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ABSTRACT 
Horizontal convection is investigated numerically in 

shallow rectangular enclosures with height-to-length aspect 

ratios up to 160 times shallower than has been studied previously 

to determine the effect of ocean-relevant confinement on 

horizontal convection. Simulations are performed at a Prandtl 

number of Pr = 6.14 (consistent with water) across a wide span 

of Rayleigh numbers, (10 ≤ Ra ≤ 1016) and aspect ratios (10-3 ≤ 

A = H/L ≤ 0.16). The Boussinesq flow is driven by imposing a 

linear temperature variation from colder to warmer across the 

bottom boundary of the enclosure, and insulating temperature 

conditions on the remaining boundaries.  

This work, for the first time, focuses on the effect of aspect 

ratio towards the shallow-enclosure limit. A critical Ra has been 

identified marking the transition between the diffusion-

dominated and convective regimes. The heat transfer scalings 

within these regimes are determined as a function of aspect ratio 

and Nusselt number, Nu. These scalings provide evidence that at 

lower Ra, the height of the enclosure controls the flow dynamics, 

and modified Nu and Ra have been defined. The velocity and 

temperature solutions in this regime display self-similarity 

features that are described by analytical solutions of one-

dimensional channel flow. This result provides further evidence 

that horizontal convection flow in shallow enclosures resembles 

one-dimensional channel flow at low Ra, away from the end-

walls. 

 

1 INTRODUCTION 
Horizontal convection is a distinctive mode of convective 

heat transfer where heating and cooling occurs along the same 

horizontal boundary. In contrast to the substantially studied 

Rayleigh–Bénard convection, where convective overturning 

circulation is stimulated by both heating and cooling, the 

strength of overturning in horizontal convection is ultimately 

limited by heat diffusion [1]. The inspiration for research in 

horizontal convection originates from its relevance to 

geophysical flows and process engineering [2].  

Several studies regarding horizontal convection have been 

performed in both numerical and experimental aspects to 

investigate the flow dynamics. Experiments by Mullarney et al. 

[3] with water in an enclosure of aspect ratio, A=0.16 (height to 

length) showed that beyond the diffusion-dominated regime, the 

Nusselt number scales approximately with Ra1/5, which is similar 

to the Rossby scaling [4]. Chiu-Webster et al. [5] studied 

horizontal convection in the infinite-Prandtl number limit 

relevant to very viscous fluids at a range of A and Ra with highest 

values of 2 and 1010, respectively. The authors also recovered the 

Rossby scaling of Nu ∝ Ra1/5, and provided evidence of aspect 

ratio independence of this scaling for Ra > 107. However, Siggers 

et al. [6] used a variational analysis to report a higher upper 

bound of the scaling, namely Nu ∝ Ra1/3. Sheard and King [7] 

used a spectral element method to investigate horizontal 

convection for aspect ratios, 0.16≤ A ≤2.0 at a range of Rayleigh 

and fixed Prandtl number representative of water (Pr = 6.14). 

They reported an aspect ratio dependence feature the measured 

Nu and boundary layer thickness at low Ra. The authors also 

confirmed an increase in the exponent of Ra 1/5th to 1/3rd in the 

convective regime for the Nu scaling. This uplift was later shown 

to represent a shift between flow regimes both obeying Nu ∝ 

Ra1/5 [8]. 

Despite horizontal convection being strongly motivated by 

a desire to understand the role of buoyancy forcing in global 

ocean currents, it is evident that the previously investigated 

range of enclosure aspect ratios (A ≥ 0.16) is well above ocean-

relevant values (10−5 ≤ 𝑂(𝐴) ≤ 10−3). Therefore, this study 

aims to provide insights into horizontal convection, its regimes, 

and the scalings of significant quantities towards the limit of 

shallow aspect ratios. 

 

2 METHODOLOGY 
       The computation domain comprises a rectangular fluid-

filled enclosure with water, having internal dimensions of length 

L, height, H (aspect ratio, A= H/L). The flow is driven by a linear 

temperature profile applied along the bottom wall of the 

enclosure, as shown in figure 1. The side and top walls are 

thermally insulated (a zero wall-normal temperature gradient is 

imposed), and a no-slip condition is imposed on the velocity field 

on all walls. The buoyancy is modelled with the Boussinesq 

approximation, which implies that the density differences in the 

fluid are disregarded except for the contribution of gravity. 

Hence, the energy equation simplifies to a scalar advection 
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diffusion equation for temperature, which is evolved in 

accordance with the velocity field. 

 

 
Figure 1: A schematic diagram of the system. The origin of the 

coordinate system placed at the bottom-left corner, and a temperature 

difference of δθ imposed along the bottom boundary. 

