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Abstract

The stability of flow through a model aneurysm is numerically
computed using a global linear stability analysis and actlire
transient growth analysis. The geometry features a sidakoi
bulge in an otherwise uniform circular pipe, with dimension
representative of a human abdominal aortic aneurysm. With a
time-independent inflow, the flow is weakly unstable to quasi
periodic global eigenmodes of azimuthal wavenumbers 4 and
5 at a Reynolds number (based on area-averaged velocity and
pipe diameterRe~ 3900. These eigenmodes are concentrated
in the outer part of the bulge, in the vicinity of its downstne
end. A transient growth analysis reveals that the flow isisens
tive to transient disturbances beyoRe= 33, well below the
time-averaged Reynolds numbers of blood flow in the human
abdominal aorta.

Introduction

Pipe flows arise in myriad engineering and biological system
and hence have been a constant focus of fluid mechanics re-
search for more than a century. The stability of flow in pipes
is of particular interest, as transition from laminar tobuwlent
flow leads to a significant change in the flow dynamics. More-
over, particularly with application to biological flows ihe car-
diovascular system, changes in the symmetry of flows through
the development of instabilities can markedly alter neal-w
velocity profiles, and hence wall shear stress. This can-exac
erbate cardiovascular diseases such as atherosclerosend
aneurysm [15].

Cardiovascular disease is a major health concern. Fomicesta
18% of Australians suffer a long-term cardiovascular ctonj

and 11% of the National health expenditure is incurred due to
this disease [1]. In recent years, studies have elucidhtesta-
bility of flow through constricted pipe geometries designed
model stenosis (e.g. see [5, 7] and references therein).- How
ever, research into aneurysm disease, which manifestsghro

a localized dilation of an artery due to degradation of wigH t
sue integrity, has primarily focused on patient-specifiouda-

tion [9]. Exceptions include recent laboratory experinsditl]

and numerical simulations [13] in axisymmetric aneurysnadmo
els at physiologically relevant Reynolds numbers. Theserde
mined the wall shear stress distribution across, and flowestr
ture within, an aneurysm bulge. The laboratory experiments
employed particle image velocimetry in a plane bisecting th
bulge, and inspection of their visualizations revealddlagym-
metry across the bulge centreline. This hints that thesesflow
may be susceptible to non-axisymmetric instabilities.

The aim of this study is to investigate both the asymptotie st
bility and potential for transient growth within the flow tugh

an axisymmetric model aneurysm, shown in figure 1. Fully de-
veloped Poiseuille flow with an area-averaged veldditylows

from left to right. The fluid is Newtonian with kinematic viss-

ity v, and a Reynolds number is defined based on the un-dilated

pipe diameteD as
ub
Re= —.

Aneurysm flows in humans can experience time-averaged and

’.L—,
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Figure 1: The geometry under investigation in this papee th
length () and width W) of the bulge and the un-dilated pipe
diameterD are shown. The bulge profile is sinusoidal.

peak Reynolds numbers &e~ 300 andRe~ 2000 to 3000,
respectively [11, 9]. These values guide the Reynolds numbe
range ofRe< 8000 investigated in the present study.

Reproducing the aneurysm geometry considered in [13], the
pipe features a smooth bulge with a sinusoidal profile. The
bulge length and maximum diameter ar82 and 19D, con-
sistent withModel 3in [11]). Despite linear stability of Hagen—
Poiseuille flow, one expects turbulence to appear in thégstra
downstream pipe at higher Reynolds number.

Methodology

The flows described in this study are computed by solving the
incompressible Navier—Stokes equations formulated iimdyit

cal coordinates. A nodal spectral-element method is used fo
spatial discretization, and time integration is perfornusthg
backwards differencing [8]. The code follows a formulatian
cylindrical coordinates [4], and solves the momentum andsama
conservation equations,

du= —(u-0)u—Op+v2u,
O-u=0,

whered; denotes a partial derivative with respect to time is
the velocity vector, ang is the kinematic static pressure.

Linear stability analysis

Asymptotic stability of the axisymmetric base flowd, (P) to
three-dimensional perturbations’(p’) is determined using a
linear stability analysis. Linearizing about the base flaelds
the linearized Navier—Stokes equations describing thiigea
of the perturbation field

o' =—(U-0)u — (U-0)U—0p’ + v, )
0-u =0. @
A Fourier decomposition discretizes the three-dimendipea
turbation field in the azimuthal direction, and linearitycda-
ples individual Fourier modes. This permits the stabilityre
dividual azimuthal wavenumbers to be computed separately
on the same axisymmetric domain as used for the base flow
computations.

An operatore/ (T) is defined describing the action of integrat-
ing equation (1) over a time intervdl from an initial per-
turbationu’(t = 0) such thatu’'(T) = </ (T)u’(0). Solutions

of equation (1) can be decomposed into solutions of the form
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Figure 2: Contour plots showing the azimuthal component of
vorticity in the vicinity of the bulge from axisymmetric sim
lations at Reynolds numbeRe= 1 andRe= 5000. 12 equi-
spaced vorticity contour levels are plotted betwegn: 8U /D,
with dark and light shading showing negative and positive vo
ticity, respectively.

