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Subcritical route to turbulence via the Orr mechanism
in a quasi-two-dimensional boundary layer
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A subcritical route to turbulence via purely quasi-two-dimensional mechanisms, for
a quasi-two-dimensional system composed of an isolated exponential boundary layer, is
numerically investigated. Exponential boundary layers are highly stable and are expected
to form on the walls of liquid metal coolant ducts within magnetic confinement fusion
reactors. Subcritical transitions were detected only at weakly subcritical Reynolds numbers
(at most ≈70% below critical). Furthermore, the likelihood of transition was very sensitive
to both the perturbation structure and initial energy. Only the quasi-two-dimensional
Tollmien–Schlichting wave disturbance, attained by either linear or nonlinear optimization,
was able to initiate the transition process, by means of the Orr mechanism. The lower
initial energy bound sufficient to trigger transition was found to be independent of the
domain length. However, longer domains were able to increase the upper energy bound,
via the merging of repetitions of the Tollmien–Schlichting wave. This broadens the range of
initial energies able to exhibit transitional behavior. Although the eventual relaminarization
of all turbulent states was observed, this was also greatly delayed in longer domains. The
maximum nonlinear gains achieved were orders of magnitude larger than the maximum
linear gains (with the same initial perturbations), regardless if the initial energy was above
or below the lower energy bound. Nonlinearity provided a second stage of energy growth
by an arching of the conventional Tollmien–Schlichting wave structure. A streamwise
independent structure, able to efficiently store perturbation energy, also formed.

DOI: 10.1103/PhysRevFluids.5.113902

I. INTRODUCTION

There is significant interest in understanding transitions to quasi-two-dimensional (Q2D) turbu-
lence, given the wide range of natural and industrial flows which exhibit quasi-two-dimensionality.
These include magnetohydodynamic (MHD), shallow channel, and atmospheric flows [1,2]. The
conditions under which 3D MHD turbulence becomes quasi-two dimensional, and the appearance
of three-dimensionality in Q2D MHD turbulence have been clarified [3–6]. However, a clear
subcritical path to Q2D turbulence from a Q2D laminar state has not been identified. The aim of the
present work is thus to establish a purely Q2D subcritical route to turbulence. This is motivated
by the design of coolant ducts in magnetic confinement fusion reactors, where pervading field
strengths range between 4 and 10 T [7,8]. Understanding transition in coolant ducts is important
for ensuring sufficient heat transfer at the plasma-facing (Shercliff) wall [9–13] and to establish the
feasibility of self-cooled reactor designs [7]. Limits on maximum pressure gradient [9,14,15] and
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pumping efficiency [11,16–18] motivate seeking the most efficient route to turbulence. However,
quasi-two-dimensional turbulence is unlikely to arise in blankets via strongly three-dimensional
turbulence [7]. Thus, this work limits itself only to the use of an initial two-dimensional perturbation;
secondary excitations with three-dimensional random noise are not applied.

Transitions in MHD flows have previously been initiated by a perturbation comprising either two
three-dimensional oblique-waves or a two-dimensional initial field with three-dimensional random
noise [19,20], which are routes prohibited in Q2D systems. Using these techniques, for Hartmann
channel flow, Ref. [19] found excellent agreement with the critical Reynolds numbers at which
transition was observed experimentally [21], observing a strongly three-dimensional subcritical
transition. Although less energetic perturbations generated more growth, they did not sufficiently
modulate the base flow. The perturbations which attained the highest maximum energy, regardless
of initial energy, were most likely to incite transition. Complicating matters at high field strengths,
three-dimensional noise relaminarized the flow, instead of triggering transition.

To assess subcritical transitions in Q2D MHD flows, the SM82 model [3] is applied, as
realistic magnetic confinement field strengths (4–10 T) are currently beyond the capability of
three-dimensional numerics. The SM82 model governs the evolution of a velocity field averaged
along uniform magnetic field lines. In the limit of quasistatic Q2D MHD, the magnetic field is
imposed and the Lorentz force dominates all other forces. The bulk flow is two-dimensional, with
thin Hartmann layers formed along walls perpendicular to field lines. In the SM82 model, the
presence of Hartmann layers is modeled with linear friction on the average flow. The validity of
the SM82 approximation is well supported in the quasi-two-dimensional limit [22–25]. Departure
from the two-dimensional average has been observed in regions of strong viscosity or inertia.
Reference [23] demonstrates errors less than 10% between quasi-two-dimensional and laminar
three-dimensional Shercliff layers, which do not vanish, even in the asymptotic limit when the
Lorentz force dominates. There is also excellent agreement at high magnetic field strengths [26]
between the linear transient growth of full three-dimensional simulations, and Q2D simulations
based on the SM82 model.

The linear stability and linear transient growth of duct flows under strong magnetic fields are
determined solely by boundary layer dynamics [27,28]. Direct numerical simulations depict insta-
bilities isolated to the Shercliff layers, on walls parallel to the magnetic field [26,29]. As such, an
exponential boundary layer in isolation is considered. The isolated quasi-two-dimensional boundary
layer profile is identical to an asymptotic suction boundary layer [30], where friction replaces wall
suction. The analogy has been highlighted in [31], by performing a change of variables, such that
the wall suction boundary condition becomes impermeable. This introduces an additional term in
the governing equations for the transformed velocity, of the form −(∂u/∂y)/Re. Comparatively, the
friction term in the SM82 model is −u/Re. However, as the underlying exponential boundary layer
remains the same, both flows are very stable [30,32].

Nonlinear optimization and edge tracking algorithms have been widely used to assess subcritical
turbulent transitions in hydrodynamic pipe [33,34], plane Couette [35,36], and plane Poiseuille
flows [37,38], as well as in Blasius [39–42] and asymptotic suction [43,44] boundary layers. A
fundamental part of this process involves searching the state space for seperatrices, which divide
the basins of attraction of the laminar fixed point and turbulent state [43]. The minimal seed is
then the nonlinearly optimized perturbation with the smallest initial energy that is able to cross
the separatrix [33]. Separatrix 1 is henceforth defined as a segment of the laminar-turbulent basin
boundary where the minimal seed crosses. Hydrodynamic studies of three-dimensional turbulent
transitions have determined that the laminar-turbulent basin boundary is the “edge” of a stable
manifold. At a saddle node (the edge state) an unstable solution crosses [43,45]. However, such
an unstable solution is not necessarily the minimal seed [36] as the seperatrix can be closer to the
fixed laminar point elsewhere in the state space. This discussion is aided by Fig. 1, which depicts
two initial conditions with slightly different initial energies. One perturbation has an initial energy
E0 < ED and returns back to the laminar state without crossing separatrix 1, such that ED is the
minimum initial energy sufficient to cross separatrix 1. The case with E0 > ED continues on to
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FIG. 1. A state space representation of the problem. Four cases are considered, two with initial energies E0

just below and above the minimum initial energy sufficient to cross separatrix 1 (ED) and two with E0 just above
and below the maximum initial energy sufficient to cross separatrix 2 (ED,2). An initial energy ED < E0 < ED,2

either crosses separatrix 1 (red curve crosses solid dark green line) or avoids crossing separatrix 2 (blue curve
eventually avoids solid light green line) to transition to turbulence. Eventually the turbulent state relaminarizes.

