Fourier mode ˆ Q = 

 ̂

 U , ̂  V , ˆ W , ˆ �) T over time interval τ , i.e. 

ˆ 
 ( t + τ ) = A ( τ ) ̂  Q , (15) 

n eigenvalue problem may then be constructed as 

 ( τ ) ̂  Q = μ ˆ Q , (16) 
k k k 
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Fig. 2. Meshes having (a) 9 (b) 16 (c) 20 and (d) 25 elements, with intra-element grids displayed over the 30 × 30 quadrature points. 
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Table 1 

Mesh resolution study of HC problem at Ra = 4 × 10 8 and Ga = 2 

with the different number of elements and a high order of La- 

grangian polynomial (P = 30). 

Number of elements L 2 norm | Di f f erence | (%) 

9 21557.9175562921 2.096 

16 21557.9627504395 6 × 10 −5 

20 21557.9774402941 2 × 10 −7 

25 21557.9775014154 —

i  

m

s

c

l

s

a

a

f

i

i

fl

N

f

N

aving complex eigenvalues μk and eigenvectors ˆ Q k . The eigen- 

alues μk relate to the exponential growth rate σ and angular 

requency ω through μ = exp [ ( σ + i ω ) τ ] . Stability is determined 

y the magnitude of the leading eigenvalue, with | μ| = 1 corre- 

ponding to neutral stability, while | μ| > 1 and | μ| < 1 respec-

ively represent unstable and stable scenarios. As the base flows 

re time-invariant in this study, the analysis may proceed with 

n arbitrarily selected time interval τ . Stability analysis is per- 

ormed by determining the leading eigenmode magnitude across a 

road domain of wavenumbers ( 0 ≤ k ≤ 70 ). The bifurcation may 

e either synchronous ( ω = 0 ) or oscillatory ( ω � = 0 ). Combina-

ions of Ra and Ga are sought corresponding to neutral stability, 

.e. σmax = 0 . 

The eigenmodes for the stability analysis are computed using an 

mplicitly restarted Arnoldi method [25-26] implemented through 

he ARPACK eigenvalue solver [27] . The present solver has been im- 

lemented and validated previously in [11-14] . 

The governing equations are spatially discretised using a high- 

rder nodal spectral-element method and evolved in time using 

 third-order backward differentiation scheme [28] . The present 

ode has been validated and employed in several natural convec- 

ion problems [11-14] . To explore the mesh independence of the 

olutions, several meshes were constructed having different num- 

ers of elements. In each mesh, elements were concentrated in 

he region where spatial flow variations are expected to be great- 

st: towards the heated end of the bottom boundary where buoy- 

ncy enters the flow. In each case, element polynomials of or- 

er P = 30 were adopted. The mesh independency is checked in 

erms of L 2 norm (taken here as the domain integral of the veloc- 
4 
ty magnitude) in Table 1 at Ra = 4 × 10 8 and Ga = 2 , with the

eshes used being shown in Fig. 2 . These parameters were cho- 

en as they are expected to represent a taxing case to resolve. The 

omputed L 2 norms obtained once the flows settled to their equi- 

ibrium states (see Table 1 ) indicate that the 20-element mesh re- 

olves the flow to a high accuracy, and this resolution is used here- 

fter. 

A similar test was performed for the mesh having 20 elements 

nd different orders of polynomials from P = 20 to 40 and it was 

ound that, a polynomial of order P = 30 is sufficient for the mesh 

ndependency purposes. 

Once the thermo-flow field is obtained, results are compared 

n terms of the local Nusselt number and skin friction. Since the 

ow the is thermally isolated from three sides in this study, local 

usselt number along the bottom horizontal wall is calculated as 

ollow 

 u loc = 

∣∣∣∣∂�

∂Y 

| wall 

∣∣∣∣. (17) 
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Fig. 3. Comparison of temperature fields at different Ra and Ga values, as stated. The top frame of each plot shows the absolute temperature difference between the Ga = 2 

and Ga = 0 cases. 
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he friction coefficient along the surface based on the dimension- 

ess velocity is defined as 

 f = −2 Pr 

[
τxx τxy 

τyx τyy 

][
n x 

n y 

]

= −2 Pr 

[
2 ∂ U /∂ X ∂ U /∂ Y + ∂ V /∂ X 

∂ U /∂ Y + ∂ V /∂ X 2 ∂ V /∂ Y 

][
n x 

n y 

]
. (18) 

n Eq. (18) , n x and n y are the normal vector of the surface in hor-

zontal and vertical directions, respectively. The magnitude of fric- 

ion coefficient is calculated as 

 f = 

√ 

( c f x ) 
2 + 

(
c f y 

)2 
(19) 