      The fluid temperature is related linearly to the density via 

thermal expansion coefficient α. The Navier–Stokes equations 

governing a Boussinesq fluid are written as 

 

where t is time, θ is the temperature, p is the pressure, u 

denotes the velocity vector and g⏞ is a unit vector in the direction 

of the gravity. In the governing equations, lengths, time, velocity, 

pressure and temperature difference are respectively scaled by 

L, L2/κ, κ/L, 𝜌∘ 𝜅
2 /𝐿2 and δθ. The 2D incompressible Navier–

Stokes equations augmented by a buoyancy term in the 

momentum equation and a scalar advection-diffusion transport 

equation for temperature are solved by a high-order in-house 

solver, which employs a spectral-element method for spatial 

discretisation and a 3rd-order time integration scheme based on 

backwards-differencing.   

Meshes are constructed for various aspect ratios from A = 

0.16 down to 0.001. The number of spectral elements in the 

meshes varies between 296 and 4128. The elements are 

concentrated in the vicinity of the side walls; and adjacent to the 

hot bottom end boundary to ensure that flow is resolved, while 

relaxing the mesh density in the interior. The highest aspect ratio 

considered in this study (0.16) corresponds to the lowest aspect 

ratio previously considered in the literature. After a thorough 

grid resolution study, a polynomial order of 5 was selected to 

conduct the study considering a trade-off between computational 

cost and accuracy. 

 

 

 
3 RESULTS AND DISCUSSION 

The Nusselt number is calculated from the obtained flux 

values along the bottom horizontal boundary of the enclosure for 

each aspect ratio configuration, and these are plotted against the 

Rayleigh number in figure 2. Nusselt number is found to be 

directly proportional to the aspect ratios (Nu ∝ A) and 

independent of Rayleigh number at low Rayleigh numbers: this 

range of Rayleigh numbers is identified as the diffusion-   

dominated or conduction regime. With an increase in Rayleigh 

number, the Nusselt number for all aspect ratios demonstrate a 

rapid rise in the transition regime before collapsing onto a single 

line: this region is identified as the convective regime. The 

results show that by increasing enclosure confinement, i.e. 

towards smaller aspect ratios, the onset of the transition regimes 

delays to a higher Rayleigh number. The onset of the transition 

regime is quantified by introducing a critical value of Rayleigh 

and Nusselt number for each aspect ratio. A 5% deviation from 

the Rayleigh-number-independent value of the Nusselt number 

is taken to mark the critical Rayleigh number. The critical 

Nusselt and Rayleigh numbers are found to closely fit to power-

law scalings having Ra ∝ A-4 and Nu ∝ Ra-1/4.   

Based on the low-Ra/low-A scalings of Ra ∝ A-4 and Nu ∝ 

A, the figure 2 could be rescaled and plotted as Nu / A against 

Ra.A4, the outcome of which is shown in figure 3. For lower 

values of Ra.A4, the corresponding values of Nu/A have 

collapsed into a single line, which is consistent for all aspect 

ratios. This collapse indicates that the flow in this region is only 

governed by the height of the enclosure, which may be 

understood through modified Nusselt and Rayleigh numbers 

defined as 

 

𝜕𝐮

𝜕𝑡
= −(𝐮 ∙ ∇ )𝐮 −  ∇𝑝 + 𝑃𝑟∇2 𝐮 − 𝑃𝑟𝑅𝑎ĝ𝜃,          

∇ ∙ 𝐮 = 0,               
𝜕θ

𝜕𝑡
= −(𝐮 ∙ ∇ )𝜃 + ∇2 𝜃,                                                         

  

𝑁𝑢𝐻 =
𝑁𝑢

𝐴
  =

𝐹𝑇𝐿

𝜌∘𝐶𝑝𝜅𝑇(𝛿𝜃𝐻)
 

Figure 2: A plot of log10 (Nu) against log10 (Ra) for  

0.001 ≤ A ≤ 0.16. 

(1) 

(2) 

(3) 
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Here 𝛿𝜃𝐻 is the temperature difference along a portion of 

the bottom boundary of length H; this appears in both definitions. 

Additionally, note that L has been replaced by H as the 

characteristic length quantity appearing in the modified Rayleigh 

number definition. The corollary to this is that in very shallow 

enclosures, horizontal convection will be insensitive to the 

overall length of the enclosure, rather its behaviour will be 

controlled by the enclosure height and the horizontal temperature 

gradient acting over that same scale. 

Figure 3 shows that beyond the critical 𝑅𝑎𝐻 , 𝑁𝑢/𝐴 values 

for all aspect ratio start branching off from the highest A=0.16 to 

the lowest A=0.001 with increasing Rayleigh number, which 

resembles the opposite of the collapse in Nu-Ra plot in the 

convection dominated regime.  