the turbulent attractor. An upper bound on the edge state was also identified by [45]. It stemmed
from additional dissipation generated by distortion of overly energized initial seeds. This segment
of the laminar-turbulent boundary is henceforth defined as separatrix 2. The perturbation with initial
energy E0 > ED,2 crosses seperatrix 2, missing the trajectory toward the turbulent attractor, such that
ED,2 is the maximum initial energy sufficient to avoid separatrix 2. The perturbation with E0 < ED,2

reaches the turbulent attractor, following an almost identical trajectory to the turbulent state as the
perturbation with E0 > ED. After remaining in the basin of the turbulent attractor for some time,
relaminarization occurs.

Nonlinear optimization has also been used to demonstrate that nonlinear transient growth occurs
solely via the collaboration of multiple linear transient growth mechanisms [34]. This cannot occur
in two-dimensional systems, as only the Orr mechanism is present. Thus, nonlinear optimization
effectively degenerates to linear optimization. The two-dimensional inviscid Orr mechanism is
characterized by an initial perturbation that is tilted opposite to the mean shear [46]. Energy from
the mean shear transiently grows the perturbation energy, as the base flow advects the structure
into an upright position. Perturbation energy decays as the structure is further tilted into the mean
shear, returning energy to the base flow [47]. Initially, this work compares linearly and nonlinearly
optimized perturbations, which may form the minimal seeds for inciting subcritical turbulent
transitions.

Therefore, this paper considers:
(1) What roles linear transient growth (in particular, the Orr mechanism) and nonlinearity play

in Q2D transition scenarios.
(2) Whether distinct initial energies representing separatrix 1 and 2 on the laminar-turbulent

boundary can be defined, as for 3D systems.
(3) How sensitive transition is to the structure and wavelength of the initial field.
This paper proceeds as follows: the problem setup, Sec. II, establishes the Shercliff boundary

layer domain and base flow. Section III details the determination, validation and results of the
linear transient growth analysis, as linear optimals form the initial seeds for nonlinear simulations.
Section IV discusses and validates the approach for determining nonlinear optimals and compares
the linear optimals to their nonlinear counterparts for small target times. Section V validates the
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FIG. 2. Schematic diagram of the sidewall domain with a characteristic length of the Shercliff boundary
layer height δS. The thick horizontal line represents an impermeable no-slip boundary. The dotted line
represents a stress-free parallel flow condition. The vertical dashed lines represent a periodicity constraint
on velocity and fluctuating pressure. A uniform magnetic field is directed into the page. The out-of-plane
Hartmann walls (the sources of linear friction) are not drawn.

nonlinear evolutions of linear optimals, for prescribed initial energies, and then considers the
energies delineating transitional states, perturbation structures through growth and decay stages,
and the effect of domain length. Conclusions are drawn in Sec. VI.

II. PROBLEM SETUP AND SOLUTION PROCESS

A. Problem setup

An incompressible Newtonian fluid with density ρ, kinematic viscosity ν and electric conductiv-
ity σ flows through a duct with rectangular cross-section of width a (z direction) and height 2L (y
direction). A uniform magnetic field Bez is imposed. Quasi-two-dimensionality, based on the SM82
model [3,23] is assumed. The revelant length scale is the Q2D Shercliff boundary layer thickness
δS = L/H1/2, where the Hartmann friction parameter H = L2(2B/a)(σ/ρν)1/2 [27]. Normalizing
lengths by δS, velocities by maximum undisturbed duct velocity U0, time t by δS/U0 and pressure p
by ρU 2

0 , the governing momentum and mass conservation equations become

∂u
∂t

= −(u · ∇⊥)u − ∇⊥ p + 1

ReS
∇2

⊥u − 1

ReS
u, (1)

∇⊥· u = 0, (2)

where u = (u, v) is the quasi-two-dimensional velocity vector, representing the z-averaged field,
and ∇⊥ = (∂x, ∂y) and ∇2

⊥ = ∂2
x + ∂2

y are the quasi-two-dimensional gradient and vector Laplacian
operators, respectively. The flow is governed by one dimensionless parameter, a Reynolds num-
ber based on the boundary layer thickness, ReS = U0δS/ν. Hereafter, quantities are expressed in
dimensionless form unless specified otherwise. The rightmost term in Eq. (1) is a linear friction
term describing Hartmann braking from the two out-of-plane duct walls [3]. At H � 100, δS � L
[26,27], such that the sidewall boundary layer that dictates transition behavior is isolated. A domain
extending from the sidewall a distance Ly into the flow is considered, with streamwise-periodic
length Lx, as depicted in Fig. 2. The streamwise length Lx = nlx spans n integer repetitions of a flow
structure having streamwise length lx = 2π/α and streamwise wave number α.

Instantaneous variables (u, p) are decomposed into base (U , P) and perturbation (û, p̂) com-
ponents via small parameter ε, as u = U + εû; p = P + ε p̂, for use in linear transient growth
analysis. The fully developed, time steady, parallel flow U = U (y)ex, with boundary conditions
U (y = 0) = 0, U (y → ∞) = 1, and a constant driving pressure gradient scaled to achieve a unit
maximum velocity, is U = [1 − exp(−y), 0].

B. Solver

An in-house nodal spectral element solver temporally integrates Eqs. (1) and (2) using a third-
order backward differencing scheme with operator splitting. The two-dimensional Cartesian domain
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is discretized with quadrilateral spectral elements over which Gauss–Legendre–Lobatto nodes are
placed. The Navier–Stokes solver, with the inclusion of the friction term, has been previously
introduced and validated [11,26,48,49]. No-slip velocity boundary conditions are applied at the
impermeable wall, u = û = 0, supplemented by high-order Neumann pressure boundary conditions
[50]. Pressure is decomposed into a constant pressure gradient, and a fluctuating component p′,
and periodicity is imposed between the upstream and downstream boundaries on the velocity and
fluctuating pressure. At the stress-free boundary a parallel flow condition (v = v̂ = 0) is strongly
enforced. A constant flow rate condition is also enforced in nonlinear simulations, by appropriate
adjustment of the flow rate after each time step.