. Analysing thermo-flow field at different Gay-Lussac 

arameter values 

Results of HC under the GL-type and OB approximations are 

nalysed in this section. A qualitative comparison is performed by 

epicting the dimensionless temperature fields at different Ra and 

a starting from G a max at the bottom frame of each plot in Fig. 3 .

y decreasing Ga , the temperature field is evolved so that results 

nder the OB approximation ( Ga = 0 ) are retrieved. The top frame 

n each figure shows the absolute temperature difference between 

he GL-type approximation with G a max = 2 and results under the 

B approximation ( Ga = 0 ). At Ra = 4 × 10 5 ( Fig. 3 a) conduction

s still the dominant heat transfer mechanism, and temperature 

elds corresponding to different Ga values do not show a signif- 

cant mismatch. In this state, the absolute temperature difference 
5 
s observed mostly occurring along the top surface with a max- 

mum value around 0.03 ( ��max = 0 . 03 ). As the Rayleigh num- 

er increases, the magnitude of the absolute temperature differ- 

nce is also augmented in the top frame. Results start to show 

he centrifugal effects in Fig. 3 b at Ra = 4 × 10 6 , where convec- 

ion starts to become the dominant heat transfer mechanism and 

he effect of different Ga values is sensible across the bottom-right 

orner of the cavity. A comparison among temperature fields in 

ig. 3 b reveals that, under the GL-type approximation, by decreas- 

ng Ga value, isotherm-lines show less deformation in the hori- 

ontal direction, and most of the difference occurs in the verti- 

al direction. Most of the temperature difference at this Rayleigh 

umber still occurs along the top side with a maximum value of 

round 0.1 ( ��max 
∼= 

0 . 1 ). At Ra = 4 × 10 7 ( Fig. 3 c) where the

ow is convection dominated, a thin thermal boundary layer is 

ormed along the bottom side, and the effect of different Ga val- 

es is apparent on the temperature field, especially at the rising 

lume region across the bottom-right corner. Results indicate in- 

reasing Ga (and consequently the reference temperature differ- 

nce) has a damping effect on the formation of the rising plume 

n convection-dominated regime. In other words, lower values of 

a let a broader area to be affected by the warming section of 

he bottom surface. At this Rayleigh number, large values of the 

emperature differences shift their location toward the bottom- 

ight corner; however, apparent temperature differences along the 

op side are observable. Results at Ra = 4 × 10 8 are presented in 

ig. 3 d. A significant difference among the temperature fields cor- 

esponding to the different Ga values is evident in this plot. Results 



P. Mayeli, T. Tsai and G.J. Sheard International Journal of Heat and Mass Transfer 182 (2022) 121929 

Fig. 4. A comparison of stream-function at different Ra and Ga values, as stated. The top frame of each plot shows the absolute temperature difference between Ga = 2 and 

Ga = 0 . Dark to light shaded contours show respective maximum and minimum values of stream-function. The minimum and maximum of each figure’s legend are set equal 

together. 
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ndicate that, under the GL-type approximation, a thicker ther- 

al boundary layer is formed along the horizontal bottom wall 

ompared to the OB approximation. The damping effects of the 

arger Ga on the rising plume region are also visible in this figure. 

he maximum absolute difference at this high Rayleigh number is 

bout 0.12, which concerning the maximum dimensionless tem- 

erature shows about 24% mismatch between G a max and Ga = 0 

 | ��| / �max = 0 . 24 ). 

In Fig. 4 , stream-functions at different Ga and Ra are presented. 

n condution-dominated regime ( Fig. 4 a and b), two separate re- 

ions are distinguishable at the right half of the cavity for large 

L parameters ( Ga = 2 and 1.5) that are turned to smaller regions 

n the convection dominated regime ( Fig. 4 c and d). As seen, for

mall and moderate Ga ( Ga = 0 , 0 . 5 , 1 ), up to Ra = 4 × 10 6 there

s an asymmetric distribution of the stream-function inside the ge- 

metry but by increasing the Rayleigh number, a stronger circu- 

ation forms across the top-right region of the enclosure, reflect- 

ng the plume effect to generate a strong circulation across this 

egion. 