Attention is now turned to profiles of the horizontal velocity 

component extracted at various horizontal locations within the 

enclosures. The locations are selected for different distances 

from the hot end, and expressed as a function of the enclosure 

height. The extracted velocities were normalized by the 

maximum value from each profile, while the vertical coordinate 

was normalised by enclosure height. Results are shown in figure 

4, which presents the combined velocity profiles for all aspect 

ratios at a single value of Ra.A4 within the collapsed regime. The  

 

 

 

normalized profiles exhibit a strong collapse to a universal 

profile, implying a self-similarity in the velocity fields in this 

regime. By observing the extracted velocity data points for all 

aspect ratios throughout different locations (which are expressed 

in terms of the distance from the hot-end wall) along the 

horizontal boundary, it is evident from figure 5 that beyond a 

distance of approximately 4H (the distance from side-wall at the 

hot end of the enclosure-wall expressed as four times the height 

of enclosure), all data points consistently demonstrate a collapse 

to a single value. This demonstrates that the effects of the 

sidewalls in conduction-dominated horizontal convection are 

confined to within 4H from the wall, and this distance scales with 

height, not the horizontal enclosure length. Away from these end-

wall regions the velocity profile is uniform across the horizontal 

extent of the enclosure. This behavior will emerge in enclosures 

having L > 8H, or A = H/L < 1/8 (A < 0.125), which is shallower 

than the shallowest (A = 0.16) enclosure investigated previously. 

𝑅𝑎𝐻 = 𝑅𝑎 𝐴4 = 
𝑔𝛼(𝛿𝜃𝐻)

𝜐𝜅𝑇
𝐻3 

Figure 3: The Nu-Ra plot is rescaled with Ra ∝ A-4 and Nu ∝ A to 

investigate the self-similarity features. The small green circles on each 

aspect ratio denotes the onset of unsteady flow. 

Figure 4: The velocity profiles generated from different locations 

throughout the horizontal bottom boundary are plotted with the 

analytical solution. 
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Similarly, temperature profiles relative to the local bottom 

wall temperature were extracted and normalized by the vertical 

temperature difference of each profile. The results are shown in 

figure 6. In contrast to the velocity contour scaling, the 

temperature contours for all aspect ratios are not well-collapsed 

as the obtained values in the vicinity of the hot-end wall seems 

to deviate from the rest of the data sets. However, similar to the 

velocity contours, the temperature contours also demonstrate the 

self-similarity feature beyond the 4H distance from the end walls 

for all aspect ratios. 

Polynomial fits to the scaled velocity and temperature 

profiles are similar to the analytical solution for flow in a 

horizontal channel driven by a horizontal temperature gradient 

under a zero net horizontal flow constraint, which is given as 

 

 

 

𝜃 =  
𝛼𝑔𝛽2

24𝜐𝜅
 (

1

5
𝑦5 −

ℎ

2
𝑦4 +

ℎ2

3
𝑦3  ) 

 

 

4. CONCLUSION 
Horizontal convection at ocean-relevant shallow enclosures 

having aspect ratios as small as 160 times shallower than has 

previously been considered have been investigated by employing 

high-resolution spectral element simulations with a linear 

temperature profile applied alongside the horizontal boundary. 

Modified Rayleigh and Nusselt numbers are proposed for the 

low-Rayleigh-number conduction-dominated regime. These 

modified parameters reveal that in shallow enclosures, 

horizontal convection is controlled not by the enclosure width, 

but by its height. Furthermore, a previously unseen behaviour is 

discovered, whereby the turning of the flow at the enclosure 

sidewalls is confined to a small region near the walls, while away 

from the walls the flow is horizontally independent. Self-

similarity in velocity and temperature profiles is identified in this 

regime across different aspect ratios, and consistently the 

sidewall effects are confined to within a distance of 

approximately four times the enclosure height. This reveals that 

the shallowest enclosure previously investigated in the literature, 

the widely studied A = 0.16 enclosure, is not sufficiently shallow 

to capture these effects.  

 

 

 

 

 

 

 

Figure 6: The temperature profiles generated from different 

locations throughout the horizontal bottom boundary are 

plotted with the analytical solution. 

𝑈 =  
𝛼𝑔𝛽

12𝜐
(2𝑦3 − 3ℎ𝑦2 + ℎ2𝑦 ) 

Figure 5: Minimum values of the scaled velocity plotted with the 

distance form hot-end wall. The distance is expressed in terms of the 

integer, N of the aspect ratio of the enclosure. The inset figure 

demonstrates how the distance from the hot-end represented the 

integer of aspect ratio. 

(4) 

(5) 
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NOMENCLATURE 
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Greek letters 

β =linear temperature gradient along the x-axis 

θ = fluid temperature 

𝛿𝜃 = temperature difference imposed across 

horizontal boundary 

κT =fluid thermal diffusivity 

ν= fluid kinematic viscosity 

α= thermal expansion co-efficient 

𝜌= density of the fluid 

 

A =H/L=aspect ratio 

g = gravitational acceleration 

Nu=Nusselt number 

NuH = horizontal Nusselt number 

P=pressure 

Pr= Prandtl number 

Ra=Rayleigh number 

RaH = horizontal Rayleigh number 

t=time 

u = velocity vector 

 

 

 

 

 