III. LINEAR TRANSIENT GROWTH

A. Formulation and validation

At subcritical Reynolds numbers, all eigenmodes of the linear evolution operator decay. Thus,
to begin establishing a subcrtical route to turbulent transitions, the linear initial value problem
is considered. Linear growth is generated by the superposition of decaying nonorthogonal Orr–
Sommerfeld modes [51,52]. To interrogate the transient growth of a perturbation, total kinetic
energy E = (1/2)

∫
û · û d
 = (1/2)‖û‖ is chosen to quantify growth, following [53,54], where


 represents the computational domain. The maximum possible linear transient growth is found
by determining the initial condition for perturbation ûτ (t = 0) maximizing G = ‖û(τ )‖/‖û(0)‖ via
evolution to time τ . For a given ReS, Gmax = max[G(τ, α)] is sought, along with the optimal time
horizon τopt and streamwise wave number αopt. Thereby lx,opt = 2π/αopt. The analysis proceeds
with integration of the linearized forward evolution equations,

∂û
∂t

= −(û · ∇⊥)U − (U · ∇⊥)û − ∇⊥ p̂ + 1

ReS
∇2

⊥û − 1

ReS
û, (3)

∇⊥ · û = 0, (4)

from time t = 0 to t = τ . This is followed by backward time integration of the adjoint equations,

∂û‡

∂t
= (∇⊥U )T · û‡ − (U · ∇⊥)û‡ − ∇⊥ p̂‡ − 1

ReS
∇2

⊥û‡ − 1

ReS
û‡, (5)

∇⊥ · û‡ = 0, (6)

for the Lagrange multiplier of the velocity perturbation û‡, from t = τ to t = 0. Boundary con-
ditions û = û‡ = 0 are applied at the wall and v̂ = v̂‡ = 0 at the stress-free boundary. “Initial”
conditions for forward and backward evolution are û(0) = û‡(0) and û‡(τ ) = û(τ ), respectively.
G is then the largest real eigenvalue of the operator representing the sequential action of forward
then adjoint evolution [53,54], obtained by a Krylov subspace scheme. The scheme iterates until a
specified eigenvalue tolerance is reached. The corresponding eigenvector contains the optimal initial
field (optimal for short).

The mesh for computation of linear optimals has a region of high resolution near the wall, with
sparse resolution further away. Element spacing is also sparse in the streamwise direction, as the
variation must be sinusoidal (from linearity). Three key factors are considered when assessing
accuracy, the number of elements in the wall normal direction, the temporal resolution and the
domain height where the stress-free condition is applied, as shown in Tables I and II. Based on the
magnitude and behavior of the errors, the highest near wall resolution (Nel = 154 mesh from Table I)
was selected, with �t = 1.25 × 10−3. Based on Table II, Ly = 14.14 is sufficient for determining
the linear τopt and αopt. However, it was deemed pertinent to increase Ly to 28.28 and to recompute
time and wave number optimized fields to initiate the nonlinear evolutions reported in Sec. V. This
ensures that the parallel flow assumption remains valid if structures increase in height due to vortex
merging.
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TABLE I. The real component of the leading eigenvalue, at ReS = 7.071 × 103, α = 0.7071, and τ =
42.43 (close to optimal), with domain height Ly = 14.14 and polynomial order Np = 15 for various numbers of
elements. Meshes with 1, 2, and 4 elements per unit height (Nel = 70, 98, and 154, respectively) within the first
five units from the wall are compared. Absolute percentage errors are quoted for each mesh separately, relative
to the smallest time step case, except the last row, which compares to the Nel = 154 mesh. The eigenvalue
convergence tolerance is 10−7.

�t Nel = 70 |% Error| Nel = 98 |% Error| Nel = 154 |% Error|
2.5 × 10−3 33.25571762 2.45 × 10−1 33.36191967 2.59 × 10−3 33.36189331 2.60 × 10−3

1.25 × 10−3 33.23149556 1.72 × 10−1 33.36145641 1.20 × 10−3 33.36142823 1.20 × 10−3

6.25 × 10−4 33.20232632 8.45 × 10−2 33.36122729 5.15 × 10−4 33.36119843 5.15 × 10−4

3.125 × 10−4 33.17957603 1.59 × 10−2 33.36111304 1.73 × 10−4 33.36108413 1.72 × 10−4

1.5625 × 10−4 33.17428683 0 33.36105549 0 33.36102678 0
5.60 × 10−1 8.61 × 10−5

B. Results

At least one infinitisemal disturbance can achieve exponential growth at Reynolds numbers above
the critical Reynolds number ReS,crit . ReS,crit thereby forms a bound above which transition to
turbulence is possible, so long as the domain length has a corresponding wave number within the
neutral curve. For this problem, ReS,crit can be determined by rescaling the results of Ref. [27];
changing length scale from L to δS. Thus ReS,crit = 4.835 × 104 and αS,crit = 0.1615. The ratio
rc = ReS/ReS,crit is then defined.

Linear transient growth results are presented in Fig. 3. Duct results from Ref. [27] at finite H
are also included in Fig. 3(a), supporting the argument that the boundary layer at each duct wall is
sufficiently isolated at large H , and can be modeled separately. At rc = 0.00135, Gmax = 1, while
by rc = 1, Gmax ≈ 100. This modest rise in gain with increasing rc may be attributed to two factors.
The first is that the base flow is naturally highly stable [32]. The second is that two-dimensional
systems only permit growth via the Orr mechanism [47]. This greatly reduces optimal growth,
and produces the modest scaling of Gmax ∼ Re2/3

S for large ReS. Representative initial and optimal
fields are provided in Fig. 4, which exhibit the classic initial condition of a strongly sheared wave
which transiently grows as it is advected upright, until τopt. The modes otherwise resemble those of
Ref. [27], excepting wall confinement effects at low H in the aforementioned work.

IV. NONLINEAR TRANSIENT GROWTH

A. Formulation and validation

In this work, nonlinear transient growth is employed solely to assess the similarities between
the linear and nonlinear optimals for small target times (τ ∼ τopt). Admittedly, nonlinear transient

TABLE II. The real component of the leading eigenvalue, varying the domain height, for various ReS.
Initially, ReS = 7.071 × 103 at α = 0.7071 and τ = 42.43 was tested as part of a formal validation, Nel = 154
for Ly = 14.14, �t = 2.5 × 10−3, Np = 15. The optimals at ReS = 7.071 × 102 and 7.071 × 104 were tested
post validation, Nel = 250 for Ly = 14.14, �t = 1.25 × 10−3, Np = 13.