.1. Local Nusselt number 

The local Nusselt number results at different Ra and Ga along 

he bottom wall are presented in Fig. 5 . In general, the local Nus-

elt number is increased by increasing the Rayleigh number, as ex- 

ected. At Ra = 4 × 10 5 ( Fig. 5 a), the local Nusselt number has 

n almost symmetric distribution along both cooling and heat- 

ng sections of the bottom wall, and it does not show sensitiv- 
6 
ty to Ga alteration. This behavior is attributed to a conduction- 

ominated regime at this Rayleigh number. As the Rayleigh is 

ncreased to Ra = 4 × 10 6 ( Fig. 5 b), a clear mismatch among 

 u loc corresponding to different Ga values is visible. In this fig- 

re, the local Nusselt number undulates along the bottom wall 

o that its value for the higher Ga has a larger value only over 

f 0 . 3 ≤ X ≤ 0 . 65 . 

In the convection-dominated regime ( Fig. 5 c and d), the local 

usselt number exhibits a linearly decreasing trend over the left 

art of the base, while over the right part, a linearly increasing 

rend is seen up to a maximum, before a significant deficit is pro- 

uced. The linear regions are consistent with the formation of a 

onvective boundary layer adjacent to the bottom surface. The sig- 

ificant reduction in the value of the local maximum in N u loc and 

he leftward shift in its horizontal location with increasing Ga un- 

erpins the local impact of centrifugal effects in the buoyancy sup- 

ly region at the right side of the enclosure. This is underscored by 

his region containing the largest absolute differences in tempera- 

ure between Ga = 0 and 2 cases, as shown earlier in Fig. 3 (c,d).

n this region, the horizontally convecting flow gains buoyancy 

nd erupts vertically into the side-wall plume. This is a region 

omprising both rotation and thermal gradients inciting centrifugal 

ffects. 

.2. Skin shear stress 

The shear stress values across the horizontal boundaries are in- 

estigated in Fig. 6 in this section. The solid and dashed-lines show 
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Fig. 5. The local Nusselt number distribution along the bottom surface at different Ra and Ga values as stated. Fig. 5 b shows the cooling and heating sections along the 

bottom side. 
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he magnitude of the friction coefficient Eq. (19 ) along the bottom 

nd top walls, respectively. In general, c f is increased by increasing 

he Rayleigh number, as expected. 

Results of the conduction dominated regime at Ra = 4 × 10 5 

 Fig. 6 a) indicates c f has a symmetric distribution along both sur- 

aces at Ga = 0 , but as the Ga is increased, a linear distribution is 

btained for the c f with a more considerable value along the bot- 

om surface and a local maximum approximately at X 

∼= 

0 . 175 for 

oth surfaces at moderate Ga values ( Ga = 0 . 5 & 1 ). A second local

aximum is observed approximately at X 

∼= 

0 . 9 for large Ga val- 

es ( Ga = 1 . 5 & 2 ). Local maxima of the c f along both horizontal

urfaces at Ga = 1 . 5 and 2 may be attributed to the second core

hich is formed at high reference temperature differences (two 

ottom frames of Fig. 4 a). A similar trend is observable for c f dis- 

ribution at Ra = 4 × 10 6 in Fig. 6 b. At Ra = 4 × 10 7 ( Figs. 6 c) and

a = 4 × 10 8 ( Fig. 6 d), the general behavior of c f distribution be- 

omes reverse for the bottom wall so that a more symmetric dis- 

ribution of the c f is obtained by increasing Ga value. Another ex- 

iting feature of the c f distribution at the convection-dominated 

egime is the large magnitude of this parameter along the top wall 

pproximately at X 

∼= 

0 . 9 , which decreases by increasing Ga value. 

n other words, both of the Fig. 6 c and d indicate that at convection

ominated regime, the strong rising plume creates a large c f value 

cross the top-right region. Finally, the strange behavior of the c f 
istribution at the bottom-right corner is attributed to the emer- 

ence of a counter-rotating cell (two bottom frames of Fig. 4 c and 

) at a high Ga value that is observable at convection-dominated 

egime. This feature is absent from simulations employing the con- 

entional Boussinesq model ( Ga = 0 ). 
7 
. Stability analysis 

Attention is now turned to the stability of these flows to 

mall three-dimensional disturbances, and the effects of varying 

ayleigh number, spanwise wavenumber and GL parameter at a 

xed Prandtl number, Pr = 1 . The precision of the eigenvalue μ
nd eigenmode ˆ U produced by subspace iteration is defined by the 

esidual 

 = 

∥∥A ̂

 U − μ ˆ U 

∥∥ (20) 

here ‖ · ‖ is the vector norm. Obtaining the leading eigenvalue 

nd the corresponding eigenmode at each wavenumber relies on 

n iterative process which is ceased as soon as Res < 10 −7 is 

chieved. Nevertheless, the eigenmodes are resolution-dependent. 