G(x)exp(at), whereg is the complex growth rate of individ-
ual eigenfunctionsi(x). Stability is dictated by leading eigen-
modes of the eigenproblem

A(T)Uj = ptj,

wheredij are eigenvectors corresponding to eigenvajyedhe
eigenvalue relates to the growth rate of an eigenmode throug
n=exp(aT), and instability is predicted whejp| > 1. The
linear stability analysis capabilities of the code haverbsac-
cessfully employed in recent studies [14, 3].

Transient growth analysis

In contrast to the asymptotic behaviour of linear pertudvest
predicted by linear stability analysis, evolution overighiones

may result in significant amplification due to the non-noiityal

of eigenmodes ofs [12]. Transient growth analysis seeks to
determine the maximum possible amplification in enei@y (

for a perturbation evolved over a time intervakand the corre-
sponding initial field leading to this optimal growtta)( These
have been shown to be equivalent to the square of the leading
singular value X) and the leading right singular vector of
respectively.

The square of the principal singular value and right singula
vector of.«7 are equivalent to the leading eigenvalue and eigen-
vector of &7 o7, wheres/* is the conjugate transpose (adjoint)
of o7. This relationship has been used [2] to develop a method
for predicting transient growth of a flow without explicitipn-
structing«Z or «7*. They derived the adjoint linearized Navier—
Stokes equations

—oiu* = (U-O)u* — (OU)T-u* — Op* +vO?u*, )
d-u*=0,

such that the evolution of a perturbation backwards in tiee d
scribes the action of7* on a perturbation. Therefore, the ac-
tion of &* & may be achieved by first integrating a perturbation
forward in time over using equation (1), and subsequently in-
tegrating the result backwards in time using equation (BanT
sient growth is then governed by the leading eigenmodes of

o (V) = Ajvj.

Discretization and grid independence

The mesh used in this study discretized the meridional half-
plane of the geometry, and comprised 1603 elements. In or-

der to accommodate the perturbation fields arising durigug-tr
sient growth analysis, the domain extended upstream and-dow
stream of the bulge for the relatively large distances @ a8d
44D, respectively. To resolve flow features, elements were con-
centrated within and downstream of the bulge.

To determine grid independence, the convergence of transie
growth eigenvalues with increasing element polynomiareleg
(Np) was computed. Reynolds numbe®e= 300 and 5000
were considered, corresponding respectively to appraeima
the time-averaged Reynolds number for flow through a human
abdominal aorta, and a value exceeding the peak Reynolds num
ber in these vessels. Re= 5000, simulations witiNp < 5
failed to achieve a time-invariant state. M = 6, G converged

to within 6 and 3 significant figures fdRe= 300 and 5000,
respectively. A resolution dfi, = 6 is hence used hereafter.

Results

Reynolds number dependence of axisymmetric flow

Plots showing the azimuthal component of base flow vorticity
at several Reynolds numbers are shown in figure 2. The flow
quickly adopts the uniform vorticity field associated withly
developed Poiseuille flow outside of the bulge. Upstream, th
flow only deviates visibly from Poiseuille flow as the bulge be
gins to expand, while the recovery distance downstreameof th
bulge is seen to increase with Reynolds number, though even
atRe= 5000, the flow appears to recover within just a few di-
ameters of the bulge. Secondly, the vorticity at the walliith

is closely related to wall shear stress [13]) is lower witthie
bulge than in the un-dilated tube. This difference becoma®em
pronounced at higher Reynolds numbers.

As Reynolds number increases, the flow entering the bulge dis
plays a greater tendency to separate near the entrancee befo
proceeding through the core of the bulge and into the down-
stream pipe. Another notable feature of these flows is the vor
ticity field in the vicinity of the downstream end of the bulgyed

the periphery of the core region. At higher Reynolds numbers
steady-state waviness develops in the vorticity and flovddiel
Ultimately this region of the flow is observed to become tem-
porally unstable as the Reynolds number is increased beyond
Rex 7 x 10°.

Asymptotic flow stability

As reviewed in [12], it is well-known that fully developed
Poiseuille flow in a straight circular pipe is asymptotigadta-

ble to all linear disturbances, though in practice turbcéede-
velops at higher Reynolds numbers. Given that in this geom-
etry the uniform Poiseuille flow is disrupted by the presence
of the bulge, it is possible that these flows may be unstable to
global linear instability modes. A detailed linear stayifinaly-

sis was conducted over a wide range of Reynolds numbers and
azimuthal wavenumbers to determine the asymptotic styabili

of this system.