Ly 7.071 × 102 |% Error| 7.071 × 103 |% Error| 7.071 × 104 |% Error|
14.14 6.11779740087 3.14 × 10−6 33.3619198126 2.66 × 10−6 166.410928536 1.04 × 10−3

28.28 6.11779759275 7.63 × 10−10 33.3619206992 7.05 × 10−10 166.409189845 2.76 × 10−9

56.57 6.11779759280 0 33.3619206994 0 166.409189849 0
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FIG. 3. Linear transient growth of an exponential boundary layer as a function of rc = ReS/ReS,crit .
(a) Growth optimized over initial field, wave number and time interval. Present data (squares) are compared
against Q2D duct results from [27] (circles). The arrow indicates increasing H through 1, 3, 10, 100, and 1000.
With increasing H , the duct results [27] approach the isolated exponential boundary layer results (this work).
(b) Optimal wave number. (c) Optimal time interval.

FIG. 4. Optimized v̂-velocity fields. (a) rc = 0.0146, αopt = 0.7071. (b) rc = 0.146, αopt = 0.5586. Sim-
ulations computed with Ly = 28.28 and images clipped at y = 10. Solid lines (red flooding) positive; dotted
lines (blue flooding) negative.
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growth routines can identify the initial energy representing separatrix 1, if the target time specified is
long enough to allow the minimal seed to reach the turbulent attractor [33,34]. This target time is not
known a priori. It is shown in Sec. V that the turbulent attractor is reached between t = 1.4 × 103

and t = 2 × 103 at rc = 0.585. As τopt = 75.94 at rc = 0.585 (Fig. 3) the additional computation
cost is proportional to t/τopt = 18.44–26.34. In contrast, the hydrodynamic pipe flow work in [33]
had τopt � 30, while the minimal seed reached the turbulent attractor by t = 75, so t/τopt � 2.5.
Thus, for this problem, it was not amenable to determine separatrix 1 directly from the nonlinear
transition growth algorithm.

The scheme to determine the nonlinear growth GN = ‖û(τ )‖/‖û(0)‖, for a specified target time
τ , optimized over all initial perturbations, requires maximizing the functional [33,55],

L :=
〈

1

2
û(τ )2

〉
− λ0

[〈
1

2
û(0)2

〉
− EP

]
−

∫ τ

0
〈�∇⊥ · û〉dt −

∫ τ

0
�(t )〈û · ez〉dt

−
∫ τ

0

〈
û‡ ·

[
∂û
∂t

+ (U · ∇⊥)û + (û · ∇⊥)U + (û · ∇⊥)û + 1

ρ
[�(t )ez + ∇⊥ p′]

− 1

ReS
∇2

⊥û + 1

ReS
û
]〉

dt, (7)

where the Lagrange multipliers λ0, � and �(t ) are constraints on the specified initial energy of
the perturbation EP = (1/2)

∫
û(0)2d
, mass conservation and flow rate, respectively. Pressure is

decomposed into a time-varying pressure gradient �(t ), to maintain the flow rate, and fluctuating
component p′. 〈. . . 〉 represent integrals over the computational domain. The Lagrange multiplier û‡

ensures that the full nonlinear Navier–Stokes equations are enforced over all times 0 < t < τ [56].
Each iteration j of the optimization procedure begins with the forward evolution, from t = 0 to
t = τ , of the nonlinear perturbation equation [within the square brackets of the last term of Eq. (7)].
If GN for iteration j is larger than for iteration j − 1, then the adjoint “initial” field is û‡(τ ) = û(τ )
and the iteration continues with backward evolution via the adjoint equations,

∂û‡

∂t
= (∇⊥U )T · û‡ − (U · ∇⊥)û‡ + (∇⊥û)T · û‡ − (û · ∇⊥)û‡

+�(t )ez − ∇⊥� − 1

ReS
∇2

⊥û‡ − 1

ReS
û‡, (8)

∇⊥ · û‡ = 0, (9)

from time t = τ to t = 0. An under-relaxation factor εN is chosen (say, 0.5) for the first iteration,
or adjusted as described in Ref. [33]. The initial field for the j + 1 iteration is û j+1(0) = û j (0) +
εN[−λ0û j (0) + û‡, j (0)]/λ0, where λ0 is sought such that 〈û j+1(0) · û j+1(0)〉 = 2EP. However, if
GN does not increase in iteration j, then adjoint evolution is not performed, as the updated field
(iteration j) is further from the optimal than the previous ( j − 1) field. An additional adjustment is
then made to the under-relaxation factor, εN → εN/4. The forward iteration restarts with û j (0) =
û j−1(0) + εN[−λ0û j−1(0) + û‡, j−1(0)]/λ0. This ensures monotonic growth in successive iterations,
and avoids contaminating the initial field after iterations with too large an εN. Iterations continue
until the relative change in λ0 and residual [δL /δû(0)]/λ2

0 are both below a specified tolerance,
following Ref. [33].

Validation of the nonlinear transient growth is provided in Table III at rc = 0.293, considering
the polynomial order and time step, for two initial energies. The same mesh for determination of
the linear optimals is used, with Ly = 28.28. As the nonlinear transient growth scheme does not
evolve the perturbations through turbulent states, the resolution requirements are similar to those
of the linear computations, Sec. III A, rather than the nonlinear forward evolutions, Sec. V A. For
consistency, the same time step of �t = 1.25 × 10−3 was selected, with Np = 15.
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TABLE III. Validation of the time step and polynomial order for the nonlinear transient growth, for initial
perturbation energies of 10−6 and 10−4, at rc = 0.293, n = 1. The mesh is based on the Nel = 154 case from
linear optimization, except with Ly = 28.28. The tolerance for convergence was 10−7. Nonlinear computations
use the linear αopt and τopt.

�t GN; EP = 10−6 |% Error| Np GN; EP = 10−4 |% Error|
5 × 10−3 55.9721743040676 1.88 × 10−5 11 54.6714139912327 5.24 × 10−4

2.5 × 10−3 55.9721692244256 9.69 × 10−6 13 54.6711233880979 7.81 × 10−6

1.25 × 10−3 55.9721654578752 2.96 × 10−6 15 54.6711274190738 4.31 × 10−7

6.25 × 10−4 55.9721633006764 8.91 × 10−7 17 54.6711283768056 1.32 × 10−6

3.125 × 10−4 55.9721637995307 0 19 54.6711276549269 0

B. Results

Nonlinear optimals were computed with τ = τopt and domain lengths based on n = 1, n = 2 or
n = 3 repetitions of lx,opt, for various initial energies. These results are shown in Fig. 5(a), which
compares the difference between the linear transient growth of the linear optimal and the nonlinear
transient growth of the nonlinear optimal (red data points), with the former always greater than the
latter (all results are positive valued). As nonlinear collaboration between linear transient growth
mechanisms cannot occur, the maximum growth obtained at vanishingly small initial energy is
greater than with finite initial energy. Figure 5(a) also shows that for an initial energy defined per
unit duct length, the results are not dependent on domain length. Thus, it is the initial energy density
that is the important parameter.