 mesh resolution study for the eigenvalue computations across 

ave number 0 ≤ k ≤ 70 with different number of elements pro- 

ided in Fig. 2 with a high polynomial degree of 30 within each el- 

ment ( N p = 30 ) is performed. The absolute difference of the lead- 

ng eigenvalues obtained from different mesh resolutions having 

6, 20, and 25 elements are checked at Ra = 4 × 10 8 with Ga = 2 

nd Ra = 6 . 5 × 10 8 with Ga = 0 . It is found that a mesh resolution

aving 20 elements ( Fig. 2 c) has enough accuracy for the eigen- 

alue problem as the maximum difference of the converged lead- 

ng eigenvalues for the mentioned resolution was less than 0.03% 

ompared to a higher resolution having 25 elements ( Fig. 2 d) for 

oth cases. 
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Fig. 6. Distribution of the c f along the bottom (solid-lines) and top (dash-lines) surfaces at different Ra and Ga as stated. 
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.1. Growth rates and stable regions under the Gay-Lussac type 

pproximation 

Under the GL approximation at each Ra , there exists a critical 

maximum) Ga value that beyond which the flow becomes un- 

table. On the other hand, the Ga value is restricted to a max- 

mum value to avoid an unphysical density ( G a max = 2 ) as ex- 

lained earlier in Eq. 5 . Besides, the maximum Ga value is also 

roportional to the maximum physical Froude number at each 

ayleigh and Prandtl ( F r max = G a max / RaPr ). In this respect, calcula- 

ions are performed at G a max to find the primary critical Rayleigh 

umber at which the flow becomes unstable for the first time. 

hereafter, by increasing the Rayleigh number, the critical Ga value 

hat beyond which the flow becomes unstable to 3D infinitesi- 

al disturbances is sought. Predicted growth rates at G a max and 

0 2 ≤ Ra ≤ 4 . 5 × 10 8 and spanwise wavenumber 0 ≤ k ≤ 70 are 

resented in Fig. 7 . The presented growth rates of disturbances 

n Fig. 7 a and b indicate the flow remains unconditionally stable 

or any physical Ga value up to Ra ≤ 4 × 10 8 . The growth rates 

esult in Fig. 7 a also indicate that the leading stable eigenvalue 

as a real mode for all wavenumbers up to Ra = 10 6 . As seen, 

he growth rate of the leading eigenmode decreases monotonically 

y increasing the wavenumber in conduction dominated regime 

 Fig. 7 a). Stability results in Fig. 7 b indicate that as the Rayleigh

umber exceeds from 10 8 , some of the leading eigenvalues turn 

nto complex-conjugate pairs for k ≥ 32 . The growth rate results at 

a ≥ 10 8 in Fig. 8 b show a conjugate leading eigenvalue for k ≥ 16 . 

s seen in Fig. 7 b, by increasing the Rayleigh number from 10 8 to 

 × 10 8 , the solid lines (which connect dominant leading eigen- 

alues) are forming a local maximum close to the neutral stabil- 
8 
ty limit ( σ = 0 ). In Fig. 7 c, the Rayleigh number is delicately in-

reased from 4 . 1 × 10 8 to 4 . 5 × 10 8 by a small increment rate to

nd the primary critical Rayleigh that first produces σ = 0 and the 

orresponding wavenumber at which this occurs. Stability results 

n Fig. 7 c indicate the solid-line of connecting leading eigenval- 

es intersects with the neutral stability line somewhere between 

a = 4 . 2 × 10 8 and Ra = 4 . 3 × 10 8 and 42 < k < 44 . The critical

ayleigh number at G a max is interpolated between the maximum 

eading eigenvalues equal to R a cr 1 = 4 . 23 × 10 8 and k cr 1 = 43 . 66 .

tability results at interpolated primary critical Rayleigh number 

ntersecting the neutral stability line ( σ = 0 ) are checked and ap- 

roved in Fig. 7 d. In Fig. 7 c and d ( Ra > 4 × 10 8 ), a local maximum

s also observed at around k ∼= 

36 , but the corresponding mode al- 

ays remains in the stable region ( σ < 0 ). 