With increasing Reynolds number the flow first becomes un-
stable via a quasi-periodic mode with wavenumbres 4 at
Re= 3910, closely followed by another quasi-periodic mode
with m=5 at Re= 4040. Despite the steady-state axisym-
metric flow becoming unsteady beyoRe~ 7 x 103, the zero-
wavenumber mode remains highly stable throughout the range
of Reynolds numbers investigated here, implying that theebn

of unsteady flow observed in axisymmetric simulations isanot
result of a global instability.

Contour plots of the first two eigenmodes to become unstable
are shown in figure 3 @&e= 4000. The perturbation fields of



Figure 3: The leading eigenvector fields from linear stapili
analysis of azimuthal wavenumbers= 4 and 5 aRe= 4000.
Equi-spaced contours of the azimuthal component of voytisi
shown, with dark and light shading showing negative and-posi
tive vorticity, respectively. The predicted perturbatf@ids are
concentrated within the bulge, surrounding the bulge core.
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Figure 4: Logarithm ofG plotted againstt at Re= 300.
Wavenumbersn= 0 to 8 are shown as labelled.

the leading instability modes are concentrated within gggan

of the bulge outside of the core flow. The absence of perturba-
tion field structures outside of the bulge reflects the albstylu
stable Poiseuille flow in those regions.

Transient growth: Wavenumber variation

It has been shown (e.g. see [12, 5]) that flows exhibiting lim-
ited asymptotic instability may still exhibit substantgrowth
over short timescales. For stenotic flows transient growath c
invoke bypass transition, where transient shear layealiilgty
supersedes the predicted global instability transitich.pa

Ultimately, growth of azimuthal disturbances with higher
wavenumbers is suppressed by viscosity. Figure 4 plots tran
sient growth behaviour @e= 300 across several azimuthal
wavenumbers. Note that the greatest growth is found for the
first azimuthal wavenumber. This was consistent acrossgeran
of Reynolds numbers, and is emerging as a general observatio
in confined flow through axisymmetric geometries. Examples
include Hagen—Poiseuille flow [12], stenotic pipe flow [SHan
flow through a suddenly expanded pipe [6].

The peak energy growth predictedR¢= 300 andm= 1 oc-
curs att = 3.082 with an amplification oGmax = 36.21. By
comparison, this amplification is much smaller than in stieno
pipe flow [5], whereGmax = 5.6 x 10* at Tmax~ 3.3.

Transient growth: Reynolds number variation

Transient growth for azimuthal disturbances with= 1 at sev-
eral Reynolds numbers are plotted in figure 5. Energy growth
is found to increase in amplification and temporal envelope
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Figure 5: Logarithm ofG plotted against for perturbations
with m= 1 at Reynolds numbers as labeled. Maximum growth
increases with botReandrt.
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Figure 6:Gmax plotted againsRefor maximum growth for per-
turbations with azimuthal wavenumber= 1, on a logarithmic
scale.

with increasing Reynolds number. Further computations re-
vealed that the critical Reynolds number for energy growih (
G(1) > 1) isReyjt = 32.9, more than two orders of magnitude
below the predicted transition Reynolds number for global i
stability (Re= 3910).

The variation of peak growth with Reynolds number is plot-
ted in figure 6. Two linear regions are identified (over 50
Re< 150 andRe > 200), implying power-law dependencies of
Gmax 0 RE/5 and Gmax 0 RE/5, respectively. These differ-
ent growth trends in these regions may relate to change®in th
underlying axisymmetric base flows. At Reynolds numbers be-
low the first of these regions, the flow remains attached to the
bulge wall. Over 505 Re< 150, the flow separates within the
bulge, and a progressively larger recirculation bubblecapp

At higher Reynolds numbers, the bulge recirculation emarg
ment ceases as it occupies the entirety of the bulge outs@e t
core region.

Snapshot sequences of disturbance energy in the flow areasshow
in figure 7 showing initially the amplification of the distur-
bances to their respective peak times, before subsequetly
caying as the disturbance advects downstream of the butge. T
disturbance structures are observed to shear and slant back
wards as they move down the pipe, due to the faster flow along
the axis of the pipe than towards the wall.

Conclusions

Computations have revealed that the steady flow through an
axisymmetric aneurysm model with bulge length and width
2.9 and 19 times the pipe diameter, respectively, are unsta-
ble to weak transient disturbances with azimuthal waverarmb
m =1 beyondRe=: 33. Eventually, the flow becomes unsta-



(@
t=0

t=3 Eﬁax. E) % _

(b)

Figure 7: Time evolution of the predicted initial disturlearof azimuthal wavenumben = 1 for optimal growth at (aRe= 300 with
T =23, and (b)Re= 5000 att = 5.5, integrated using the linearized Navier—Stokes equsitibhe logarithm of kinetic energy is plotted
with unit spacing between contours, and darker shadingspands to higher energy levels. Flow is left to right, arelrtieridional

half-plane of the geometry is shown.

ble to quasi-periodic global instability modes with azitmait
wavenumbersn =4 and 5 atRe= 4000. Three-dimensional
direct numerical simulation will be required to determifthie
predicted optimal disturbances could invoke bypass tiiansi
in aneurysm flows.
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