Additionally, Fig. 5(a) compares the difference in the linear transient growth of the linear optimal
and the nonlinear transient growth of the linear optimal scaled to E0 (square symbols). These
results are almost coincident with those for the nonlinear growth of the nonlinear optimal (triangle
symbols). Thus, the difference between the nonlinear and linear growth is mostly due to the finite

FIG. 5. Comparison between linear and nonlinear optimals for various initial energies E0 = ∫
û2 +

v̂2 d
/
∫

U 2 d
 at rc = 0.293. (a) Difference in the maximum linear growth obtained with the linear optimal
(LOP) and maximum nonlinear growth with the nonlinear optimal (NLOP), for three domain lengths, and
difference in the linear growth of the LOP and the nonlinear growth of the LOP scaled to E0 (n = 1 only).
(b) Comparison between the nonlinear growth of the NLOP and nonlinear growth of the LOP scaled to E0

(n = 1). The linear growth of the LOP is Gmax = 55.9876.
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energy of the initial field. The mode structure is only very weakly dependent on initial energy (the
linear and nonlinear optimals are virtually indistinguishable; not shown). This supports a remark
made by [34], that in two-dimensional systems the nonlinear optimal contains the linear mode
trivially. This comparison is further highlighted in Fig. 5(b), which directly compares the nonlinear
growth of the nonlinear optimal to the nonlinear growth of the linear optimal. This difference is
very small for initial energies up to E0 ≈ 10−6, where E0 = ∫

û2 + v̂2 d
/
∫

U 2 d
 is considered
to account for the varying domain length.

For E0 � 10−6 the nonlinear growth of the nonlinear optimal then slightly exceeds the nonlinear
growth of the rescaled linear optimal. However, the differences are still small at E0 = 10−5, which
is an initial energy more than sufficient to generate large amounts of nonlinear second-stage growth,
as is discussed in detail in Sec. V. Thus, there is little “error” in estimating the minimal seed energy
with the linear optimal, for the initial energies of interest.

V. NONLINEAR EVOLUTION AT SPECIFIED INITIAL ENERGIES

A. Validation

The initial energy of each linear optimal is scaled to E0 when seeded onto the base flow. Forward
evolution of the full nonlinear Eqs. (1) and (2) then commences. The measures Ev = (1/2)

∫
v̂2 d


and E = (1/2)
∫

û2 + v̂2 d
 are defined. These separate the growth of the perturbation, captured by
Ev, and the effective modulation of the base flow, via a streamwise-independent structure, captured
by E .

The effect of time step variation is depicted in Figs. 6(a) and 6(b). These show negligible
differences between �t = 1.25 × 10−3 and significantly smaller time step sizes. �t = 1.25 × 10−3

was therefore deemed satisfactory. The polynomial order has to be more carefully selected, as the
spatial accuracy is strongly dependent on ReS and E0, as shown in Figs. 6(c) and 6(d). Discrepancies
within chaotic regions cannot reasonably be avoided, although the trajectories thereafter match well.
A polynomial order of Np = 19 is sufficient for smaller initial energies (all rc), and either Np = 23
(rc = 0.293 or 0.585) or Np = 29 (rc = 1.463) for larger initial energies, based on resolution testing
approximately 40 different ReS − E0 combinations.

B. Delineation energy

The nonlinear evolution of linear optimal perturbations in domains with lengths based on n = 1
repetitions of lx,opt are considered first. The lower delineation energy ED, representing separatrix
1, is shown in Fig. 7(a) as a function of Reynolds number. Figures 7(b) and 7(c) demonstrate how
the delineation energy is determined at rc = 0.585 (ED = 2.69187 × 10−6). ED is determined with
a bisection method [35,41,42]. However, the bisection method is modified as when E0 = ED the
energy-time history does not hover about a mean value [41], as the solution is not on the edge of a
stable manifold. Furthermore, all turbulent flows eventually relaminarize. Thus, the flow is deemed
returning to a laminar state if its energy reaches a secondary local maximum, and is deemed to
be turbulent if its energy exhibits a secondary local inflection point. An initial energy between the
largest initial energy that remains laminar, and smallest that incurs transition to turbulence, is then
tested, and defined as either the new laminar or new turbulent bound. This process is repeated until
ED is determined to 4 significant figures.

For the rc simulated, Fig. 7(a), there is no clear trend in ED with ReS (the dashed guideline has
an r−1

c trend). A dot-dashed line at rc = 0.293 provides a rough lower estimate for the ReS at which
no perturbation is capable of reaching the turbulent attractor, with any initial energy (in an n = 1
domain). At rc = 0.293 nonlinear second-stage growth yielded a maximum in E greater than the
initial linear maximum, at best. For rc � 0.146 the linear growth provided the global maximum
in E .

A second delineation energy ED,2 = 1.09646 × 10−5 could also be defined for rc = 0.585, de-
noting seperatrix 2. The bisection method is unchanged, except that now it is the larger initial energy
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FIG. 6. (a, b) temporal and (c, d) spatial resolution testing of the nonlinear evolution of linear optimals,
for various initial energies E0. (a & c) rc = 0.293. (b & d) rc = 0.585. The smaller polynomial order (value
annotated for each curve), or larger time step (see legend), is denoted by a long dashed line for each E0. n = 1
unless otherwise stated. A black long dashed line represents the linear evolution.