After finding the primary critical Rayleigh number, stability re- 

ults are pursued at higher Rayleigh numbers. For the sake of 

revity, a few stability results are presented in Fig. 8 . For instance, 

t Ra = 4 . 75 × 10 8 ( Fig. 8 a), the critical Ga value corresponding to 

he neutral stability occurs close to Ga = 1 . 5 while by increasing 

he Rayleigh number to 5 × 10 8 in Fig. 8 b, the critical Ga value is 

lose to 1.3. The critical Ga value intersecting σ = 0 is interpolated 

etween two stable and unstable Ga values at each Rayleigh num- 

er. Monotonic decreasing rate of the critical Ga value by increas- 

ng the Rayleigh number with an increment rate of 0 . 25 × 10 8 

ontinues up to Ra = 6 . 25 × 10 8 (see Fig. 8 c & d). By increas-

ng the Rayleigh number, another local maximum is observed at 

round k ∼= 

20 but this mode is completely in the stable region 

 σ < 0 ). Presented stability results with Ga = 0 in Fig. 8 e indicate

he flow is unstable for Ra ≥ 6 . 50 × 10 8 with Ga = 0 . The sec- 

ndary critical Rayleigh number is interpolated equal to R a cr 2 = 
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Fig. 7. Growth rates of leading eigenmodes at G a max as a function of spanwise wavenumber for (a) 10 2 ≤ Ra ≤ 10 6 (b) 10 7 ≤ Ra ≤ 4 × 10 8 (c) 4 . 1 × 10 8 ≤ Ra ≤ 4 . 5 × 10 8 

(d) Ra = 4 . 23 × 10 8 . Hollow symbols represent real leading eigenvalues, while solid symbols represent complex-conjugate pairs of non-real leading eigenvalues. Solid lines 

connect successive dominant leading eigenvalues. 

Table 2 

Leading eigenmodes components at Ra = 6 . 5 × 10 8 

for two different Ga values. 

Ga Growthrate (σ ) Angular frequency ( ω) 

0.15 0.462378 0.997515 

0.20 0.438864 0.988598 

0.25 0.417707 0.982405 

0.30 0.533818 0.998714 

6

b  

t

G  

i

a

p

c

k  

s

s

i

r  

T

p

e

m

b

i

b

i

F

s

l

r

F

i

b

i

i

a

l

F  

b

5

b

c

i

d

d

t

p

 . 46 × 10 8 . The growth rate of the perturbations versus wavenum- 

er at the R a cr 2 with Ga = 0 is plotted in Fig. 8 f, and it is found

hat at k cr = 59 . 91 it produces σ = 0 . 

An interesting feature is found over a small range of non-zero 

a . A small stable region at Ra = 6 . 50 × 10 8 for 0 . 13 ≤ Ga ≤ 0 . 31

s detected, above the critical Rayleigh number at both smaller 

nd larger Ga . The growth rates predicted over this range are 

ortrayed in Fig. 9 a over the local Ga − Ra parameter space. The 

ritical wavenumber can be seen to decrease monotonically from 

 cr = 59 . 1 at Ga = 0 down to k cr 
∼= 

54 by Ga = 0 . 5 . This increasing

panwise wavelength with increasing Ga correlates with the ob- 

erved widening of the sidewall structures in these flows at Ga 

s increased (ref. Fig. 3 (c,d) and 4(c,d) in particular). This stable 

egion vanishes by Ra = 6 . 51 × 10 8 , as can be seen in Fig. 9 b.

his behaviour implies a complicated interplay between multi- 

le mechanisms underlying this global stability behaviour. Nev- 

rtheless, analysis of the real and imaginary parts of the eigen- 

odes along the locus of maximum growth, showing only slight 

ut monotonic variation with Ga (see Table 2 ) suggests that this 
9 
s the result of a single instability mode, rather than an overlap 

etween distinct modes. 

Plots of the critical Rayleigh number and corresponding dom- 

nant spanwise wavenumber as functions of Ga are shown in 

ig. 10 . The neutral stability curve intersects with Ga = 0 at the 

econdary critical Rayleigh number, i.e. R a cr2 = 6 . 46 × 10 8 . The 

ocal maximum in R a cr at Ga ∼= 

0 . 2 corresponds to the stabilised 

egion identified in Fig. 9 . The dominant wavenumber trend in 

ig. 10 b extends the observed progressive decrease with increas- 

ng Ga described previously in reference to Fig. 9 ; here reducing to 

elow k cr = 44 by Ga = 0 . 2 . 

Fig. 11 shows the marginal stability curves for three Ga values 

ncluding Ga = 0 , 1 and 2. The marginal curves are obtained by 

nterpolating σ ( k, Ra ) to zero growth rate for each Ra . As seen, 

n increase in Ga , the peak of the neutral stability curve shifts to 

ower wavenumbers, consistent with the aforementioned trends in 

ig. 10 . This reinforces that flow with a higher Ga value is less sta-

le than a smaller Ga value. 

.2. Instability mode structure 

The structure of the eigenvector fields for the neutrally sta- 

le leading instability mode at Ga = 0 , 1 and 2 will now be 

onsidered for further insight into the three-dimensional stabil- 

ty of these flows. It should be remembered that these fields 

epict the amplitude of the sinusoidal z-variation of the three- 

imensional disturbance; hence these represent a slice through 

he perturbation at a fixed z-value. Three-dimensionality ap- 

ears at the rising plume region and extends upward with the 
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Fig. 8. Growth rates of leading eigenmodes after primary critical Rayleigh number as a function of spanwise wavenumber for (a) Ra = 4 . 75 × 10 8 (b) Ra = 5 . 00 × 10 8 (c) 

Ra = 5 . 50 × 10 8 (d) Ra = 6 . 25 × 10 8 (e) Ga = 0 (f) Ra = 6 . 46 × 10 8 . Hollow symbols represent real leading eigenvalues, while solid symbols represent complex-conjugate 

pairs of non-real leading eigenvalues. Solid lines connect successive dominant leading eigenvalues. 
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raversing concerning the top-right corner of the geometry as 

hown by the spanwise velocity component in Fig. 12 . Strong 

panwise velocities across the rising plume region are consis- 

ent with a mechanism involving centrifugal instability in this re- 

ion. A similar counter-rotating vortices at Ga = 0 was seen in 

assagia et al. [38]. 

.3. Eigenvalue spectra evolution from stable to an unstable region 

Thus far, only the leading eigenmode at any ( Ra , Ga , k ) combi- 

ation has been considered. Eigenspectra containing several of the 

eading eigenvalues will now be considered to visualise the ex- 

ursion of the leading eigenvalue as neutral stability is traversed. 
10 
ig. 13 shows the eigenvalue spectra for a representative sample 

ase at Ra = 5 × 10 8 with Ga = 1 . 1 , 1 . 2 , 1 . 3 and 1.4 and k = 44 . 75

See Fig. 8 b for the context on this chosen set of parameters). Sta- 

ility results at this Rayleigh number and different GL parameter 

s already presented in Fig. 5 b. The dashed-line circle in this fig- 

re indicates the onset of instability ( | μ| = 1 ). As seen, the leading

igenvalues are two complex pairs that by increasing Ga value, the 

rst leading pair moves to the outside of the unit neutral stability 

ircle. As seen in Fig. 13 a, there are two closely grouped complex- 

onjugate pairs of eigenvalues, and as Ga increases the real part of 

he leading eigenvalue diminishes so that the faster-growing eigen- 

ode departs rapidly from its subdominant counterpart, departing 

he unit circle as Ga is increased to 1.4. 
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Fig. 9. Growth rate contour of the leading eigenmodes at wave number ranging 40 ≤ k ≤ 70 after the secondary critical Rayleigh number as a function of GL parameter for 

(a) Ra = 6 . 50 × 10 8 (b) Ra = 6 . 51 × 10 8 . The thick black line represents growth rate corresponding to neutral stability. 

Fig. 10. Stability results for the critical (a) Rayleigh number at different Ga and (b) wavenumber at different Ga . All modes are oscillatory, in both plots. 

Fig. 11. Marginal stability curves for HC with Ga = 0 , 1 and 2. Regions on the right 

of the curves represent flow conditions that are linearly unstable to 3D perturba- 

tions for that particular Ga . 
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The eigenvector fields corresponding to the leading eigenmode 

rom Fig. 13 (a) and (d) are visualised in Fig. 14 via plots of the

panwise vorticity, velocity and temperature perturbation fields at 

a = 5 × 10 8 . Fig. 14 a depicts the eigenfield at Ga = 1 . 1 , close to
11 
he onset of instability, while Fig. 15 b depicts the same quantities 

or an unstable field ( Ga = 1 . 4 ). At the lower Ga i.e. Ga = 1 . 1 , the

panwise vorticity and velocity fields indicate that the disturbance 

s strongest in the region of the flow where the buoyant plume 

scending along the right-hand (hot) end of the enclosure is de- 

ected leftward by the top boundary. On the othr hand, at Ga = 1 . 4

he spanwise vorticity field indicates that destabilisation of the 

ow has advanced upstream, with disturbance vorticity structures 

xtending the length of the right side-wall plume. 