that is considered laminar, and the smaller initial energy that transitions to tuburbulence. Thus, there
is only a finite band of initial energies ED � E0 � ED,2 able to attain a temporary turbulent state.
Only perturbations which resemble conventional, linearly grown TS waves were able take advantage
of the nonlinear second-stage growth, which appears to be the only subcritical route to high energy
turbulent states. This process is disrupted at larger E0, which noticeably distort the perturbation,
inducing rapid decay after the linear growth, similar to the discussion in Ref. [45]. These arguments
are also supported by additional nonlinear simulations, at rc = 0.585 and rc = 1.463. The initial
seeds tested for comparison were the eigenvector field which generates the second largest linear
growth in τopt, and random noise, in the same size domains and over a wide range of initial energies.
In none of these simulations was a TS wave structure observed akin to that necessary to obtain
the nonlinear second-stage growth observed in Fig. 7(b). The eigenvector generating the second
largest linear growth managed to achieve only very small amounts of nonlinear second-stage growth.
Random noise seeds monotonically decayed. Overall, only the eigenvector which generates the
largest linear growth was able to transition to turbulence, by virtue of at least an additional order of
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FIG. 7. (a) The lower delineation energy as a function of rc = ReS/ReS,crit (n = 1 domain). The dot-dashed
line roughly approximates the maximum rc for which the delineation energy is undefined. (b) Energy time
histories at rc = 0.585, varying E0. Light red curves with E0 < ED have a secondary local maximum at best.
The orange arrow indicates the switch from local maximum to inflection point, and the lowest initial energy
(dashed dark green curve; ED) sufficient to cross separatrix 1. All green curves transition to turbulence. The
largest initial energy that avoids crossing separatrix 2 (ED,2) is also dashed. Light blue curves with E0 > ED,2,
which are briefly chaotic, all cross separatrix 2, with the purple arrow indicating the switch back from an
inflection point to a local maximum. All curves are rescaled to start at unity to aid visualization, and the linear
curve is denoted with a black long dashed line. At rc = 0.585, Gmax = 89.9630, while the maximum gain at
E0 = ED exceeds 103. (c) Same results as (b), except depicted as a 3D surface, to accentuate the discontinuous
changes at the separatrices.

magnitude of nonlinear growth. It will be shown later that ED does not vary with n (for rc � 0.439)
but that ED,2 does.

C. Temporal evolution of optimals

The observable effects of nonlinearity are similar so long as nonlinear second-stage growth
occurs and regardless whether E0 > ED, E0 < ED or if ED is even defined (rc = 0.293). As such, a
linearized evolution at rc = 0.293 is depicted in Fig. 8 and compared to the corresponding nonlinear
evolution at E0 = 1.10 × 10−5 in Fig. 9. Animations comparing the linear and nonlinear evolutions
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FIG. 8. Linearized evolution at rc = 0.293, Ly = 28.28; v̂-velocity contours. Solid lines (red flooding)
positive; dotted lines (blue flooding) negative.

are also provided as supplementary material [57]. The first relevant differences are discerned at
t = 49.50. The nonlinear evolution shows a mode which appears pinched at the wall, while the linear
structure remains flat-bottomed. Following the nonlinear case, as time progresses, the structure
rolls over this more slowly moving pinch point. At t = 63.64, additional localized circulation has
appeared near the wall, with a very small region of negative velocity immediately upstream of the
pinch point (at x ∼ 10.5). Nonlinear second-stage growth then occurs, as the structure alternates
between an arched TS wave (t = 155.6) and structures which break apart (t = 169.7) and coalesce
into an arched TS wave again (t = 282.8). After this occurs a few times, the arched TS wave
structure retains the form seen at t = 282.8 for over a thousand times units [see Fig. 13(b) for the
corresponding energy time history], unlike the rapidly decaying linear counterpart. The advecting
arched TS wave structure is eventually smoothed out near the wall (online animation only), and

FIG. 9. Nonlinear evolution at rc = 0.293, Ly = 28.28, E0 = 1.10 × 10−5; v̂-velocity contours. Solid lines
(red flooding) positive; dotted lines (blue flooding) negative.
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FIG. 10. (a) An example of the arched TS wave depicted by the v̂-velocity contour lines (solid positive;
dotted negative), at rc = 0.585, E0 = 2.69187 × 10−6 > ED, t = 2.121 × 103. The underlying backbone of the
arch is highlighted by overlaying the high-pass-filtered vorticity ω̂z, where streamwise Fourier coefficients of
modes κ � 3 have been removed. (b) An example of the conventional TS wave from the linear transient growth
analysis, at rc = 0.585, t = 77.78.

finally decays in the same manner as the linear counterpart. The linearized evolution monotonically
decays as the structure leans into the mean shear (t = 63.64). This decay is more rapid for the near
wall structure, leaving teardrop-shaped remnants outside the boundary layer as shown at t = 1273.

The arching of the TS wave appears paramount to the second-stage growth, as flatter TS waves
only decay, if outside the neutral curve. An enlarged arched TS wave is shown in Fig. 10(a). A high-
pass-filtered in-plane vorticity ω̂z = ∂ v̂/∂x − ∂ û/∂y is overlaid (streamwise Fourier coefficients of
modes κ � 3 have been removed) to help guide the eye along the backbone of the arch, which
is a thin, highly sheared layer. The largest vorticity magnitudes are still near the pinch point. To
highlight the differences, a conventional TS wave is provided in Fig. 10(b), in its upright position,
from the linear simulation. The arch is distinctly nonlinear, as the high-pass-filtered vorticity is zero
for the conventional, linear TS wave. With increasing time, the conventional TS wave will tilt into
the mean shear, whereas the arched TS wave remains upright, and will continue advecting through
the domain relatively unchanged.

D. Roles of streamwise and wall-normal velocity components

The disturbance is now considered in more detail by separating growth solely in E , Fig. 11(a),
and Ev, Fig. 11(b), for E0 just greater than ED. Growth appears larger in the latter measure as the
wall-normal velocity makes up a smaller fraction of the energy in the initial field. Both û2 and v̂2

show noticeable second-stage growth. However, the v̂-velocity magnitudes rapidly decrease after
the second-stage growth, while the û-velocity magnitudes, and thus E , decrease slowly.

The flow structures throughout this evolution are depicted in Fig. 12(a) for û and Fig. 12(b) for
v̂. While the maximum and minimum v̂-velocities have similar magnitude, the û structures have a
much larger magnitude minimum velocity (compared to the positive maximum). The û structures
elongate until they eventually become uniform in the streamwise direction. Thus, as v̂ decays, rather
than reducing the magnitude of û, continuity [Eq. (2)] is instead satisfied by reducing ∂ û/∂x. This
stores perturbation energy, recalling the slow decay of E in Fig. 11(a). The streamwise-independent
structure forms regardless if E0 > ED or E0 < ED. However, there is more perturbation energy
to store if the flow transitions to turbulence, when E0 > ED. Last, it is worth noting that in this
configuration, any nonsinusoidal streamwise variation indicates nonlinearity. Thus, the formation
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FIG. 11. Energy growth at rc = 0.439, E0 = 3.869 × 10−6 > ED, n = 1. (a) E = (1/2)
∫

û2 + v̂2 d
.
(b) Ev = (1/2)

∫
v̂2 d
. At rc = 0.439, Gmax = 73.9706, and ED = 3.853 × 10−6. All curves are rescaled to

unit initial energy. The linear evolution is shown as a black long dashed line.

of the streamwise-independent structure is distinctly nonlinear. Streamwise-independent structures
are also commonly observed in the final form of 3D simulations, e.g., Ref. [19]. By comparison, the
v̂ structures maintain similar size until they rapidly decay to a structure resembling the long time
state of the linear optimal.

FIG. 12. Temporal evolution at rc = 0.439, Ly = 28.28, n = 1, with E0 = 3.869 × 10−6 > ED. (a) Stream-
wise perturbation û = u − U . (b). Wall-normal perturbation v̂ = v. Solid lines (red flooding) positive; dotted
lines (blue flooding) negative.
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FIG. 13. Energy time histories at rc = 0.293, varying the initial energy and domain length via repetitions
n of lx,opt. (a) E = (1/2)

∫
û2 + v̂2 d
. (b) Ev = (1/2)

∫
v̂2 d
. Additional nonlinear growth is provided for

even multiples of n, for all initial energies tested at rc = 0.293, via pairwise coalescence of TS wave repetitions.
All curves are rescaled to unit initial energy. The linear curves are presented with black long dashed lines. At
rc = 0.293, Gmax = 55.9876.

E. Influence of domain length

In Sec. V B, ED and ED,2 were considered in n = 1 domains. The effect of increasing the domain
length on ED and ED,2 is now discussed, for integer repetitions up to n = 4 (Lx = nlx,opt). Growth
measures E and Ev are shown in Fig. 13 for rc = 0.293, with four distinct influences of domain
length discussed. Recall that in the n = 1 domain at rc = 0.293 some E0 can attain growth to
a secondary local maximum (e.g., E0 = 1.10 × 10−5) but no E0 transition to turbulence (cross
separatrix 1). The first influence of domain length is that if two instances of the same perturbation
evolve in an n = 2 domain, an inflection point appears in the energy-time history, indicating a
crossing of separatrix 1. This occurs as the two individual repetitions of the TS wave structure
coalesce into a single wave structure, with a rapid jump in energy at the secondary maximum
from the n = 1 case. Second, at E0 = 1.10 × 10−5, but with an n = 3 domain, this extra jump in
energy does not occur (n = 3 follows n = 1). There would be a mismatch in wavelengths if only
one pair of structures coalesced, prohibiting the interaction of all three repetitions. Third, again
at E0 = 1.10 × 10−5, the n = 4 case can experience both the n = 2 pairwise coalescence (4 → 2
repetitions), and then another coalescence (2 → 1 repetition), which allows for an additional, albeit
smaller, jump in energy. In the E0 = 1.10 × 10−5 case, the n = 4 curve closely follows the n = 2
curve early on, indicating the time it takes for the lower energy case to sense the full domain
length. However, fourth, the E0 = 5.48 × 10−5 case differs between n = 2 and n = 4, with the
structure able to increase in size more rapidly in the latter case when reforming to an arched
TS wave structure. This is inhibited in smaller (n = 1) domains, in which the structure decays
because it is distorted by too large an initial energy. The same is true of even larger initial energies,
E0 = 1.64 × 10−4 and 3.29 × 10−4, which undergo second-stage growth in the n = 2 domain, while
the n = 1 cases only decay after the linear maximum.

The v̂-velocity fields are depicted in Fig. 14 for E0 = 5.48 × 10−5, n = 2 at rc = 0.293. Recall
that with n = 1, E0 = 1.10 × 10−5 attains second-stage growth, whereas E0 = 5.48 × 10−5 is too
highly energized and rapidly decays, as the flow field does not resemble an arched TS wave,
e.g., Fig. 10(a). The two repetitions of the distorted TS wave shown in Figs. 14(a), 14(b) are not
yet interacting. The interaction between the two wavelengths is shown in Fig. 14(c), where one
repetition becomes dominant, and will shortly subsume the other, Fig. 14(d). In Fig. 14(e), the wave
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FIG. 14. Temporal evolution at rc = 0.293, Ly = 28.28, n = 2, E0 = 5.48 × 10−5; v̂-velocity contours.
Solid lines (red flooding) positive; dotted lines (blue flooding) negative. This case decays in an n = 1 domain,
but undergoes second-stage growth in an n = 2 domain because it restructures to an arched TS wave after the
coalescence of the two individual perturbation repetitions.

has re-formed into a single repetition of the arched TS wave structure. The arched TS wave then
undergoes nonlinear second-stage growth, as it slowly relaxes back to a conventional TS wave,
Fig. 14(g). It finally decays to a field resembling the long time solution of a linear transient growth
computation. However, unlike a linear optimal, this process will still have stored perturbation energy
in a sheet of negative û-velocity, visible when comparing the energy measures shown in Figs. 13(a)
and 13(b).

The energy growth at larger Reynolds numbers is depicted in Fig. 15. These illustrate the length
of time over which high energy states are maintained when E0 > ED. At rc = 0.585, n = 1, E0 =

FIG. 15. Energy time histories, varying the initial energy and domain length via repetitions n of lx,opt.
(a) rc = 0.585, Gmax = 89.9630, ED = 2.6919 × 10−6, maximum nonlinear gain observed for E0 > ED is
≈4 × 103 (n = 2). (b) rc = 1.463, Gmax = 166.4092, ED = 1.2096 × 10−6, maximum nonlinear gain observed
for E0 > ED is ≈2 × 104 (n = 2). All curves are rescaled to unit initial energy. E0 < ED are unable to take
advantage of the extra domain length, and still rapidly decay.
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FIG. 16. Contours of v̂-velocity at rc = 0.585, E0 = 1.43 × 10−5, Ly = 28.28 at t ≈ 2.8 × 103. (a) n = 3.
(b) n = 4. Solid lines (red flooding) positive; dotted lines (blue flooding) negative. Although the n = 3 and
n = 4 cases coalesce, without the TS wave having an arched appearance, they decay monotonically.

2.67 × 10−6 < ED rapidly decays, while E0 = 2.71 × 10−6 > ED maintains large energies for the
order of 104 time units, particularly so when n = 2. This is even clearer at rc = 1.463, with very
large amounts of growth, and a very slow decay, when E0 = 1.213 × 10−6 > ED. A case E0 =
1.209 × 10−6 just slightly below ED = 1.2096 × 10−6 provides a clearer indication of the additional
growth due to reaching the turbulent attractor, compared to the underlying nonlinear second-stage
growth (to a local maximum). Of additional interest is that it takes a far greater time to relaminarize
turbulent states in larger domains. The oscillations appear to be less energetic, or otherwise damped
out more rapidly, in the n = 1 domains. Last, all rc = 0.585 and rc = 1.463 cases show that E0 < ED

cannot take advantage of the extra space afforded in n = 2 domains, and decay following the n = 1
curves, such that ED does not depend on domain length. Note that at rc = 1.463 the wave numbers
in n = 1 and n = 2 domains are outside the neutral curve.