.4. Nonlinear stability analysis to the three-dimensional state via 

NS 

This section presents 3D direct numerical simulation (DNS) to 

ssess/evaluate the linear stability analysis predictions. The 3D al- 

orithm exploits the geometry’s spanwise homogeneity, combin- 

ng the two-dimensional spectral-element discretisation in the x–y 

lane with a Fourier spectral method in the third direction normal 

o the x–y plane with periodic boundary conditions. Tests were 

onducted to determine the dependence of the computed three- 

imensional solutions on the number of applied Fourier modes. 

n these tests, the spanwise wavenumber was selected to match 

 linear instability mode above the critical Rayleigh number at 

a = 0 , 1 , and 2. A superposition of the 2D base flow and 3D

igenvector field of the predicted linear instability was used as an 

nitial condition. The flow was then integrated forward in time un- 

il it saturated, at which point measurements of the domain inte- 
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Fig. 12. (Colour online) Visualisation of the real part of leading eigenmodes at (a) Ra = 4 . 50 × 10 8 and Ga = 2 with 43 . 66 (b) Ra = 6 . 00 × 10 8 and Ga = 1 with k = 46 . 95 (c) 

Ra = 7 . 00 × 10 8 and Ga = 0 with k = 61 . 10 consisting of three-dimensional visualisation of the streamwise (X-component of) vorticity, spanwise (z-component of) vorticity, 

spanwise velocity and temperature. 

Table 3 

Convergence of the saturated three-dimensional DNS solution 

with the number of Fourier modes included in the simulation 

( N f ) for a test case having Ra = 5 × 10 8 and Ga = 2 with k = 

45 . 51 . 

Number of Fourier modes ∫ | w | d� | Di f f erence | (%) 

2 0.188811 14.39 

4 0.165055 0.20 

8 0.165401 0.02 

16 0.165437 —
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ral of absolute velocity in the third dimension ( | w | ) was taken.

esults of the different number of employed Fourier modes are re- 

orted in Table 3 , demonstrating that the solution having 8 Fourier 

odes has converged to within at least four significant figures to 

he result obtained with 16 modes. This is supposed sufficient to 

apture the nonlinear growth behaviour and the mode’s saturated 

tate, so 8 Fourier modes are employed hereafter. 

3D simulations were performed at Ga = 0 and 2. Rayleigh num- 

ers are considered higher than the critical Rayleigh number corre- 

ponding to these Ga values. The spanwise wavenumbers in both 

ases are set to the maximum growth rate of the corresponding 

inear instability eigenmode. Fig. 15 a and b show the time his- 
12 
ory of the spanwise velocity in three-dimensional simulations for 

a = 5 × 10 8 with Ga = 2 and Ra = 7 . 25 × 10 8 with Ga = 0 , re-

pectively. The oscillatory behaviour in Fig. 15 agrees well with the 

omplex leading eigenmodes predicted by the linear stability anal- 

sis in Figs. 7-9 . Comparing amplitude of the oscillations for the 

wo mentioned cases indicates the flow transition to 3D periodic 

ehaviour occurs later for a larger Ga value. In other words, flow 

eld corresponding to a smaller Ga value faster becomes saturated 

o 3D periodic behaviour. In addition, comparing amplitude results 

ndicate that the flow field with a larger Ga value has a larger am- 

litude of oscillations. 

The growth rate of the perturbations can be calculated using 

he time history of energy sepctrum of the dominant Fourier mode 

sed for w-velocity in the DNS simulation. In other words, the 

rowth rate was obtained from the 3D DNS by finding the slope 

etween two points in the linear growth regime from the time 

istory of the logarithm of the kinetic energy in the first non- 

ero-wavenumber spanwise Fourier mode. Table 4 shows obtained 

rowth rates via 3D-DNS and the linear stability analysis for three 

ases, which shows a sound agreement between two methods for 

hree considered cases. 

Fig. 16 shows 3D isosurface plots of streamwise vorticity for the 

ases reported in the Table 4 , comparing the predicted 3D eigen- 
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Fig. 13. Eigenvalue spectra at Ra = 5 × 10 8 with k = 44 . 75 and (a) Ga = 1 . 1 , (b) 1 . 2 , (c) 1 . 3 , (d) 1 . 4 . Blue arrows in each figure show the trajectory of the leading eigenmode 

by increasing Ga . 

Fig. 14. Evolution of eigenvector field consisting spanwise (z-component of) vorticity and velocity and temperature at Ra = 5 × 10 8 with k = 44 . 75 (a) Ga = 1 . 1 (b) Ga = 1 . 4 . 

Table 4 

Comparison between the growth rates calculated from linear stability analysis (LSA) 

and three-dimensional DNS. 