One final influence of the domain length is considered. At rc = 0.585, ED,2 = 1.09646 × 10−5

when n = 1, Fig. 7(b). Over-energized cases, with E0 = 1.43 × 10−5 > ED,2 and in longer domains
(n = 2 through n = 4), are shown in Fig. 15(a). These all appear to decay coincidentally with the
n = 1 case, seemingly implying that ED,2 has not significantly changed with increasingly domain
length, at rc = 0.585. Comparatively, at rc = 0.293 with n = 2 (Fig. 13) second-stage growth
is observed (akin to cases with ED � E0 � ED,2), in multiple over-energized situations, via the
restructuring depicted in Fig. 14. This would imply that at rc = 0.293, ED,2 has changed noticeably
with increasing domain length. At rc = 0.585, with a larger initial energy, the vortex merging
process may occur too rapidly, unlike the rc = 0.293, n = 2 cases. At rc = 0.585 the n = 3 and
n = 4 cases reformed into the simpler conventional flat bottomed TS wave structure, shown part
way through their decay in Fig. 16, rather than arched TS waves capable of nonlinear second-stage
growth. This issue may also be exacerbated by the wavelength restrictions imposed by the periodic
boundary conditions, recalling the rc = 0.293, n = 3 case indicated that a mismatch in wavelength
between TS wave instances can also prevent growth. Overall, results in longer domain do not
contradict the fact that E0 = 1.43 × 10−5 does not incite sustained turbulence at rc = 0.585, so
that separatrix 2 is still clearly defined. However, they do indicate that ED,2 can be very difficult to
accurately determine, as consistent behavior was not observed across all Reynolds numbers tested.
As a final note, the investigations at rc = 0.585, n = 3 and n = 4 also highlight that the energy
growth is due to the form of the merged structure, and not coalescence, as the cases monotonically
decay after the linear peak, during which time they are merging.
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VI. CONCLUSIONS

The present work has numerically illustrated a subcritical route to turbulence driven by purely
quasi-two-dimensional mechanisms, in a laminar Q2D exponential boundary layer. This system
approximates a magnetohydrodynamic duct flow under a strong transverse magnetic field. It was
shown that the linear optimals form an excellent approximation of the nonlinear optimals, when
tested for small (linear τopt) target times. The transition process then has two stages. First, linear
transient growth, via the Orr mechanism. This was followed by a second stage of substantial
nonlinear growth, able to propel the flow across the laminar-turbulent basin boundary. However,
only linear optimals with specific initial energies ED � E0 � ED,2 were capable of following this
route to a temporary turbulent state, before later relaminarizing. The lower bound, ED, defines the
minimal seed energy capable of transition. The upper bound, ED,2, represents an initial perturbation
too highly energized, which chaotically distorts the TS wave, inducing rapid dissipation, rather than
transitioning to turbulence.

The additional nonlinear growth which leads to the existence of the delineation energy ED

(separating states which rapidly relaminarize, and those which temporarily maintain turbulence) is
linked to the formation of an arched TS wave, which forms when a conventional TS wave becomes
pinched close to the wall. The arched TS wave still provides significant nonlinear growth when
E0 < ED, but does not transition because the optimal is too far (measured in an energy norm)
from the boundary of the turbulent attractor. While closer to the basin boundary at E0 > ED,2,
distortion of the conventional TS wave prevents the arch from forming. If the arch forms, then
the relaxing of the arched TS wave into its conventional counterpart eventually results in the decay
of the perturbation. However, during this process, perturbation energy is stored in a streamwise
sheet of negative velocity, which effectively becomes a modulation to the original base flow. This
modulated base flow may prove easier to re-excite if targeted by flow control methods. Overall, this
quasi-two-dimensional system was found to be highly sensitive to the energy and structure of the
initiating perturbation, with only the optimal initial field capable of transition for tests in shorter
domains.

Larger domain lengths were also investigated. First, this showed that successive vortex merging
may be capable of increasing the upper delineating energy ED,2, by allowing distorting structures
which would naturally rapidly decay, to instead coalesce into an arched TS wave structure, capable
of sustaining turbulence over longer times. However, for sufficiently large initial energy, even very
long domains still indicated the existence of high energy states which only rapidly decay after the
initial linear growth. Perturbations with energy below the lower delineating energy ED could not
make use of the merging process, and still decayed in longer domains. Perturbations with E0 >

ED, which are sufficient to transition to turbulence, made use of the longer domains by pairwise
coalescence of TS wave repetitions, achieving up to an order of magnitude of additional growth
(compared to the shorter domains). The largest nonlinear gains are therefore achieved with E0 > ED

and in longer domains. The comparison between the nonlinear growth of the linear optimal and the
linear growth of the linear optimal is striking at larger Reynolds numbers. The nonlinear gains
achieved, at Reynolds numbers approximately 40% below and above critical, were ≈4 × 103 and
≈2 × 104, respectively, compared to the optimized linear gains of 89.96 and 166.4, respectively.
Furthermore, it appeared to take noticeably longer for turbulent oscillations to become subdued in
longer domains.

The prospect of subcritical transitions is promising for the feasibility of self-cooled liquid
metal reactor ducts. However, the fact that all Reynolds numbers are scaled on the boundary layer
thickness must be kept in mind. Although a sidewall Reynolds number of 105 provided both very
large growth, and slow relaminarization, at a realistic magnetic field strength, the corresponding
Reynolds number based on the half duct height would be around 107. This is well beyond what is
currently expected for reactor operation, which range from 104 to 106 [7,58,59]. Furthermore, no
assessment of the sensitivity to wall properties on the formation of the arched TS wave has been
performed, which given the thermal, electrical and slip issues considered in magnetohydrodynamic
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coolant duct flows [60–63], provides an important avenue for future work for self-cooled reactor
designs.

Last, further investigation is warranted from a theoretical point of view. Although subcritical
turbulent transitions were obtained, it is curious that all turbulent flow fields relaminarized. It would
be worth exploring whether the turbulent states are in a true basin of attraction. The Q2D turbulent
states may be unstable, such that a small deviation from their trajectory drives them out of the
basin, causing relaminarization. However, it cannot be excluded that the behavior originates from
the numerical method, or choice of periodic boundary conditions.
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