Ga Ra R a cr Ra / R a cr k σ (LSA) σ (DNS) 

2.00 5.00 × 10 8 4.23e8 1.18 45.51 2.72 × 10 2 2.64 × 10 2 

1.01 6.50 × 10 8 5.50e8 1.18 48.25 3.15 × 10 2 3.06 × 10 2 

0.00 7.25 × 10 8 6.46e8 1.12 61.63 3.23 × 10 2 3.37 × 10 2 
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ode in each case with the actual 3D state produced once the flow 

aturates following instability growth. The streamwise vorticity 

rom the linear stability analysis ( Fig. 16 a-c(i)) has a good resem- 

lance to that obtained from the three-dimensional DNS ( Fig. 16 a, 
13 
, c(ii)). The great agreement between the predicted eigenmode 

tructure and the resulting saturated 3D structure verifies that the 

inear stability analysis provides meaningful predictions of the 3D 

ature of the flow. The Rayleigh numbers in Fig. 16 a-c are 18% and

2% higher than the critical Rayleigh numbers for Ga = 2 , 1 , and 

, respectively. All three cases produce non-zero Fourier mode en- 

rgy at saturation of magnitude 10 −2 relative to the base flow en- 

rgy, which is very small. The smaller the disturbance energy rel- 

tive to the base flow energy, the closer the saturated state will 

e to the predicted infinitesimal eigenmode because the contri- 

ution of nonlinear terms is weaker that explains why a mod- 

st number (8) of Fourier modes was sufficient to resolve these 

D solutions. 
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Fig. 15. Time histories of ∫ | w | d� for (a) Ga = 2 and Ra = 5 . 00 × 10 8 with k = 45 . 51 and (b) Ga = 0 and Ra = 7 . 25 × 10 8 with k = 61 . 63 . The blue and red dashed lines 

demark the envelope of the oscillation of the signal. 

Fig. 16. Visualisation of the three-dimensional disturbances via isosurface plots of the (streamwise) x-component of vorticity for (a) Ra = 5 . 00 × 10 8 , Ga = 2 , k = 45 . 51 (b) 

Ra = 6 . 50 × 10 8 , Ga = 1 . 01 , k = 48 . 25 (c) Ra = 7 . 25 × 10 8 , Ga = 0 , k = 61 . 63 . In each case (i) shows the leading eigenmode predicted by the linear stability analysis and 

(ii) shows the saturated state of a three-dimensional DNS solution. The saturated solution in all cases is oscillatory. 
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. Conclusion 

Horizontal natural convection in a rectangular enclosure hav- 

ng an aspect ratio of height to length of 0.16 is analysed under a 

on-Boussinesq approximation at a Prandtl number Pr = 1 . Con- 

idered non-Boussinesq approximation is a Gay-Lussac type ap- 

roach under which the density variations are extended to the ad- 

ection term as well as the gravity term of the momentum equa- 

ion offering an improved description of rotating buoyancy-driven 

ows. Such a treatment inserts the Gay-Lussac parameter to the 

overning equations with a maximum value of 2 to avoid an un- 

hysical density value. Many linear stability analysis were con- 

ucted to determine the critical Gay-Lussac parameters at differ- 

nt Rayleigh numbers that beyond which the flow becomes un- 

table to 3D infinitesimal disturbances. Results indicate that the 

ow remains unconditionally stable to any physical Gay-Lussac 

arameter up to the primary critical Rayleigh number which is 
14 
ound equal to R a cr = 4 . 23 × 10 8 . Indeed, at the primary critical 

ayleigh number, the buoyancy-driven flow becomes unstable for 

he first time when the Gay-Lussac parameter is set to its max- 

mum physical value. By increasing the Rayleigh number, the re- 

uired Gay-Lussac parameter for an unstable buoyancy-driven flow 

ecreases almost monotonically so that when the Gay-Lussac pa- 

ameter is set to its minimum value i.e. zero, the flow field be- 

omes unstable at the secondary critical Rayleigh number which is 

ound equal to R a cr = 6 . 46 × 10 8 . The spanwise wavelength of the 

erturbations corresponding to the leading modes at the primary 

nd secondary critical Rayleigh numbers found equal to k = 43 . 66 

nd 59.91, respectively. The stability analysis results predict that 

ll three-dimensional transitions are via an oscillatory instability 

ode of the steady flow and the spanwise wavelength of the per- 

urbations increases by increasing the Rayleigh number. Some 3D- 

NS were also conducted that confirm reported stability thresholds 

or HC with a maximum discrepancy of 4%. 
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